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Summary of the 2016 IDRC software shoot-out
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The Software Shoot-Out has been a staple of the
International Diffuse Reflectance Conference (IDRC),
a biennial meeting taking place in Chambersburg,
Pennsylvania, USA. It is a competition among partici-
pants of the conference that acknowledges and rewards
the person who develops the best model(s) and obtains
the lowest prediction error for a particular diffuse
reflectance spectral dataset. For every IDRC, a new
challenge is presented. The conference website (http://
www.cnirs.org) provides access to the past conference
datasets as well as those used for previous challenges.
Previous NIR news articles have reported results from
the past three competitions.1–3

Two competitions took place during the 2016 con-
ference: as usual, a dataset was made available for
download and completion at home. In addition, an
on-site competition was proposed to all conferees.
This on-site shoot-out was carried out as an anonym-
ous challenge in which students and professionals used
their chemometric skills to come up with the best pre-
diction models for two parameters pertaining to a
single dataset. The top three students and the top
three professionals were recognized during the confer-
ence banquet.

The more traditional shoot-out presentation
followed the on-site challenge and was a great occasion
at which to learn from and interact with experienced
chemometricians presenting their approach to a
common multivariate analysis problem. For the first
time, a calibration transfer challenge was proposed.
The conference thanks Cathleen Brenner of the U.S.
Department of Agriculture Grain Inspection, Packers
and Stockyards Administration (GIPSA) and Charles
R. Hurburgh Jr of Iowa State University for providing
the data and facilitating the competition. The confer-
ence also thanks Bruins Instruments (http://www.
bruins.de), FOSS (http://www.foss.dk), and Perten
Instruments (http://www.perten.com) for permitting
the use of the data.

Challenge

A common set of whole grain wheat data from three
NIR transmission instrument manufacturers was pro-
vided. The challenge consisted of matching the spectra
from all three instrument manufacturers, then develop-
ing a regression model for protein that resulted in

equivalent results among the models as measured by
the reproducibility. The samples represented wheat
grown throughout the United States with spectra
collected on five instruments per NIR spectrometer
manufacturer. The instruments’ make and serial num-
bers were coded. The spectra were in the spectral range
and spacing that the respective instrument manufac-
turers supported. The reference protein results, pro-
vided by GIPSA, were on a 12% moisture basis.

An initial study undertaken by Iowa State
University on behalf of the U.S. Department of
Agriculture’s GIPSA yielded a reproducibility (stand-
ard deviation (SD) across NIR models) of 0.14% pro-
tein compared to an average SD of 0.07% protein
across instrument copies of a given manufacturer.
Reproducibility, as defined by the following equation

Reproducibility ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ŷi � ŷ
� �2

n� 1

vuut

where n is the number of samples was used to judge the
effectiveness of the calibration transfer method(s). Note
that this definition can apply within copies of a given
instrument per manufacturer or across multiple instru-
ments from different manufacturers.

Dataset

. There were 1488 spectra in the calibration dataset
for 248 samples analyzed on three instruments for
manufacturer A and three instruments for manufac-
turer B.
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. There were 744 spectra in the test dataset for the
same 248 samples as in calibration analyzed on a
fourth instrument for manufacturer A and B in add-
ition to one instrument for manufacturer C.

. There were 450 spectra in the validation dataset for
an independent set of 150 samples analyzed once
each on a new instrument for each manufacturer
A, B, and C.

. Reference protein values were provided for the cali-
bration and test sets only.

The order of the calibration and test samples for all
sets and instrument manufacturers was identical as run
in the Iowa State University laboratory. However, the
order of the validation samples was randomized for
each instrument manufacturer.

Figure 1 presents the structure of the dataset and the
challenge. Figure 2 presents the mean spectra for the
test set from each of the three instruments.

The next section describes approaches as provided
by six of the participants.

Participant approaches

Participant 1

The spectral responses from the different instruments
were matched in terms of wavelength range and
resolution. The common wavelength channels were
selected from each instrument to avoid any extrapola-
tion or interpolation of the signals. Spectral baseline
differences were observed between instruments after
matching the wavelength range and resolution.
Savitzky–Golay (SG) second derivative preprocessing
was performed using a window size of 9 and a
second-order polynomial fit to decrease the baseline
difference. A partial least squares (PLS) model was
developed using the calibration set and the model
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Figure 1. Structure of the dataset in calibration, test, and validation.
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performance was assessed on the test set. The RMSEC
and RMSEP were 0.36 and 0.37%, respectively.
Figure 3 shows the projection of the test spectra of
the different instrument vendors in the PLS score
space. Grouping based on the instrument sources indi-
cated a significant effect of remaining spectral differ-
ences, even after preprocessing.

The spectral difference was further minimized by
direct standardization as per the equation below4

Spectral signalssecondary � Transfer Matrix

¼ Spectral signalsPrimary

The primary instrument was selected based on indi-
vidual instrument’s calibration performance. The instru-
ment ‘‘A3’’ (third dataset from instrument manufacturer
A) was selected as the primary unit based on its min-
imum RMSEC (%) among all. Spectra from all
other instruments (from same and different

manufacturers) were considered as secondary units.
Direct standardization was performed to match the
net analyte signals between primary and secondary
instruments.5 The idea was to minimize the effect
of interference during direct standardization. The
net analyte signal was calculated by iteratively
removing the spectra that were related to prediction
residuals. At each iteration, the information related
to wheat concentration increased as the interference
information decreased.

The transfer matrix was solved and used to trans-
form the preprocessed spectra from all the instruments
to the net analyte signals of the primary instrument
(A3). The RMSEC and RMSEP were 0.31 and 0.33%
after transformation. Figure 4 shows the projection of
the test and validation spectra in the new calibration
space. Instrument-based grouping was absent in the
score space indicating the minimization of spectral dif-
ference upon standardization to the net analyte signals.
The increased percent of explained variance by the first
loading vector (from 64.8 to 97.44%) indicated that the
dataset mostly contained information related to the
wheat protein concentration.

Participant 2

It was necessary to lineup and truncate spectra to make
all nine instruments have the same wavelength range
and number of wavelength variables. Spectra from
instrument manufacturers A and B were first pretreated
by SG smoothing with an 11-point window and a
second-order polynomial filter. Then every fourth
wavelength points in the region of 848–1046 nm for
manufacturer A, and in the region of 847–1045 nm
for manufacturer B were used. Manufacturer C spectra
were used as provided.

After spectral alignment and truncation, all spectra
had 100 wavelength variables. Further pretreatments
were needed to minimize spectral variations from
sample physical property and instrument changes.
Four steps: standard normal variate (SNV)–SG
second derivative (11-point window and second-order
polynomial)–SNV–mean centering were applied to all
spectral data. SNV was used twice which is unusual for
a typical spectral pretreatment scheme.

A PLS regression was used for model development
with all samples in the six provided calibration sets and
tested with all samples in the provided three test sets.
No sample was removed in the final model. It was pos-
sible few protein reference values were exchanged on
purpose or by mistake. Four pairs of protein reference
values were switch for modeling, i.e. pairs of (779,780),
(1275,1276), (2003,2004), and (2090,2091).

Wavelength regions used for modeling were 958–982
and 990–1038 nm. Eight (8) latent variables were deter-
mined as optimum number of PLS factors. The
PLS_Toolbox (Eigenvector Research, Mason, Wa,
USA) software was used for searching the optimal con-
ditions on spectral alignment, pretreatment, wavelength
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Figure 2. Raw test spectra.

Figure 3. Score plot of the calibration and test set.
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regions, and latent variable selection. The Unscrambler
(CAMO, Woodbridge, NJ, USA) software was used for
data and model performance visualization check.

PLS predictions were applied to all calibration,
test, and validation sets after spectral alignment,
truncation, and pretreatment with SNV–SG second
derivative–SNV. No sample was removed in the pre-
diction sets. Original order (without switch) of y-
reference values in datasets was kept for the stan-
dard error (SE), the root mean square error
(RMSE), and the bias calculation against predicted
proteins. Reproducibility was calculated by averaging
the 248 SD values, and each value was the SD of
nine predictions on the same sample by nine different
instruments in calibration and test sets.
Reproducibility of 0.134% was reported. If the SD
was calculated by three test sets only, the reproduci-
bility would be 0.106%; further, it would be 0.077%
if samples with ID 20140019, 20140020, 20140108,
and 20140109 in the test sets were marked as outliers
and removed.

Participant 3

The first step was to use the largest common
wavelength range among instruments: 850–1048 nm.
The second step of the calibration development was
to have a look at the X data and to detect potential
outliers and/or mistakes. As the data consisted in nine
series of the same samples, it was easy to make spectral
comparisons and subtractions to detect mistake in the
sequences. For y outliers, models were calculated
instrument by instrument. After this process eight spec-
tra were removed from the nine series to keep all the
series exactly identical. There were sequence errors in
the spectra or inversion in the y reference values (sam-
ples removed in calibration and test; no. 17, 19, 20, 35,
36, 106, 107, 188).

After cleaning, the average of each of the nine sets
has been calculated and merged. Plots of the spectra
showed big differences in optical densities and their
derivatives showed that spectra from instrument manu-
facturer C had an X-axis shift compared to the other
instrument manufacturers. Based on the nine mean
spectra, the external parameter orthogonalization6

(EPO) method was applied to remove the differences
between instruments. The first three PC were removed
from all the data. If P is the matrix with the first three
loadings of the principal component analysis based on
the averaged spectra, the corrected matrix X (Xcor) is
calculated as follows

XCOR ¼ X� XPTP

A new calibration dataset was set up with the six
calibration series from instrument manufacturers A
and B. PLS models showed nonlinear responses.
Thus, it was decided to apply a local approach from
the package FOSS Winisi.7 No other math treatments
than EPO was used. The test set was predicted with a
RMSEP of 0.17% and the reproducibility among the
nine sets was 0.11%.

Participant 4

A PLS model was built in which the model optimized
reproducibility and accuracy by performing the follow-
ing spectral pretreatments: spectral truncation and
resolution alignment, SG first derivative, and piecewise
direct standardization (PDS).8

Each instrument manufacturer differed in spectral
range and resolution. All spectra were truncated to
wavelength range of the instrument with the narrowest
range (850–1048 nm). Also the resolution of 2 nm was
chosen to match the instrument with the lowest reso-
lution. This first data treatment ensured that the same

Figure 4. Score plot of the calibration, test, and validation set after standardization of the net analyte signals.
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spectral information (wavelengths) was being assessed
across all the instruments.

The second spectral pretreatment was SG first
derivative. Baseline differences were present between
instruments of the same manufacturer and were even
more pronounced between manufacturers. Derivative is
a common method used to remove baseline signal, and
SG algorithm is often used to simultaneously smooth
the data to reduce the high frequency noise associated
with taking derivatives on noisy data. Thus, spectral
similarity between instruments and material manufac-
turers was improved after the second pretreatment.

PDS was the final spectral pretreatment. After base-
line removal, peak shifts were still present particularly
between manufacturers. This technique is based on
selection of a primary spectrum and spectra from sec-
ondary units. In this case the primary spectrum was the
mean of all spectra in the calibration set. The overall
mean spectrum was used in order to reduce the bias
associated with arbitrarily defining a standard manu-
facturer. Multiple regression models were built between
the individual wavelengths of the primary spectrum and
window of wavelengths of the secondary spectra. The
resulting regression coefficients obtained from these
models were then used to transform the calibration,
test, and prediction sets spectra. The parameters of
PDS involved a window size of five variables with
two regression components. Residual plots of before
and after applying PDS confirmed that the difference
in spectra between manufacturers and instruments was
reduced.

In the end, a PLS model with six latent variables was
built with the pretreated spectra. An independent test
set was present to evaluate the model performance. The
prediction error (RMSEP) and the reproducibility were
0.564 and 0.161%, respectively. Note that no outlier
was removed in this approach.

Participant 5

Band shift was identified as the major source of vari-
ability among the instruments under study and hence
variable alignment was used as key strategy to achieve
harmonization. After trimming the spectra to the
common wavelength range (850–1048 nm), a fourth-
order derivative (13-point window, fourth-order poly-
nomial) was applied to the spectra. Choice of fourth
derivative was important because it helped resolve
chemical information (by emphasizing protein content
and linearizing the corresponding spectral response)
and also sharpen the peak positions that were essential
for an optimal variable alignment.

A piece-wise spline alignment was used to adjust
all the peaks in all the spectra (A, B, and C) to a
target sample (e.g. sample 1 from instrument A).9

SNV was then applied on the aligned derivatized
spectra. This was proved essential most probably by
correcting for the path length differences among indi-
vidual samples.

Finally, a variable selection step was added to fur-
ther improve transferability. This was incorporated in
the PLS algorithm in the form of i-PLS (i.e. interval
PLS).10 Five latent variables were used for the final
regression. The test set prediction error (RMSEP) and
the reproducibility were 0.195 and 0.09%, respectively.

Participant 6

In 1984, Karl Norris and Phil Williams11 published that
derivative quotient math (DQM; as distinguished from
individual absorbance math) would remove multiplica-
tive scattering differences between samples due to par-
ticle size variation. Differences between instruments in
the adjustment of absorbance scales and optical band-
pass would also appear in the spectra as multiplicative
effects, and therefore such instrumental differences
would be removed. This technique was employed
against this challenging shoot-out dataset.

To make the challenge greater, the calibration set
was modified to only contain the data from the first
instrument of manufacturer A, which would allow the
evaluation of the calibration transfer to three units of
the same type, four units of the second manufacturer
(B), and one unit of the third manufacturer (C). There
was no instrument standardization procedure used in
this approach. The best calibration was a two-term
equation using ratios of fourth derivatives with the
wavelengths situated to monitor protein, water, and
starch bands in the spectra.

There was close agreement between the results from
manufacturer A and B, but no calibrations were found
that would transfer well to manufacturer C. Inspection
of the wavelength-scale calibrations of all instruments
was possible using the peaks at about 915 and 984 nm
in the wheat spectra themselves (Figure 5). Precise loca-
tions determined from the zero crossings of third
derivative of the average spectra from each instrument
indicated that the peak positions at the lower wave-
length in the instruments from all three manufacturers
agreed within about 2 nm, but at the higher wavelength
the two units of manufacturer C were high by about
3 nm from the others. The DQM method was some-
what sensitive to the wavelength scale, and making a
coarse correction to the wavelength range in the units
from manufacturer C simply by removing a point at
938 nm and adding a point at the end to make all the
spectra of equal length was sufficient to bring the
RMSEP on the Test Set of manufacturer from 1.67 to
0.29% protein, while the other units displayed RMSEP
values from 0.25 to 0.34% protein. The DQM method
was relatively forgiving to variations in wavelength cali-
bration but could not tolerate differences of 3 nm. In
conclusion, it is suggested that after a more rigorous
method is used to bring the instruments into wave-
length agreement is applied, DQM calibrations would
be excellent for assuring that instruments from multiple
manufacturers perform equivalently while employing
the same, simple calibrations.
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Results

Table 1 presents the validation results for each par-
ticipant. RMSEP and bias are presented along with
coefficients of determination and the reproducibility
values.

The participants chose quite different approaches to
get prediction results that also varied significantly. With
the overall best statistics, participant 5 won the 2016
IDRC Shoot-Out, followed by participant 2 and 3.

The data are available on the IDRC website (http://
www.cnirs.org). The authors would like to thank the
2016 IDRC chair Dr David Funk and the Council for
Near-Infrared Spectroscopy for providing funding
for the shoot-out and support for the conference.
The next conference will take place from 29 July to 3
August 2018.
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