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Soybean meal was adulterated with melamine with the purpose of boosting the protein content for unlawful interests. In recent
years, the near-infrared (NIR) spectroscopy technique has been widely used for guaranteeing food and feed security for its fast,
nondestructive, and pollution-free characteristics. However, there are problems with using near-infrared (NIR) spectroscopy for
detecting samples with low contaminant concentration because of instrument noise and sampling issues. In addition, methods
based on NIR are indirect and depend on calibration models. NIR microscopy imaging offers the opportunity to investigate the
chemical species present in food and feed at the microscale level (the minimum spot size is a few micrometers), thus avoiding the
problem of the spectral features of contaminants being diluted by scanning.The aim of this work was to investigate the feasibility of
usingNIRmicroscopy imaging to identifymelamine particles in soybeanmeal using only the pure component spectrum.The results
presented indicate that using the classical least squares (CLS) algorithm with the nonnegative least squares (NNLS) algorithm,
without needing first to develop a calibration model, could identify soybean meal that is both uncontaminated and contaminated
with melamine particles at as low a level as 50mg kg−1.

1. Introduction

Soybean meal is one of the most important feed raw
materials and one of the main ingredients in compound
feed because it has a complete protein profile. In the
past decade, the price of soybean meal has tripled
(http://faostat3.fao.org/home/index.html). The price is
dictated by the protein content: the higher the content, the
higher the price. There have been recent cases of soybean
meal being adulterated with melamine (1,3,5-triazine-2,4,6-
triamine) in order to boost the protein content [1].There have
also been cases where it was suspected that soybeanmeal had
been contaminated with low melamine levels. The reference
methods (wet chemistry) usually are time-consuming and
expensive, cause damage to the sample, and need chemical

reagent [2–5]. So there is a real need for fast, nondestructive,
and automatically controlled screening methods that will
guarantee quality and security.

Near-infrared (NIR) spectroscopy is widely used in this
context because it is a rapid, nondestructive, and nonpollut-
ingmethod that requiresminimumor no sample preparation
[6]. Applications vary from sample chemical composition
to detecting adulteration or contaminant ingredients in raw
materials and compound feed [7, 8]. Many studies have
investigated the feasibility of using NIR to detect melamine
[9–14], but there are still some problems here when it comes
to testing samples with low melamine content because of the
instrument noise and sampling design error [15, 16]. NIR can
only acquire the spectra information but cannot provide the
spatial information of the sample. NIR microscopy (NIRM)
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Figure 1: Experimental sample: (a) Set A-1; (b) Set A-2, melamine: line of dashes.
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Figure 2: Average spectrum of soybean meal and melamine particles: raw spectra (a) and first derivative spectra (b).

which combines NIR and digital images together is able to
collect the spectrum of individual particles (the minimum
spot size is a few micrometers) from samples [17]. With the
development of a high-precision 𝑋-𝑌 motion stage, NIRM
imaging is obtained by successively measuring spectra while
the sample is repositioned in the𝑋 and𝑌 spatial dimensions.
Thus, the technique offers an opportunity to explore not only
what kinds of chemical species are present at the microscale
level, but also where they might be present [18].

NIRM imaging is a type of NIR imaging and has better
spatial resolution. In the past decade, NIR imaging has
become a powerful analytical tool for detecting contaminants
and defects in agrofood products [19–25]. For feed products,
several investigations have been conducted on the feasibility
of using NIRM to detect, identify, and quantify processed
animal byproducts [26–30] and on usingNIR imaging for the
complete screening of compound feeds [31].

The aim of this study was to investigate the feasibility
of using NIRM imaging to identify melamine particles in
soybean meal. The classical least squares (CLS) algorithm
with the nonnegative least squares (NNLS) algorithm was
used for the analysis of soybean meal adulterated with
melamine.

2. Materials and Methods

2.1. Experimental Design. A total of 20 soybeanmeal samples
were collected from various feed manufacturers and were
ground to pass through a 0.5mm sieve. And 3 melamine
sampleswere bought from three chemical reagent companies,
with 99% of the particles being less than 0.25mm (analytical
reagent, C3H6N6 content certified by the company ≥99.5%).
For this study, three sets of samples were used. Set A was
prepared artificially in order to develop a method without
the need to create the calibration model. Set B was prepared
using representative matrixes to validate the reliability and
robustness of the method. Set C was prepared with low
melamine content in order to investigate the sensitivity of the
method.

2.1.1. Experimental Sample: Set A. Samples were artificially
prepared on Teflon Spectralon using soybean meal and
melamine particles (Set A-1, Figure 1(a)): a melamine particle
(m2#) was placed on top of a soybean meal particle (s2#); a
melamine particle (m4#) was placed under a soybean meal
particle (s4#); a melamine particle (m3#) and a soybean
meal particle (s3#) were clustered together; a singlemelamine
particle (m1#) was used alone; and a single soybean meal
particle (s1#) was used alone.
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Figure 3: The detection results of soybean and melamine of Set A samples using CLS algorithm: (a) soybean image of Set A-1; (b) melamine
image of Set A-1; (c) soybean image of Set A-2; (d) melamine image of Set A-2.

If a melamine particle is placed under a soybean meal
particle, the thickness of the latter would affect the detec-
tion of the melamine particle. In order to study how this
thickness affected the method, other samples were artificially
prepared with different soybean meal thicknesses (Set A-2,
Figure 1(b)). S1, S2, S3, and S4 relate to soybeanmeal that was
about 30, 50, 100, and 110𝜇m thick, respectively.

2.1.2. Experimental Sample: Set B. For Set B, using 20 soy-
bean meal and 3 melamine samples, 20 sample mixtures
contaminated with 5, 10, 25, and 50 g kg−1 of melamine,
respectively, with five replicate samples for each melamine
content level, were prepared with a mixer (REAX 20/8;
Heidolph, Schwabach, Germany) in the laboratory (Table 1).
In order to achieve a homogeneous distribution of melamine
in the soybean meal, a stepwise dilution procedure was

applied to ensure that in each dilution step the ratio of the
two materials to be mixed did not exceed a factor of 3 [32].

2.1.3. Experimental Sample: Set C. As shown in Table 1, 4
sample mixtures contaminated with 1,000, 500, 100, and
50mg kg−1 of melamine, respectively, were prepared in the
laboratory using 4 soybean meal and 3 melamine samples.

2.2. Data Acquisition. All the samples (Set A, Set B, Set C, and
20 pure soybean meal and 3 pure melamine samples) were
analyzed using aNIRM imaging system (Spotlight400, Perkin
Elmer), with 16 spectra being acquired simultaneously from
the line detector.The detector in this instrument is a mercury
cadmium telluride (HgCdTe or MCT).The spatial resolution
of scanning is 25 × 25 𝜇m and the spectral resolution is
32 cm−1. Ratio spectra (𝑅 = 𝑅sample/𝑅teflon) were collected
using a Teflon Spectralon (Spectralon� Targets, Labsphere,
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Table 1: Description of the samples Set B and Set C.

Soybean meal
sample number

Melamine
sample number

Set B Set C
Sample number Melamine (g kg−1) Sample number Melamine (mg kg−1)

Soy 1 Mel 1 Set B1 5 Set C1 1,000
Soy 2 Mel 2 Set B2 5 Set C2 500
Soy 3 Mel 3 Set B3 5 Set C3 100
Soy 4 Mel 1 Set B4 5 Set C4 50
Soy 5 Mel 2 Set B5 5 / /
Soy 6 Mel 3 Set B6 10 / /
Soy 7 Mel 1 Set B7 10 / /
Soy 8 Mel 2 Set B8 10 / /
Soy 9 Mel 3 Set B9 10 / /
Soy 10 Mel 1 Set B10 10 / /
Soy 11 Mel 2 Set B11 25 / /
Soy 12 Mel 3 Set B12 25 / /
Soy 13 Mel 1 Set B13 25 / /
Soy 14 Mel 2 Set B14 25 / /
Soy 15 Mel 3 Set B15 25 / /
Soy 16 Mel 1 Set B16 50 / /
Soy 17 Mel 2 Set B17 50 / /
Soy 18 Mel 3 Set B18 50 / /
Soy 19 Mel 1 Set B19 50 / /
Soy 20 Mel 2 Set B20 50 / /
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Figure 4: The pixel spectra corresponding to the 𝐶𝑖 maximum
of melamine for Set B samples: 5 g kg−1 (cyan), 10 g kg−1 (blue),
25 g kg−1 (magenta), and 50 g kg−1 (red).

Inc., North Sutton, New Hampshire) as the reflectance
standard and then converted into absorbance (𝐴) by 𝐴 =
log10(1/𝑅). Each spectrum was the average of four scans
across the wavenumber range of 7,808–4,000 cm−1.

One image (an area of 8.75 × 8.75mm coupled with 350 ×
350 pixels; 122,500 spectra) was scanned for each of Set B and
Set C (samples with 1,000, 500, and 100mg kg−1 melamine),
respectively. In Set C, four images of samples with 50mg kg−1
melamine were scanned, because it was more difficult to
identify melamine particles at low concentrations.

Table 2: The minimum 𝐶𝑗 of 20 soybean meal samples calculated
by CLS.

Sample number Min of 𝐶𝑗
Soy 1 0.9387
Soy 2 0.8099
Soy 3 0.9317
Soy 4 0.9358
Soy 5 0.9278
Soy 6 0.7671
Soy 7 0.8276
Soy 8 0.9322
Soy 9 0.9008
Soy 10 0.8214
Soy 11 0.8721
Soy 12 0.9315
Soy 13 0.9084
Soy 14 0.8611
Soy 15 0.8941
Soy 16 0.8941
Soy 17 0.9036
Soy 18 0.8479
Soy 19 0.8702
Soy 20 0.8677
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Figure 5:The melamine distribution map predicted by CLS applied to the NIRM imaging data. Only one sample was taken as an example of
each concentration. (a), (b), (c), and (d) represent 5, 10, 25, and 50 g kg−1 of melamine, respectively.

One image (an area of 1.25 × 1.25mm coupled with 50 ×
50 pixels; 2,500 spectra) was scanned for each of the 20 pure
soybean meal and 3 pure melamine samples.

2.3. Data Analysis

2.3.1. Preprocessing. The main purpose of preprocessing was
to remove spectral and spatial artifacts such as rough surfaces,
optic effects, and detector noise. The NIRM imaging data
cube and the pure component spectra were both prepro-
cessed by applying a first derivative using the Savitzky-
Golay algorithm with a five-point filter width and a degree
2 polynomial [33]. The noisy part at the end of the spectra
was removed by reducing the spectral range to between 7,300
and 4,100 cm−1.

2.3.2. Chemometric Tools. The classical least squares (CLS)
algorithm was used to extract melamine distribution maps
from whole wavelengths [34, 35]. This algorithm is a suitable
method involving minimizing the sum of squared residuals
in order to predict concentrations using reference spectra
only. It was based on the assumption that the absorbance
spectra from a pixel in NIRM imaging can be viewed as the
weighted sum of the absorbance of each pure component
spectrum constituting the sample, as well as the experimental
noise. Initially, the data cube (𝑥 × 𝑦 × 𝜆) was unfolded into
a two-dimensional matrix 𝑋 = (𝑥𝑦 × 𝜆). Matrix 𝑋 was then
decomposed as follows:

𝑋 = 𝐶𝑆𝑇 + 𝐸, (1)

where 𝑆𝑇 represents the pure component signals; 𝐶 is the
relative concentration matrix; and 𝐸 is the error matrix.
𝐶 was estimated by the pseudoinverse 𝐶 = 𝑋𝑆(𝑆𝑡𝑆)−1

using the nonnegative least squares (NNLS) algorithm. The
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Figure 6: The 𝐶𝑗-GH diagram of Set C. (a), (b), and (c) represent 1000, 500, and 100mg kg−1 of melamine images, while (d), (e), (f), and (g)
represent four 50mg kg−1 of melamine images.
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Figure 7: The spectra out of both GH and 𝐶𝑗 liminal values. (a), (b), and (c) represent 1000, 500, and 100mg kg−1 of melamine images, (d)
and (e) represent two 50mg kg−1 of melamine images, and (f) represents Soy 6 image.

concentration of melamine and soybean meal, respectively,
was then calculated as follows [36]:

𝐶mel = 1000 ×
∑𝑛𝑖=1 𝐶𝑖

(∑𝑛𝑖=1 𝐶𝑖 + ∑
𝑛
𝑗=1 𝐶𝑗)
,

𝐶soy = 1000 ×
∑𝑛𝑗=1 𝐶𝑗

(∑𝑛𝑖=1 𝐶𝑖 + ∑
𝑛
𝑗=1 𝐶𝑗)
,

(2)

where𝐶mel (g kg
−1) is the melamine concentration of sample;

𝐶𝑖 is the melamine concentration of each pixel in the NIRM
image predicted byCLS;𝐶𝑗 is the soybeanmeal concentration
of each pixel in the NIRM image predicted by CLS; 𝑛 is the
number of pixels in one NIRM image; and𝐶soy (g kg−1) is the
soybean meal concentration of the sample.

All 𝐶𝑖 or 𝐶𝑗 values formed a chemical image
in which higher pixel intensity reflected higher
target concentration. Matlab� (The MathWorks,
http://www.mathworks.com/) and the PLS Toolbox
(Eigenvector Research, http://www.eigenvector.com/)
were used to perform this analysis.

3. Results and Discussion

3.1. Soybean Meal and Melamine Component Spectra. The
melamine reference spectrum was obtained by averaging all
the pixel spectra of 3 pure melamine images, and the soybean
meal reference spectrum was obtained by averaging all the
pixel spectra of 20 pure soybean meal images (Figure 2).
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Table 3: Discriminant results of the analysis of the Set B samples using CLS.

Sample number Melamine (g kg−1) Melamine detected
𝐶mel (g kg−1) Max of 𝐶𝑖 Number of spectra

Set B1 5 1.16 1.0919 1,955
Set B2 5 1.01 0.7524 1,897
Set B3 5 0.92 0.6206 1,959
Set B4 5 0.41 0.5971 1,337
Set B5 5 0.67 0.5686 1,509
Set B6 10 3.06 0.6696 6,635
Set B7 10 3.27 0.8080 6,449
Set B8 10 3.53 0.8891 7,865
Set B9 10 2.91 0.7721 7,998
Set B10 10 4.78 0.9064 10,871
Set B11 25 8.54 0.9536 21,913
Set B12 25 7.03 0.5367 25,188
Set B13 25 6.74 0.7325 15,940
Set B14 25 9.18 0.8827 19,452
Set B15 25 9.35 0.7916 39,533
Set B16 50 37.22 0.9413 90,127
Set B17 50 28.71 0.8753 81,584
Set B18 50 34.09 0.5128 106,041
Set B19 50 26.78 0.6352 89,335
Set B20 50 34.37 0.6912 101,457

Melamine is a triazine heterocyclic organic compound, com-
posed of nitrogen heterocyclic rings and -NH2. The NIR
region offers a special advantage in the measurement of the
primary amine NH2 group because of a unique combination
band [37]. Melamine has three strong characteristic peaks
in the 6,900–6,450 cm−1 range, especially near 6,805 cm−1,
which is the N-H combination band (]N-H asymmetric
and ]N-H symmetric combination) from primary amides.
Figure 2 showed that melamine has a distinctive spectral
feature compared with soybean meal, facilitating the identifi-
cation of melamine particles present in mixtures.

3.2. Soybean Meal Analysis Using CLS. Table 2 showed the
minimum 𝐶𝑗 of 20 soybean meal samples which were calcu-
lated by CLS. Meanwhile, the mean value of the minimum
values of𝐶𝑗 is 0.8822 and the standard deviation is 0.0484. In
consideration of the conciseness and effectiveness, the liminal
value of soybean meal’s 𝐶𝑗 was 0.8.

3.3. Melamine Detection Using CLS. Figure 3 showed the
detection results of Set A samples using CLS algorithm.
Figure 3(a) was a soybean meal image produced by CLS.
Four soybean meal particles (s1#, s2#, s3#, and s4#) could
be correctly identified. Figure 3(b) showed amelamine image
produced by CLS. CLS could detect the presence ofmelamine
m1#, m2#, and m3#, but not m4# which was placed under a
150 𝜇mthick soybeanmeal particle. In order to investigate the
effect of soybeanmeal thickness on the detection ofmelamine
under the soybean meal particle using the CLS algorithm, an
image of sample Set A-2 was obtained and analyzed using
CLS. When the soybean meal was 30 𝜇m and 50 𝜇m thick,

CLS could detect the presence of melamine, but it could not
do so if the melamine was under soybean meal that was
thicker than 100 𝜇m. In addition, the signal of the melamine
under soybean meal that was 50𝜇m thick was weaker than
the signal when the thickness was 30𝜇m, illustrating the dif-
ficulty of detecting the presence ofmelamine whenmelamine
particles were embedded in soybean meal particles.

Sample Set B containing 20 contaminated samples were
analyzed using the CLS algorithm and the results were shown
in Table 3.The concentrations ofmelamine calculated by CLS
were 0.84±0.30, 3.51±0.75, 8.17±1.21, and 32.23±4.33 g kg−1
for the 5, 10, 25, and 50 g kg−1 melamine content samples,
respectively. The melamine in the 20 mixture samples was
successfully detected. Although the melamine concentration
was underestimated by CLS, there was a good linear rela-
tionship between the predicted and real values (predicted
values = 0.57 × real values, 𝑅2 = 0.90). Particle size, surface
roughness, and density of the sample spread on a Teflon
Spectralon surface in a single layer were important factors
in quantifying melamine correctly. It is also likely that the
melamine concentration was underestimated because of the
difficulty in detectingmelamine if the particles were under or
tightly embedded in the soybean meal particles, as shown in
sample Set A.

The pixel spectra corresponding to the 𝐶𝑖 maximum of
melamine for the 20 sample mixtures are shown in Figure 4.
These melamine spectral characteristics indicated reliable
extraction by CLS. In addition, the results showed that
NIRM imaging data combined with the CLS algorithm could
provide a visual melamine distributionmap (Figure 5) for the
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analyst, which could not be done by NIR because the spatial
information is lost.

Sample Set C was used to investigate the method’s
sensitivity. 𝐶𝑗 < 0.8 and GH > 3 were combined together
for melamine detection in sample Set C. The GH is the
standardized Mahalanobis distance between each spectrum
and average spectrum, and GH > 3 is used to identify the
outliers [38, 39]. In this work, 480 representative spectra
were picked out from the 20 pure soybean meal images. And
the GH values between the target spectrum and the 480
soybean spectrawere calculated to identify whether the target
spectrum is soybean spectrum or not.

As shown in Figure 6, all the 1000, 500, and 100mg kg−1
of melamine images had spectra out of both GH and 𝐶𝑗
liminal values. Two of four 50mg kg−1 melamine images
had spectra out of both GH and 𝐶𝑗 liminal values. Using
GH and 𝐶𝑗 liminal values to analyze 20 pure soybean meal
samples, there were also some abnormal spectra in Soy 6.The
abnormal spectra detected by 𝐶𝑗 < 0.8 and GH > 3 of Set C
and Soy 6 were shown in Figure 7. All the spectra separated
from Set C had the melamine spectra characteristics which
could be recognized by visual inspection. Meanwhile the
spectra separated from Soy 6 were not similar with melamine
spectrum or soybean meal average spectrum; this part of the
spectra was more like full-fat soybean which could be seen in
the article published by Shen et al. [39].

4. Conclusions

The results presented in this study showed the feasibility
of the NIRM imaging with pure component spectra for
the analysis of soybean meal adulterated with melamine.
Theminimum effective detection concentration of melamine
was 50mg kg−1. NIRM imaging method is a nondestructive,
pollution-free, and cheaper testing technology compared
with wet chemical analysis method, and it could analyze one
sample within four hours. NIRM imaging combined with the
CLS algorithm can successfully detect melamine in soybean
meal without building the calibrationmodel, which provided
a new and feasible way for safety control of feed.
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