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Responses to reviewers
 

-Reviewer 1

The main problem of the paper is that results are presented without a detailed 
critical analysis. There is no real comparison nor is there a real conclusion.

This important remark was taken into account and a thorough comparison of 
the different approaches was included in the revised version of the manuscript 
just before the conclusion:

The participants proposed various methodologies based on different learning 
principles. Random forest is decision trees ensemble strategy, which build a 
consensus model from the aggregation of multiple decision trees. In that case, 
a divide-and-conquer strategy is used to model the dataset according to a 
hierarchy of tests. The choice of the variable to test is based on the ability to 
divide the remaining data subset. PLS regression is based on latent variables 
estimated as linear combinations of the measured variables and defining a low-
dimensional subspace. The PLS model makes use of all variables by 
maximising the covariance between X and Y to capture the Y-related variation 
in X. Multiple linear regression associated with manual stepwise variable 
selection requires human intervention and expert knowledge to get reliable 
results. SVR takes its origin from the statistical learning theory framework for 
building a linear model in a feature space by applying a kernel function (usually 
non-linear). For that purpose, a limited number of critical observations is 
selected, i.e. the support vectors. SVR has a great ability for generalization but 
direct interpretation is made difficult because the relation between the 
regression model and the original input space is not explicitly evaluated.
 
In general the term ‘shout-out’ is preferred than ‘challenge’. It should be 
changed in the text.

We understand that other terms may be preferred to describe such a contest, 
but, “challenge” was the term used with the tradition of naming the chemometric 
competition held every year during the “Chimiométrie” congress series, and 
already accepted by Chemolab editors, such as:

Soil parameter quantification by NIRS as a Chemometric challenge at 
‘Chimiométrie 2006’ Chemometrics and Intelligent Laboratory Systems, 
Volume 91, Issue 1, 15 March 2008, Pages 94-98
How to build a robust model against perturbation factors with only a few 
reference values: A chemometric challenge at ‘Chimiométrie 2007’ 
Chemometrics and Intelligent Laboratory Systems, Volume 106, Issue 2, 15 
April 2011, Pages 152-159
A case study of extrapolation in NIR modelling — A chemometric 
challenge at ‘Chimiométrie 2009’ Chemometrics and Intelligent Laboratory 
Systems, Volume 106, Issue 2, 15 April 2011, Pages 205-209
Trappist beer identification by vibrational spectroscopy: A chemometric 
challenge posed at the ‘Chimiométrie 2010’ congress Chemometrics and 
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Intelligent Laboratory Systems, Volume 113, 15 April 2012, Pages 2-9

For this reason, the terminology Challenge was maintained.

Page 3: ‘error of prediction’ not ‘error in prediction’.

The sentence was corrected.

Page 3: ‘Chromatographic retention ….. a mobile phase’: poor English.

As suggested, the sentence was corrected as follows (p.3):
 “Chromatographic retention time results from complex intermolecular 
interactions between a solute, a stationary and a mobile phase.”

Page 4: ‘This approach is based on the determination of the two coefficients of 
the obtained slope, i.e., log kW and S, and provides the great advantage of 
being usable in any gradient conditions.’ Which slope?

 
For sake of clarity, the sentence was revised as follows (p.4): “This approach 
is based on the determination of the two coefficients of the linear relation, i.e., 
the intercept log kW and the slope S, and provides the great advantage of being 
usable in any gradient conditions.”

Page 4: ‘Data were made available through the conference website four months 
before the event.’ This paper makes sense only if the dataset is made available 
on the Internet. Please add a link in the text.

Thanks for this judicious remark, as advocated, a hyperlink was included in the 
revised version of the manuscript (p.4):
https://chimio2016.sciencesconf.org/page/challenge

Page 6: ‘The dataset composed of 95 steroids was split into a calibration (76 
molecules) and a validation set (19 compounds) applying the most descriptive 
compounds algorithm [9], which allowed the selection of two representative 
subsets equally representing diastereoisomers, constitutional isomers and 
positional isomers.’  Please explain the method.

A description of the method used for splitting the 95 steroids into a calibration 
and a validation set was included in the revised version of the manuscript (p.6) 
as follows:
“The dataset composed of 95 steroids was split into a calibration (76 molecules) 
and a validation set (19 compounds) applying the most descriptive compounds 
algorithm (MDC) [9]. This method selects representative compounds positioned 
in dense regions of a given chemical space, in that case the retention time 
scale, by computing pairwise distances. MDC allowed the selection of two 
representative subsets equally representing diastereoisomers, constitutional 
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isomers and positional isomers.” 

Page 6: ‘For each molecule, 128 molecular descriptors were automatically 
calculated to build 3DQSAR/QSPR models.’ It could be interesting for the 
reader to have the list of descriptors in supplementary material with their 
definition.

As suggested, a table for the description of the molecular descriptors was 
added to the supporting information.

Page 7: ‘Moreover, the HTSflag descriptor was discarded due to zero values in 
the entire dataset.’ This sentence illustrates the previous comment.

A mentioned above, the list of molecular descriptors was provided as 
supplementary material in the revised version of the manuscript.

Page 7:  ‘A multivariate explorative analysis of the VolSurf+ variables, using a 
PCA, highlighted the steroid RU486 as an atypical molecule, contributing 28% 
of the variance explained by the second Principal Component.’ A sample 
cannot contribute to explained variance. Please rewrite the sentence. 

This statement was rephrased in the revised version of the manuscript (p. 8) as 
follows: “A multivariate explorative analysis of the VolSurf+ variables, using 
PCA, highlighted the steroid RU486 as an atypical molecule with high leverage, 
strongly influencing the direction of the second Principal Component.”

Page 10: ‘The 21 selected descriptors were clustered into 6 clusters: {Vol, Surf, 
POL, DIFF, MW, FLEX, DRDRDR, HAS}, {ACACDO, ACACAC}, {D7, CD7, 
CD5}, {%FU8, %FU9, %FU10, VD}, {LgS7, L0LgS, LgS6} and {IW2}.’ Again a 
list without explanation. Always same problem.

The complete list of VolSurf descriptors was included in the revised manuscript.

Page 10: Figure 1 is too small (same comment about Figure 2, page 12)

Large size figures were provided in the revised version.

Page 11: ‘Nine variables with more than 50% missing values and four others 
with limited variability were excluded from the dataset.’ Which ones?

For sake of clarity, these variables were explicitly mentioned in the revised 
manuscript as follows (p.14):
“Nine variables with more than 50% missing values and four others with limited 
variability, i.e. NCC, DRDRDO, DRACDO, DRDODO, ACACAC, ACACDO, 
ACDODO, DODODO, and HTSflag, were excluded from the dataset.”

Page 12: What is DModX distance? Please define in the text.

DModX is a measure of distance between an observation and the model plane. 
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It correspond therefore to its residual error, which is a classical way to detect 
outliers in multivariate analysis. We agree that DModX is a term that is 
somewhat related to the SIMCA-P software and may be confusing or unclear 
for some readers.
For sake of clarity, “DModX” was replaced by “distance to model” in the revised 
manuscript as follows (p.16):
”The Hotelling T² and the distances to the model for the test objects fell within 
the class limits.”

Page 13: ‘Although the QSAR data were quite new and outside the usual scope 
of Participant 3, which is mainly spectroscopy, a similar approach was used to 
handle the data.’ Poor English.

As advocated, the sentence was rephrased as follows (p.16): “Because of his 
expertise in spectroscopy, Participant 3 chose a similar approach to handle the 
QSPR data.”

Page 15: Figure 5: Why is there no samples in the ellipse?

As mentioned in the original manuscript (p.15):” the information they carry 
would not be useful for the modelling or to predict the red objects of the test 
set”. Participant 3 chose therefore to remove them from the calibration set.

Page 17: A real conclusion is not provided.

The conclusion was carefully revised to put the results in perspective as follows 
(p. X):

“For the first time during the “Chimiometrie” congress organized by 
Chemometric group of the SFdS, a QSPR competition with the aim to predict 
reversed-phase retention time was proposed. The retention time constitutes a 
very helpful parameter for identifying unknown analytes when analysing 
complex samples analysis by LC coupled with HRMS. Moreover, the difficulty 
to distinguish compounds with the same molecular formula constitute a major 
bottleneck when investigating steroids. In that context, three-dimensional 
molecular descriptors were used to predict LSS chromatographic parameters. 
To cope with this problem, the four different solutions presented during the 
congress, in addition to being very different approaches, illustrated some of the 
difficulties currently encountered in QSRR. Table 4 shows the final results of 
the three finalists and the organiser. The prediction performance was evaluated 
based on the prediction error of the validation set consisting of 19 steroids. All 
final competitors obtained excellent prediction results, with the error in 
prediction below 10%. The best retention time prediction error for the external 
validation set was obtained by Participant 3, at 6.5%, which was more accurate 
than the challenge’s organiser, partially advantaged by his previous knowledge 
of the context of steroid analysis. These results illustrate the fact that linear 
model combined with clever variable selection can lead to very accurate 
prediction. Because the initial aim of an individual relative error below 5% in the 
experimental retention time could not be met by any of the participants, we 
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believe that more specific descriptors that can integrate topological and 
conformational information are needed and may constitute the next step 
forward to improve QSPR models in RPLC.”

-Reviewer 2

  - This paper reports the results of a data processing challenge. Thus it reports 
new and interesting approaches on an original subject. From my point of view 
it should of higher interest for chemomab readers and should be published. 

We thank reviewer 2 for his positive remark.

Two minor errors should be revised: 

- line 6 of section 2.2, "was injected" to be replaced by "were injected" 
The correction was made.

- table 4: for calibration set, standard error should be RMSEC, not RMSEP
The correction was made.

-Reviewer 3

  - An excellent paper

We thank reviewer 3 for his positive remark.
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ABSTRACT

A chemometric challenge was proposed during the "Chimiométrie" congress 2016, held in 

Namur, Belgium, on 17-20 January. The aim of this contest was to challenge the ability of 

congress participants to build indirect Quantitative Structure-Retention Relationship models 

(QSRR) using the linear solvent strength (LSS) theory of reversed-phase liquid 

chromatography. QSRR is a very helpful method for the identification of unknown analytes, 

including the prediction of chromatographic retention time. Because of the potential presence 

of various isomeric compounds, accurate retention time prediction is particularly important in 

the context of steroid identification. In addition, the indirect prediction of retention time using 

the linear solvent strength (LSS) parameters S and log kW provides a great advantage for 

use in any gradient conditions. In the proposed dataset, the experimental values of S and log 

kW were estimated using Ultra High Pressure Liquid Chromatography separation with two 

linear gradients (5-95% ACN + 0.1% FA) of 15 and 60 minutes, respectively. The aim of the 

challenge was the accurate estimation of retention time for a 45 minute gradient by applying 

the LSS theory based on the predicted S and log kW values. Molecular descriptors were 

calculated from a series of reference steroid compounds using the VolSurf+ software. By 

these means, a collection of 128 variables related to molecular shape, volume, polarisability, 

polar surface area, hydrophobic surface area, lipophilicity, molecular diffusion, and solubility 

was generated automatically. The dataset (n=95) included 76 steroid compounds for 

calibration and 19 for validation. Experimental log kW, S and retention time values were 

provided for the calibration set only. The results were evaluated according to the smallest 

RMSECP obtained for the retention time predictions of the validation set with the 45 minute 

gradient using the LSS parameters. Moreover, each individual relative error should not 

exceed 5% of the experimental retention time for both the calibration and validation sets. 

This paper summarises the approaches proposed by the best three participants and the 

challenge organiser.
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ABBREVIATIONS

log kW        : LSS log kW parameter

S                   : LSS S parameter 

tR                    : retention time 

PCA        : principal component analysis

MLR        : multiple linear regression

PLS        : partial least squares

RF          : random forest

SVR       : support vector regression

ANN      : artificial neural network

RMSECP  : root mean square error in of predictioncalibration

1. INTRODUCTION

In every year since 2005 [1-5], a challenge was proposed in the context of the annual 

congress of “Chimiométrie” organised by the Chemometric group of the Société Française de 

Statistique (SFdS). The 2016 congress was held on 17-20 January in Namur, Belgium. For 

the first time, a molecular modelling problem was proposed to the participants, who were 

asked to implement chemometric methods for the development of a Quantitative Structure-

Retention Relationship (QSRR) model. Chromatographic retention time results from 

complex intermolecular interactions between a solute, a stationary and a mobile 

phaseChromatographic retention time is a result of complex intermolecular interactions 

between a solute and a stationary and a mobile phase [6]. Among all existing methods, 

Liquid Chromatography (LC) currently constitutes one of the most widely used analytical 

techniques for rapid sample analysis. Its combination with high-resolution mass spectrometry 
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detection (HRMS) allows improved sensitivity and resolution for the analysis of complex 

samples, such as biological fluids. Despite its indisputable advantages, HRMS remains 

limited for distinguishing isotopomers, which are characterised by their identical mass and 

molecular formula [6]. More specifically, accurate retention time prediction constitutes an 

important support in the context of steroid identification because of the many isomeric 

compounds. In such cases, retention time is a crucial parameter for molecular identification. 

Starting from the principle that different structures possess specific molecular properties, the 

aim of the challenge was to develop an indirect retention time prediction model based on the 

Linear Solvent Strength (LSS) theory [7], which constitutes a linearisation of the retention 

factor behaviour towards the amount of organic solvent in one of the most commonly used 

chromatographic approaches, the gradient mode in reversed phase liquid chromatography 

(RP-LC). This approach is based on the determination of the two coefficients of the 

linear relation, i.e., the intercept log kW and the slope S, and provides the great 

advantage of being usable in any gradient conditionsThis approach is based on the 

determination of the two coefficients of the obtained slope, i.e., log kW and S, and provides 

the great advantage of being usable in any gradient conditions. Furthermore, the estimation 

of these two model parameters makes it possible to optimise the separation in the case of 

coeluting analytes. It is noteworthy that this approach is integrated in most chromatographic 

software. Data were made available through the conference website four months before the 

event at https://chimio2016.sciencesconf.org/page/challenge. The dataset included 76 

steroid compounds for calibration and 19 for validation. A series of molecular descriptors was 

calculated from the structures using the VolSurf+ software [8]. By these means, a collection 

of 128 variables was generated automatically. Experimental S and log kw were estimated 

using Ultra High Pressure Liquid Chromatography (UHPLC) separation with two linear 

gradients (5-95% ACN + 0.1% FA) of 15 and 60 minutes, respectively. The experimental log 

kw, S and retention time values were provided for the calibration set only. The aim of the 

study was the accurate estimation of retention time for a 45 minute gradient (smallest 
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RMSECP) using the predicted S and log kw values by applying the LSS theory. Moreover, the 

additional constraint of limiting each individual relative error below 5% of the experimental 

retention time for both the calibration and validation sets was proposed. Three finalists were 

invited to present their solutions orally, and their approaches are summarised in this paper.

2. MATERIALS AND METHODS

2.1. Chemical reagents

Reference steroids were obtained from various suppliers (Steraloids, Sigma, LGC Standards, 

Sterling). ULC-MS grade methanol (MeOH), acetonitrile (ACN) and formic acid were 

purchased from Biosolve (Valkenswaard, Netherlands). Ultrapure water (18.2 MΩ cm) was 

obtained with a Milli Q Advantage A10 purification system from Millipore (Bedford, MA, USA). 

Stock solutions of 1 mg/mL of each steroid standard were made in methanol. Working 

solutions (10 µg/mL) were prepared by dilutions of the stock solution in ACN 0.1% FA/water 

0.1% FA (5:95).

2.2. Experimental retention time measurements

Retention times were measured using an Acquity UHPLC-QTOF-MS XevoTM system from 

Waters (Mildford, MA, USA). Chromatographic separation was achieved using a Cortecs C18 

column (3.0 x 100 mm, 2.7 µm, Waters). Different linear gradients of mobile phase A (0.1 % 

FA in water) and mobile phase B (0.1 % FA in ACN) at a constant flow rate of 0.5 mL/min 

were used. Linear gradients varying the organic solvent composition from 5% to 95 % were 

performed in 15, 45 and 60 minutes. 10 µL of each working solution wereas injected.

The Xevo QTOF was equipped with an electrospray ionization (ESI) source operating in 

positive mode. The MS operating conditions were as follows: desolvation gas flow was set at 

800 L/h with a temperature of 500◦C, source temperature was kept at 120◦C, capillary 

voltage and sampling cone voltage were fixed at 4kV and 30 kV respectively, cone gas flow 

was defined at 20 L/h. A wide-pass quadrupole mode with low collision energy (5 eV) was 

used for the acquisition (range m/z 50-1000). Data were collected in centroid mode with a 
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scan time of 0.2 s, using dynamic range enhancement (DRE). Recalibration of the data was 

made thanks to the infusion of a solution of 200 pg/µL of Leucine-enkephalin (Sigma-Aldrich, 

Buchs, Switzerland) at 10 µL/min. Peak detection and retention time determination were 

performed using MassLynx v 4.1. (Waters). 

2.3. Dataset, molecular descriptors and LSS parameters

The dataset composed of 95 steroids was split into a calibration (76 molecules) and a 

validation set (19 compounds) applying the most descriptive compounds algorithm (MDC) 

[9]. This method selects representative compounds positioned in dense regions of a given 

chemical space, in that case the retention time scale, by computing pairwise distances. MDC 

allowed the selection of two representative subsets equally representing diastereoisomers, 

constitutional isomers and positional isomersThe dataset composed of 95 steroids was split 

into a calibration (76 molecules) and a validation set (19 compounds) applying the most 

descriptive compounds algorithm [9], which allowed the selection of two representative 

subsets equally representing diastereoisomers, constitutional isomers and positional 

isomers. Each molecule was characterised by molecular descriptors calculated using the 

VolSurf+ software package [8]. Volsurf+ uses the GRID computational procedure [10] to 

condense the 3D information originating from Molecular Interaction Fields (MIFs). MIFs 

reflect the attractive and repulsive forces between a chemical probe and a target molecule 

encoding the chemical information. This information is then converted into numerical values. 

Different probes generate different types of chemical information: the water probe OH2 

provides information about the molecular shape/volume/moment of interaction/capacity 

factors/polar surface areas, hydrophobic interactions are obtained through the DRY probe, 

H-bond donor interactions through the NH probe and H-bond acceptor information using the 

=O probe. 

For each molecule, 128 molecular descriptors were automatically calculated to build 3D-

QSAR/QSPR models. Experimental values of log kW and S were extrapolated from 



7

experimental retention times based on the python package PyLSS [11]. PyLSS applies the 

LSS theory developed by Snyder and Dolan through a simplex optimiser. Based on two 

experimental retention times acquired using linear gradient elution, log kW and S were 

iteratively estimated to minimise the retention time recalculation error. Experimental retention 

times were also measured for the calibration set using a 45 minute gradient.
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3. Results

3.1. Participant 1

As a starting point, descriptive statistics were used to obtain a first insight into the calibration 

dataset. It turned out that for three molecules, all the values for both LSS parameters, S and 

log kW, were equal to zero. These three molecules were therefore removed. Moreover, the 

HTSflag descriptor was discarded due to zero values in the entire dataset.

A multivariate explorative analysis of the VolSurf+ variables, using PCA, highlighted the 

steroid RU486 as an atypical molecule with high leverage, strongly influencing the direction 

of the second Principal Component A multivariate explorative analysis of the VolSurf+ 

variables, using a PCA, highlighted the steroid RU486 as an atypical molecule, contributing 

28% of the variance explained by the second Principal Component. RU486 was 

characterised by high levels of descriptors such as Surf, Vol, POL and MW. Participant 1 

therefore decided to exclude this compound from the calibration set. Finally, the input matrix, 

X, for the calibration of the models consisted of 72 observations and 127 VolSurf+ variables.

Participant 1 was mainly motivated by the investigation of machine learning tools, more 

specifically regression trees and random forests (RF) approaches [12]. Among the 

advantages of these approaches, the easy interpretation of the models with recursive 

dichotomic decision rules and the possibility to handle nonlinear relationships without any 

distributional hypotheses were underlined. Another key point is that RF not only led to a 

model of prediction for a quantitative (or qualitative) response but also provided an 

evaluation of the importance of each variable in this model. 

The construction of two models, one for each of the LSS parameters, based on the RF 

approach was decomposed into different steps to address specific issues. The whole 

process was repeated separately for each of the LSS parameters.

(i) Using y to denote the response to be predicted, a general RF was built using all the 

molecular descriptors, i.e., p=127 predictors. The Variable Importance (VI), i.e., the 

permutation-based Mean Decrease in Accuracy measure introduced by Breiman 

[12], was assessed for each predictor. All the predictors were ranked according to 
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their importance, the most important variables being the ones for which the 

permutation procedure had a large impact on model accuracy. More precisely, 50 

random forests of 2000 trees were built. The averaged values of the VI over the 50 

forests were used to rank the variables in decreasing order. Participant 1 chose to 

retain a subset of k predictors based on their stability in the list of the most important 

variables. As proposed by Genuer et al. [13], the standard deviation associated with 

the VI estimated values was considered. Each of the 50 forests provided an ordered 

list of predictors. These lists may vary, but if the k top variables are truly predictive, 

the ordered subsets of the k first variables are expected to be stable. By identifying 

robust subsets of variables over the 50 forests, the aim was to select truly predictive 

variables.

(ii) Once a subset of k predictors was chosen, the RF parameters were thoroughly 

investigated. In essence, a forest is random for two reasons: first, each tree in the 

forest involves a bootstrapped set of observations; the observations not selected 

during the bootstrapping process belong to the Out-Of-Bag (OOB) set. Second, at 

each node of each tree, only some of the input variables are considered as 

candidates for the splitting process. The number of these randomly selected 

variables is usually denoted mtry. This parameter is known to be a key meta-

parameter for the RF algorithm [13]. Usually, mtry=p/3 is suggested for regression 

trees. In the proposed procedure, the mtry parameter was chosen based on the Root 

Mean Squared Error of the OOB observations (RMSEOOB). Simultaneously, the 

nodesize parameter, i.e., the minimum size of the terminal nodes of a tree, was also 

optimised. As expected, this last parameter was less crucial than the mtry parameter 

(“nodesize” values ranging from 1 to 3 led to similar results). The RMSEOOB criterion 

was also considered for determining the best solution. In practice, the curves of the 

stability criterion as a function of k usually showed a small number of flat levels (data 

not shown). Consequently, only three alternatives were considered (instead of 

testing a whole range of values for k). These three alternatives were as follows:
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 a RF model based on the p=127 predictors,

 a model using only a short subset of k1 predictors (with a high degree of 

stability),

 and a model based on a slightly larger subset of k2 predictors (with a moderate 

degree of stability). 

  

(iii) Finally, the prediction of the y response was estimated using the aggregated values 

of predictions obtained over all the trees (here 5000) of the RF defined with the 

chosen parameters (size, k, of the subset of predictors and values of the mtry and 

nodesize parameters).

Figure 1(a) shows the most important molecular descriptors in the prediction of the LSS 

parameter S, ordered according to their VI value. The ordered lists of the selected predictors 

are detailed in the upper part of Table 1. The variables in bold correspond to the reduced 

subset of the selected predictors (k1=6). The whole list describes the subset of the k2=14 

selected predictors. The results of RF models built without predictors pre-selection and with 

the two different subsets of input variables (with optimised mtry and nodesize metaparameter 

values for each condition) are given in the upper part of Table 2. The RMSEOOB criterion 

highlighted the smallest errors in prediction using a reduced list of 6 molecular descriptors. 

The model based on the 6 most important descriptors (with mtry=1, nodesize=1) was then 

retained for the prediction of the S parameter, obtained using a bagging (bootstrapped 

aggregating) process. It should be noted that a small number of descriptors seemed to be 

sufficient for the prediction of S but also that these predictors were correlated: the highest 

correlation coefficient, in absolute value, was 0.95, between LgBB and CACO2, and the 

lowest was 0.62, between LOGP.c.Hex and ACACDO. In fact, it is not surprising that CACO2 

(P-glycoprotein efflux transport) is correlated with LgBB (blood-brain barrier). 

P-glycoprotein is also expressed at the blood-brain barrier as well [14, 15]. It may be 
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concluded that the underlying prediction model for S was a rather simple and parsimonious 

model.

The same rationale was used for the log kW LSS parameter (Figure 1(b) and Table 1). The 

reduced list consisted of k1=5 descriptors and the extended list of k2=21 descriptors. It turned 

out (lower part of Table 2) that the best model was obtained using the subset formed by the 

21 most important descriptors (with mtry=3 and nodesize=2). Compared with the prediction 

models for S, lower prediction ability may be achieved regarding the log kW parameter (lower 

R2). Moreover, more descriptors were required. The 21 selected descriptors were clustered 

into 6 clusters: {Vol, Surf, POL, DIFF, MW, FLEX, DRDRDR, HAS}, {ACACDO, ACACAC}, 

{D7, CD7, CD5}, {%FU8, %FU9, %FU10, VD}, {LgS7, L0LgS, LgS6} and {IW2}. 
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Figure 1 Ordered list of molecular descriptors in decreasing order of their Variable Importance regarding the 
prediction of (a) S, (b) log kW.
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Table 1 List of selected molecular descriptors for both responses, S and log kW. The descriptors in bold 
correspond to a more stringent selection.

Ordered list of the VolSurf+ descriptors 

S "LgBB", "LOGP.c.Hex", "CACO2", "CW2", "ACACDO", "SKIN", "PSAR", "PHSAR", "CW1", 

"MetStab", "HSA", "CW4", "CW3", "CW5"

Log kW "Vol", "ACACDO", "POL", "ACACAC", "DIFF",  “CD7",  "DRDRDR", "FLEX", "VD", "LgS7", 

"MW", "CD5",  "LgS6", "Surf", "%FU9", "HSA","%FU8", "IW2" , "%FU10", "D7", "L0LgS"
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Table 2 Results of RF models for both responses, S and log kW. For each response, the three conditions with 
various model’s parameters were considered.

# predictors mtry nodesize RMSEOOB R2

S
127 40 2 0.703 0.973
14 3 2 0.675 0.975
6 1 1 0.665 0.974

Log kW
127 60 2 0.101 0.953
21 3 2 0.088 0.964
5 1 1 0.101 0.947

3.2. Participant 2

Steroids were first assigned to different classes based on their known structures, i.e. 

Sterone, Corticosterone, Pregnanolone, and Androsterone. PCA was then conducted to 

explore the data, highlight outliers and remove unnecessary variables. As on the work of 

participant 1, RU486 was considered as an outlier. Nine variables with more than 50% 

missing values and four others with limited variability, i.e. NCC, DRDRDO, DRACDO, 

DRDODO, ACACAC, ACACDO, ACDODO, DODODO, and HTSflag, were excluded from the 

dataset.Nine variables with more than 50% missing values and four others with limited 

variability were excluded from the dataset. Because two LSS parameters, i.e., log kW and S, 

were given in the calibration set to predict tR, their correlations were examined and 3 steroids 

removed because their Y values were equal to zero.

Starting from the proven relationships between both responses, a simple PLS2 model was 

calculated and compared with PLS1. As tR was the only response required for the challenge, 

the performance of the PLS2 and PLS1 models was estimated based on the Root Mean 

Square Error in Cross-Validation (RMSECV) calculated for the prediction of tR. As their errors 

of prediction would propagate to the tR prediction model, log kW and S were not further 

considered, although the advantage of predicting retention times for any gradient condition is 

thus lost. The usual PLS validation steps were conducted, including variable selection, outlier 

detection, and examination of linearity. The final best model was a PLS2 model with 6 latent 



15

variables, 80 variables out of the 128 initial ones, and 65 included observations, as shown in 

Figure 2. 

 Predicted tR
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Figure 2 Observed tR vs. Predicted tR for a 6-component PLS2 model

Interestingly, the four classes of steroids were highlighted by the first two PLS components 

(Figure 3). Better predictions could be expected from class models, especially for lower tR, 

but more individuals per group would be necessary.

 PC1

PC
2

Figure 3 Steroid groups on the first two PLS components for the calibration set
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Regarding prediction, the test set was projected onto the 6-component PLS2 model. The 

Hotelling T² and DModX distances to the model for the test objects fell within the class limits. 

Moreover, each observation in the test set was projected into the corresponding group 

identified in the calibration set from its chemical nomenclature. No outlier was found in the 

test set, which was thereby proved to be very similar to the calibration set. The PLS2 model 

was applied to obtain the tR values on the test set, with reasonable results. However, due to 

the uncertainties of standard deviations and particularly the calculated RMSECP with 19 

degrees of freedom, the RMSECP winner was expected to be at least 1.5 lower than the 

worst RMSECP at the 5% level.

3.3. Participant 3

Because of his expertise in spectroscopy, Participant 3 chose a similar approach to 

handle the QSAR data. Although the QSAR data were quite new and outside the usual 

scope of Participant 3, which is mainly spectroscopy, a similar approach was used to handle 

the data. First, Participant 3 carefully examined the structure of the data in the Y and X 

spaces. The first scatter plot between log kW and S allowed 3 objects with missing values to 

be removed. Log kW and S were negatively correlated, with r=-0.41. Among the X values, 

several dozen scatter biplots were drawn between the X variables including the calibration 

and test sets. Figure 4 gives an example for the first 4 X variables.    
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Figure 4 Biplot of the first 4 VolSurf+ variables. 

A performed PCA on the studentised X variables (Figure 5) showed that several objects were 

quite far from the ones to be predicted. The strategy was then to remove the objects in the 

calibration set that were outside the range of the test set in the X space. 
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Figure 5 PCA scatter plot of X matrix PC1 vs. PC3. The blue ellipse highlights the compounds out of the 
prediction space.

 

The objects inside the ellipse were removed, assuming that, being quite far from the ones to 

be predicted, the information they carry would not be useful for the modelling or to predict the 

red objects of the test set. Based on the 50 remaining objects, MLR models were developed 

using a manual step up procedure (Foss, Winisi package). The selection criteria for the final 

models were the maximum values of the regression coefficient Ftests and the minimum 

Mahalanobis distances of the test objects vs. each model. Table 3 reports the last 2 models 

used to predict the 19 test objects. 
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Table 3 MLR calibration results

 MLR MODEL FOR LOGK  R2=0.82 SEC=0.07  MLR MODEL FOR S  R2=0.93  SEC=0.39 
 Coefficients Ftest Data Point Var  Coefficients Ftest Data Point Var
 -0.7777     7.4249    
1 -4.6159 50.6 40 ID2 1 -0.3591 28.8 69 LgD8
2 12.0909 60.4 39 ID1 2 -1.6329 254.4 97 SKIN
3 2.1894 56.4 42 CD1 3 0.1653 16.8 107 DD3
4 0.0796 139.1 54 POL 4 -0.0207 32.7 55 MW
5 -0.0469 17.5 60 LOGP c-Hex 5 94.0455 44.9 46 CD5
6 6.6006 3.4 38 CW8      

3.4. Challenge organiser

The organisers’ approach was based on the comparison of four different regression 

algorithms to predict log kW and S, selecting the smallest prediction error. The dataset was 

first analysed by PCA using the 128 VolSurf+ descriptors. RU486 was also highlighted as an 

outlier compound because it was located outside the Hotelling confidence ellipse at 95%. 

This exogenous steroid is characterised by a structure clearly different from the rest of the 

dataset. Additionally, by closer examination of the log kW and S parameters, three 

compounds were found to have null values, as judiciously observed by some participants. 

These compounds were removed from the dataset to generate a calibration set composed of 

72 molecules.

As steroids are molecules with acid/basic centres characterised by high pKa values, variable 

analysis based on chemical knowledge was conducted before computing the regression 

models. Because the solvent pH was estimated to be approximately 2.5, the molecules were 

mostly in their neutral form in the retained chromatographic conditions, and molecular 

descriptors related to pH were removed. ADME descriptors were also excluded because of 

their lack of chemico-physical relevance in the retention process. Finally, 91 molecular 

descriptors were retained for further analysis. Artificial Neural Network (ANN), Random 

Forest (RF), Support Vector Regression (SVR) and Partial Least Squares (PLS) regression 

algorithms were compared for their ability to properly estimate the LSS parameters. Because 
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these algorithms include parameters that need to be appropriately tuned, optimisation was 

conducted with a specific strategy for each case. ANNs were computed using the Levenberg-

Marquardt back-propagation algorithm, and the hidden layer size was optimised using a grid 

search. For that purpose, the calibration set was further divided into a training (70%), a 

validation (15%) and a test subset (15%). ANN predictions with 2 to 20 neurons in the hidden 

layer were compared, and the best model was obtained with 10 neurons in the hidden layer 

for both the log kW and S parameters. RF was optimised using nested cross validation, and 

the number of trees was varied from 100 to 2000 with a step of 100. The best model was 

obtained with 1000 trees for both the log kW and S parameters. SVR was computed using a 

kernel radial basis function. The penalty parameter of the error term C and the epsilon-tube 

within which no penalty is associated in the training loss function ξ were optimised using the 

Nelder–Mead simplex algorithm. Finally, PLS was computed using 3 latent variables for both 

LSS parameters, as estimated by bootstrap 5-fold cross validation. Finally, the prediction 

ability of each optimised model was estimated by leave one-out cross validation. The best 

performance was provided by SVR, achieving an average prediction error of the retention 

times of 6.6% for the calibration set. 

The participants proposed various methodologies based on different learning principles. 

Random forest is decision trees ensemble strategy, which build a consensus model from the 

aggregation of multiple decision trees. In that case, a divide-and-conquer strategy is used to 

model the dataset according to a hierarchy of tests. The choice of the variable to test is 

based on the ability to divide the remaining data subset. PLS regression is based on latent 

variables estimated as linear combinations of the measured variables and defining a low-

dimensional subspace. The PLS model makes use of all variables by maximising the 

covariance between X and Y to capture the Y-related variation in X. Multiple linear regression 

associated with manual stepwise variable selection requires human intervention and expert 

knowledge to get reliable results. SVR takes its origin from the statistical learning theory 

framework for building a linear model in a feature space by applying a kernel function 

(usually non-linear). For that purpose, a limited number of critical observations is selected, 
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i.e. the support vectors. SVR has a great ability for generalization but direct interpretation is 

made difficult because the relation between the regression model and the original input 

space is not explicitly evaluated.

4. Conclusion

For the first time during the “Chimiometrie” congress organized by Chemometric group of the 

SFdS, a QSPR competition with the aim to predict reversed-phase retention time was 

proposed. The retention time constitutes a very helpful parameter for identifying unknown 

analytes when analysing complex samples analysis by LC coupled with HRMS. Moreover, 

the difficulty to distinguish compounds with the same molecular formula constitute a major 

bottleneck when investigating steroids. In that context, three-dimensional molecular 

descriptors were used to predict LSS chromatographic parameters. To cope with this 

problem, the four different solutions presented during the congress, in addition to being very 

different approaches, illustrated some of the difficulties currently encountered in QSRR. 

Table 4 shows the final results of the three finalists and the organiser. The prediction 

performance was evaluated based on the prediction error of the validation set consisting of 

19 steroids. All final competitors obtained excellent prediction results, with the error in 

prediction below 10%. The best retention time prediction error for the external validation set 

was obtained by Participant 3, at 6.5%, which was more accurate than the challenge’s 

organiser, partially advantaged by his previous knowledge of the context of steroid analysis. 

These results illustrate the fact that linear model combined with clever variable selection can 

lead to very accurate prediction. Because the initial aim of an individual relative error below 

5% in the experimental retention time could not be met by any of the participants, we believe 

that more specific descriptors that can integrate topological and conformational information 

are needed and may constitute the next step forward to improve QSPR models in 

RPLC.Table 4 shows the final results of the three finalists and the organiser. The approaches 

were evaluated based on the prediction error of the validation set consisting of 19 steroids 

(RMSECP). All participants obtained excellent prediction results, with the error in prediction 
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below 10%. The best retention time prediction error for the external validation set was 

obtained by Participant 3, at 6.5%, which was more accurate than the challenge’s organiser, 

partially advantaged by his previous knowledge of the context of steroid analysis. Moreover, 

the difficulty of distinguishing the occurrences of steroid structures with identical molecular 

formulas in HRMS was reported in a recent study [6]. In that context, QSRR constitutes a 

very helpful method for identifying unknown analytes by predicting the retention time. To 

cope with this problem, the four different solutions presented during the “Chimiométrie” 

congress, in addition to being very different approaches, illustrated some of the difficulties 

currently encountered in QSRR. Because the initial aim of an individual relative error below 

5% in the experimental retention time could not be met by any of the participants, we believe 

that more specific descriptors that can integrate topological and conformational information 

are needed and may constitute a relevant approach for improving QSPR models in RPLC.

Table 4 Summary of results. Each model was computed with different object and variable sizes. Participant 1; 
Participant 2; Participant 3: Organiser have developed both models for log kW and S with 91 molecular descriptors 
and 72 steroids objects.

Model summary Calibration set Validation set

Variables
Participants Algorithm Objects

logkW S
R2 tR Error tR

RMSEP

RMSEC
R2 tR Error tR

RMSEP

RMSEC

1 RF 73 5 6 0.98 2.8% 0.61 0.89 8.6% 1.43

2 PLS 65 80 80 0.75 8.7% 2.81 0.88 7.9% 1.45

3
Stepwise 

MLR
50 6 5 0.98 2.9% 0.77 0.91 6.5% 1.12

Organisers SVR 71 91 91 0.85 6.6% 1.73 0.92 7.0% 1.29
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ABSTRACT

A chemometric challenge was proposed during the "Chimiométrie" congress 2016, held in 

Namur, Belgium, on 17-20 January. The aim of this contest was to challenge the ability of 

congress participants to build indirect Quantitative Structure-Retention Relationship models 

(QSRR) using the linear solvent strength (LSS) theory of reversed-phase liquid 

chromatography. QSRR is a very helpful method for the identification of unknown analytes, 

including the prediction of chromatographic retention time. Because of the potential presence 

of various isomeric compounds, accurate retention time prediction is particularly important in 

the context of steroid identification. In addition, the indirect prediction of retention time using 

the linear solvent strength (LSS) parameters S and log kW provides a great advantage for 

use in any gradient conditions. In the proposed dataset, the experimental values of S and log 

kW were estimated using Ultra High Pressure Liquid Chromatography separation with two 

linear gradients (5-95% ACN + 0.1% FA) of 15 and 60 minutes, respectively. The aim of the 

challenge was the accurate estimation of retention time for a 45 minute gradient by applying 

the LSS theory based on the predicted S and log kW values. Molecular descriptors were 

calculated from a series of reference steroid compounds using the VolSurf+ software. By 

these means, a collection of 128 variables related to molecular shape, volume, polarisability, 

polar surface area, hydrophobic surface area, lipophilicity, molecular diffusion, and solubility 

was generated automatically. The dataset (n=95) included 76 steroid compounds for 

calibration and 19 for validation. Experimental log kW, S and retention time values were 

provided for the calibration set only. The results were evaluated according to the smallest 

RMSEC obtained for the retention time predictions of the validation set with the 45 minute 

gradient using the LSS parameters. Moreover, each individual relative error should not 

exceed 5% of the experimental retention time for both the calibration and validation sets. 

This paper summarises the approaches proposed by the best three participants and the 

challenge organiser.
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ABBREVIATIONS

log kW        : LSS log kW parameter

S                   : LSS S parameter 

tR                    : retention time 

PCA        : principal component analysis

MLR        : multiple linear regression

PLS        : partial least squares

RF          : random forest

SVR       : support vector regression

ANN      : artificial neural network

RMSEC  : root mean square error of calibration

1. INTRODUCTION

In every year since 2005 [1-5], a challenge was proposed in the context of the annual 

congress of “Chimiométrie” organised by the Chemometric group of the Société Française de 

Statistique (SFdS). The 2016 congress was held on 17-20 January in Namur, Belgium. For 

the first time, a molecular modelling problem was proposed to the participants, who were 

asked to implement chemometric methods for the development of a Quantitative Structure-

Retention Relationship (QSRR) model. Chromatographic retention time results from 

complex intermolecular interactions between a solute, a stationary and a mobile 

phase [6]. Among all existing methods, Liquid Chromatography (LC) currently constitutes 

one of the most widely used analytical techniques for rapid sample analysis. Its combination 

with high-resolution mass spectrometry detection (HRMS) allows improved sensitivity and 

resolution for the analysis of complex samples, such as biological fluids. Despite its 
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indisputable advantages, HRMS remains limited for distinguishing isotopomers, which are 

characterised by their identical mass and molecular formula [6]. More specifically, accurate 

retention time prediction constitutes an important support in the context of steroid 

identification because of the many isomeric compounds. In such cases, retention time is a 

crucial parameter for molecular identification. Starting from the principle that different 

structures possess specific molecular properties, the aim of the challenge was to develop an 

indirect retention time prediction model based on the Linear Solvent Strength (LSS) theory 

[7], which constitutes a linearisation of the retention factor behaviour towards the amount of 

organic solvent in one of the most commonly used chromatographic approaches, the 

gradient mode in reversed phase liquid chromatography (RP-LC). This approach is based 

on the determination of the two coefficients of the linear relation, i.e., the intercept log 

kW and the slope S, and provides the great advantage of being usable in any gradient 

conditions. Furthermore, the estimation of these two model parameters makes it possible to 

optimise the separation in the case of coeluting analytes. It is noteworthy that this approach 

is integrated in most chromatographic software. Data were made available through the 

conference website four months before the event at 

https://chimio2016.sciencesconf.org/page/challenge. The dataset included 76 steroid 

compounds for calibration and 19 for validation. A series of molecular descriptors was 

calculated from the structures using the VolSurf+ software [8]. By these means, a collection 

of 128 variables was generated automatically. Experimental S and log kw were estimated 

using Ultra High Pressure Liquid Chromatography (UHPLC) separation with two linear 

gradients (5-95% ACN + 0.1% FA) of 15 and 60 minutes, respectively. The experimental log 

kw, S and retention time values were provided for the calibration set only. The aim of the 

study was the accurate estimation of retention time for a 45 minute gradient (smallest 

RMSEC) using the predicted S and log kw values by applying the LSS theory. Moreover, the 

additional constraint of limiting each individual relative error below 5% of the experimental 
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retention time for both the calibration and validation sets was proposed. Three finalists were 

invited to present their solutions orally, and their approaches are summarised in this paper.

2. MATERIALS AND METHODS

2.1. Chemical reagents

Reference steroids were obtained from various suppliers (Steraloids, Sigma, LGC Standards, 

Sterling). ULC-MS grade methanol (MeOH), acetonitrile (ACN) and formic acid were 

purchased from Biosolve (Valkenswaard, Netherlands). Ultrapure water (18.2 MΩ cm) was 

obtained with a Milli Q Advantage A10 purification system from Millipore (Bedford, MA, USA). 

Stock solutions of 1 mg/mL of each steroid standard were made in methanol. Working 

solutions (10 µg/mL) were prepared by dilutions of the stock solution in ACN 0.1% FA/water 

0.1% FA (5:95).

2.2. Experimental retention time measurements

Retention times were measured using an Acquity UHPLC-QTOF-MS XevoTM system from 

Waters (Mildford, MA, USA). Chromatographic separation was achieved using a Cortecs C18 

column (3.0 x 100 mm, 2.7 µm, Waters). Different linear gradients of mobile phase A (0.1 % 

FA in water) and mobile phase B (0.1 % FA in ACN) at a constant flow rate of 0.5 mL/min 

were used. Linear gradients varying the organic solvent composition from 5% to 95 % were 

performed in 15, 45 and 60 minutes. 10 µL of each working solution were injected.

The Xevo QTOF was equipped with an electrospray ionization (ESI) source operating in 

positive mode. The MS operating conditions were as follows: desolvation gas flow was set at 

800 L/h with a temperature of 500◦C, source temperature was kept at 120◦C, capillary 

voltage and sampling cone voltage were fixed at 4kV and 30 kV respectively, cone gas flow 

was defined at 20 L/h. A wide-pass quadrupole mode with low collision energy (5 eV) was 

used for the acquisition (range m/z 50-1000). Data were collected in centroid mode with a 

scan time of 0.2 s, using dynamic range enhancement (DRE). Recalibration of the data was 

made thanks to the infusion of a solution of 200 pg/µL of Leucine-enkephalin (Sigma-Aldrich, 
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Buchs, Switzerland) at 10 µL/min. Peak detection and retention time determination were 

performed using MassLynx v 4.1. (Waters). 

2.3. Dataset, molecular descriptors and LSS parameters

The dataset composed of 95 steroids was split into a calibration (76 molecules) and a 

validation set (19 compounds) applying the most descriptive compounds algorithm (MDC) 

[9]. This method selects representative compounds positioned in dense regions of a given 

chemical space, in that case the retention time scale, by computing pairwise distances. MDC 

allowed the selection of two representative subsets equally representing diastereoisomers, 

constitutional isomers and positional isomers. Each molecule was characterised by 

molecular descriptors calculated using the VolSurf+ software package [8]. Volsurf+ uses the 

GRID computational procedure [10] to condense the 3D information originating from 

Molecular Interaction Fields (MIFs). MIFs reflect the attractive and repulsive forces between 

a chemical probe and a target molecule encoding the chemical information. This information 

is then converted into numerical values. Different probes generate different types of chemical 

information: the water probe OH2 provides information about the molecular 

shape/volume/moment of interaction/capacity factors/polar surface areas, hydrophobic 

interactions are obtained through the DRY probe, H-bond donor interactions through the NH 

probe and H-bond acceptor information using the =O probe. 

For each molecule, 128 molecular descriptors were automatically calculated to build 3D-

QSAR/QSPR models. Experimental values of log kW and S were extrapolated from 

experimental retention times based on the python package PyLSS [11]. PyLSS applies the 

LSS theory developed by Snyder and Dolan through a simplex optimiser. Based on two 

experimental retention times acquired using linear gradient elution, log kW and S were 

iteratively estimated to minimise the retention time recalculation error. Experimental retention 

times were also measured for the calibration set using a 45 minute gradient.
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3. Results

3.1. Participant 1

As a starting point, descriptive statistics were used to obtain a first insight into the calibration 

dataset. It turned out that for three molecules, all the values for both LSS parameters, S and 

log kW, were equal to zero. These three molecules were therefore removed. Moreover, the 

HTSflag descriptor was discarded due to zero values in the entire dataset.

A multivariate explorative analysis of the VolSurf+ variables, using PCA, highlighted the 

steroid RU486 as an atypical molecule with high leverage, strongly influencing the direction 

of the second Principal Component. RU486 was characterised by high levels of descriptors 

such as Surf, Vol, POL and MW. Participant 1 therefore decided to exclude this compound 

from the calibration set. Finally, the input matrix, X, for the calibration of the models consisted 

of 72 observations and 127 VolSurf+ variables.

Participant 1 was mainly motivated by the investigation of machine learning tools, more 

specifically regression trees and random forests (RF) approaches [12]. Among the 

advantages of these approaches, the easy interpretation of the models with recursive 

dichotomic decision rules and the possibility to handle nonlinear relationships without any 

distributional hypotheses were underlined. Another key point is that RF not only led to a 

model of prediction for a quantitative (or qualitative) response but also provided an 

evaluation of the importance of each variable in this model. 

The construction of two models, one for each of the LSS parameters, based on the RF 

approach was decomposed into different steps to address specific issues. The whole 

process was repeated separately for each of the LSS parameters.

(i) Using y to denote the response to be predicted, a general RF was built using all the 

molecular descriptors, i.e., p=127 predictors. The Variable Importance (VI), i.e., the 

permutation-based Mean Decrease in Accuracy measure introduced by Breiman 

[12], was assessed for each predictor. All the predictors were ranked according to 

their importance, the most important variables being the ones for which the 

permutation procedure had a large impact on model accuracy. More precisely, 50 
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random forests of 2000 trees were built. The averaged values of the VI over the 50 

forests were used to rank the variables in decreasing order. Participant 1 chose to 

retain a subset of k predictors based on their stability in the list of the most important 

variables. As proposed by Genuer et al. [13], the standard deviation associated with 

the VI estimated values was considered. Each of the 50 forests provided an ordered 

list of predictors. These lists may vary, but if the k top variables are truly predictive, 

the ordered subsets of the k first variables are expected to be stable. By identifying 

robust subsets of variables over the 50 forests, the aim was to select truly predictive 

variables.

(ii) Once a subset of k predictors was chosen, the RF parameters were thoroughly 

investigated. In essence, a forest is random for two reasons: first, each tree in the 

forest involves a bootstrapped set of observations; the observations not selected 

during the bootstrapping process belong to the Out-Of-Bag (OOB) set. Second, at 

each node of each tree, only some of the input variables are considered as 

candidates for the splitting process. The number of these randomly selected 

variables is usually denoted mtry. This parameter is known to be a key meta-

parameter for the RF algorithm [13]. Usually, mtry=p/3 is suggested for regression 

trees. In the proposed procedure, the mtry parameter was chosen based on the Root 

Mean Squared Error of the OOB observations (RMSEOOB). Simultaneously, the 

nodesize parameter, i.e., the minimum size of the terminal nodes of a tree, was also 

optimised. As expected, this last parameter was less crucial than the mtry parameter 

(“nodesize” values ranging from 1 to 3 led to similar results). The RMSEOOB criterion 

was also considered for determining the best solution. In practice, the curves of the 

stability criterion as a function of k usually showed a small number of flat levels (data 

not shown). Consequently, only three alternatives were considered (instead of 

testing a whole range of values for k). These three alternatives were as follows:

 a RF model based on the p=127 predictors,
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 a model using only a short subset of k1 predictors (with a high degree of 

stability),

 and a model based on a slightly larger subset of k2 predictors (with a moderate 

degree of stability). 

  

(iii) Finally, the prediction of the y response was estimated using the aggregated values 

of predictions obtained over all the trees (here 5000) of the RF defined with the 

chosen parameters (size, k, of the subset of predictors and values of the mtry and 

nodesize parameters).

Figure 1(a) shows the most important molecular descriptors in the prediction of the LSS 

parameter S, ordered according to their VI value. The ordered lists of the selected predictors 

are detailed in the upper part of Table 1. The variables in bold correspond to the reduced 

subset of the selected predictors (k1=6). The whole list describes the subset of the k2=14 

selected predictors. The results of RF models built without predictors pre-selection and with 

the two different subsets of input variables (with optimised mtry and nodesize metaparameter 

values for each condition) are given in the upper part of Table 2. The RMSEOOB criterion 

highlighted the smallest errors in prediction using a reduced list of 6 molecular descriptors. 

The model based on the 6 most important descriptors (with mtry=1, nodesize=1) was then 

retained for the prediction of the S parameter, obtained using a bagging (bootstrapped 

aggregating) process. It should be noted that a small number of descriptors seemed to be 

sufficient for the prediction of S but also that these predictors were correlated: the highest 

correlation coefficient, in absolute value, was 0.95, between LgBB and CACO2, and the 

lowest was 0.62, between LOGP.c.Hex and ACACDO. In fact, it is not surprising that CACO2 

(P-glycoprotein efflux transport) is correlated with LgBB (blood-brain barrier). 

P-glycoprotein is also expressed at the blood-brain barrier as well [14, 15]. It may be 

concluded that the underlying prediction model for S was a rather simple and parsimonious 

model.



11

The same rationale was used for the log kW LSS parameter (Figure 1(b) and Table 1). The 

reduced list consisted of k1=5 descriptors and the extended list of k2=21 descriptors. It turned 

out (lower part of Table 2) that the best model was obtained using the subset formed by the 

21 most important descriptors (with mtry=3 and nodesize=2). Compared with the prediction 

models for S, lower prediction ability may be achieved regarding the log kW parameter (lower 

R2). Moreover, more descriptors were required. The 21 selected descriptors were clustered 

into 6 clusters: {Vol, Surf, POL, DIFF, MW, FLEX, DRDRDR, HAS}, {ACACDO, ACACAC}, 

{D7, CD7, CD5}, {%FU8, %FU9, %FU10, VD}, {LgS7, L0LgS, LgS6} and {IW2}. 
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Figure 1 Ordered list of molecular descriptors in decreasing order of their Variable Importance regarding the 
prediction of (a) S, (b) log kW.
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Table 1 List of selected molecular descriptors for both responses, S and log kW. The descriptors in bold 
correspond to a more stringent selection.

Ordered list of the VolSurf+ descriptors 

S "LgBB", "LOGP.c.Hex", "CACO2", "CW2", "ACACDO", "SKIN", "PSAR", "PHSAR", "CW1", 

"MetStab", "HSA", "CW4", "CW3", "CW5"

Log kW "Vol", "ACACDO", "POL", "ACACAC", "DIFF",  “CD7",  "DRDRDR", "FLEX", "VD", "LgS7", 

"MW", "CD5",  "LgS6", "Surf", "%FU9", "HSA","%FU8", "IW2" , "%FU10", "D7", "L0LgS"
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Table 2 Results of RF models for both responses, S and log kW. For each response, the three conditions with 
various model’s parameters were considered.

# predictors mtry nodesize RMSEOOB R2

S
127 40 2 0.703 0.973
14 3 2 0.675 0.975
6 1 1 0.665 0.974

Log kW
127 60 2 0.101 0.953
21 3 2 0.088 0.964
5 1 1 0.101 0.947

3.2. Participant 2

Steroids were first assigned to different classes based on their known structures, i.e. 

Sterone, Corticosterone, Pregnanolone, and Androsterone. PCA was then conducted to 

explore the data, highlight outliers and remove unnecessary variables. As on the work of 

participant 1, RU486 was considered as an outlier. Nine variables with more than 50% 

missing values and four others with limited variability, i.e. NCC, DRDRDO, DRACDO, 

DRDODO, ACACAC, ACACDO, ACDODO, DODODO, and HTSflag, were excluded from the 

dataset. Because two LSS parameters, i.e., log kW and S, were given in the calibration set to 

predict tR, their correlations were examined and 3 steroids removed because their Y values 

were equal to zero.

Starting from the proven relationships between both responses, a simple PLS2 model was 

calculated and compared with PLS1. As tR was the only response required for the challenge, 

the performance of the PLS2 and PLS1 models was estimated based on the Root Mean 

Square Error in Cross-Validation (RMSECV) calculated for the prediction of tR. As their errors 

of prediction would propagate to the tR prediction model, log kW and S were not further 

considered, although the advantage of predicting retention times for any gradient condition is 

thus lost. The usual PLS validation steps were conducted, including variable selection, outlier 

detection, and examination of linearity. The final best model was a PLS2 model with 6 latent 
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variables, 80 variables out of the 128 initial ones, and 65 included observations, as shown in 

Figure 2. 

 Predicted tR

O
bs

er
ve

d
t R

Figure 2 Observed tR vs. Predicted tR for a 6-component PLS2 model

Interestingly, the four classes of steroids were highlighted by the first two PLS components 

(Figure 3). Better predictions could be expected from class models, especially for lower tR, 

but more individuals per group would be necessary.

 PC1

PC
2

Figure 3 Steroid groups on the first two PLS components for the calibration set
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Regarding prediction, the test set was projected onto the 6-component PLS2 model. The 

Hotelling T² and distances to the model for the test objects fell within the class limits. 

Moreover, each observation in the test set was projected into the corresponding group 

identified in the calibration set from its chemical nomenclature. No outlier was found in the 

test set, which was thereby proved to be very similar to the calibration set. The PLS2 model 

was applied to obtain the tR values on the test set, with reasonable results. However, due to 

the uncertainties of standard deviations and particularly the calculated RMSEC with 19 

degrees of freedom, the RMSEC winner was expected to be at least 1.5 lower than the worst 

RMSEC at the 5% level.

3.3. Participant 3

Because of his expertise in spectroscopy, Participant 3 chose a similar approach to 

handle the QSAR data. First, Participant 3 carefully examined the structure of the data in 

the Y and X spaces. The first scatter plot between log kW and S allowed 3 objects with 

missing values to be removed. Log kW and S were negatively correlated, with r=-0.41. Among 

the X values, several dozen scatter biplots were drawn between the X variables including the 

calibration and test sets. Figure 4 gives an example for the first 4 X variables.
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Figure 4 Biplot of the first 4 VolSurf+ variables. 

A performed PCA on the studentised X variables (Figure 5) showed that several objects were 

quite far from the ones to be predicted. The strategy was then to remove the objects in the 

calibration set that were outside the range of the test set in the X space. 
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Figure 5 PCA scatter plot of X matrix PC1 vs. PC3. The blue ellipse highlights the compounds out of the 
prediction space.

 

The objects inside the ellipse were removed, assuming that, being quite far from the ones to 

be predicted, the information they carry would not be useful for the modelling or to predict the 

red objects of the test set. Based on the 50 remaining objects, MLR models were developed 

using a manual step up procedure (Foss, Winisi package). The selection criteria for the final 

models were the maximum values of the regression coefficient Ftests and the minimum 

Mahalanobis distances of the test objects vs. each model. Table 3 reports the last 2 models 

used to predict the 19 test objects. 
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Table 3 MLR calibration results

 MLR MODEL FOR LOGK  R2=0.82 SEC=0.07  MLR MODEL FOR S  R2=0.93  SEC=0.39 
 Coefficients Ftest Data Point Var  Coefficients Ftest Data Point Var
 -0.7777     7.4249    
1 -4.6159 50.6 40 ID2 1 -0.3591 28.8 69 LgD8
2 12.0909 60.4 39 ID1 2 -1.6329 254.4 97 SKIN
3 2.1894 56.4 42 CD1 3 0.1653 16.8 107 DD3
4 0.0796 139.1 54 POL 4 -0.0207 32.7 55 MW
5 -0.0469 17.5 60 LOGP c-Hex 5 94.0455 44.9 46 CD5
6 6.6006 3.4 38 CW8      

3.4. Challenge organiser

The organisers’ approach was based on the comparison of four different regression 

algorithms to predict log kW and S, selecting the smallest prediction error. The dataset was 

first analysed by PCA using the 128 VolSurf+ descriptors. RU486 was also highlighted as an 

outlier compound because it was located outside the Hotelling confidence ellipse at 95%. 

This exogenous steroid is characterised by a structure clearly different from the rest of the 

dataset. Additionally, by closer examination of the log kW and S parameters, three 

compounds were found to have null values, as judiciously observed by some participants. 

These compounds were removed from the dataset to generate a calibration set composed of 

72 molecules.

As steroids are molecules with acid/basic centres characterised by high pKa values, variable 

analysis based on chemical knowledge was conducted before computing the regression 

models. Because the solvent pH was estimated to be approximately 2.5, the molecules were 

mostly in their neutral form in the retained chromatographic conditions, and molecular 

descriptors related to pH were removed. ADME descriptors were also excluded because of 

their lack of chemico-physical relevance in the retention process. Finally, 91 molecular 

descriptors were retained for further analysis. Artificial Neural Network (ANN), Random 

Forest (RF), Support Vector Regression (SVR) and Partial Least Squares (PLS) regression 

algorithms were compared for their ability to properly estimate the LSS parameters. Because 
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these algorithms include parameters that need to be appropriately tuned, optimisation was 

conducted with a specific strategy for each case. ANNs were computed using the Levenberg-

Marquardt back-propagation algorithm, and the hidden layer size was optimised using a grid 

search. For that purpose, the calibration set was further divided into a training (70%), a 

validation (15%) and a test subset (15%). ANN predictions with 2 to 20 neurons in the hidden 

layer were compared, and the best model was obtained with 10 neurons in the hidden layer 

for both the log kW and S parameters. RF was optimised using nested cross validation, and 

the number of trees was varied from 100 to 2000 with a step of 100. The best model was 

obtained with 1000 trees for both the log kW and S parameters. SVR was computed using a 

kernel radial basis function. The penalty parameter of the error term C and the epsilon-tube 

within which no penalty is associated in the training loss function ξ were optimised using the 

Nelder–Mead simplex algorithm. Finally, PLS was computed using 3 latent variables for both 

LSS parameters, as estimated by bootstrap 5-fold cross validation. Finally, the prediction 

ability of each optimised model was estimated by leave one-out cross validation. The best 

performance was provided by SVR, achieving an average prediction error of the retention 

times of 6.6% for the calibration set. 

The participants proposed various methodologies based on different learning principles. 

Random forest is decision trees ensemble strategy, which build a consensus model from the 

aggregation of multiple decision trees. In that case, a divide-and-conquer strategy is used to 

model the dataset according to a hierarchy of tests. The choice of the variable to test is 

based on the ability to divide the remaining data subset. PLS regression is based on latent 

variables estimated as linear combinations of the measured variables and defining a low-

dimensional subspace. The PLS model makes use of all variables by maximising the 

covariance between X and Y to capture the Y-related variation in X. Multiple linear regression 

associated with manual stepwise variable selection requires human intervention and expert 

knowledge to get reliable results. SVR takes its origin from the statistical learning theory 

framework for building a linear model in a feature space by applying a kernel function 

(usually non-linear). For that purpose, a limited number of critical observations is selected, 
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i.e. the support vectors. SVR has a great ability for generalization but direct interpretation is 

made difficult because the relation between the regression model and the original input 

space is not explicitly evaluated.

4. Conclusion

For the first time during the “Chimiometrie” congress organized by Chemometric group of the 

SFdS, a QSPR competition with the aim to predict reversed-phase retention time was 

proposed. The retention time constitutes a very helpful parameter for identifying unknown 

analytes when analysing complex samples analysis by LC coupled with HRMS. Moreover, 

the difficulty to distinguish compounds with the same molecular formula constitute a major 

bottleneck when investigating steroids. In that context, three-dimensional molecular 

descriptors were used to predict LSS chromatographic parameters. To cope with this 

problem, the four different solutions presented during the congress, in addition to being very 

different approaches, illustrated some of the difficulties currently encountered in QSRR. 

Table 4 shows the final results of the three finalists and the organiser. The prediction 

performance was evaluated based on the prediction error of the validation set consisting of 

19 steroids. All final competitors obtained excellent prediction results, with the error in 

prediction below 10%. The best retention time prediction error for the external validation set 

was obtained by Participant 3, at 6.5%, which was more accurate than the challenge’s 

organiser, partially advantaged by his previous knowledge of the context of steroid analysis. 

These results illustrate the fact that linear model combined with clever variable selection can 

lead to very accurate prediction. Because the initial aim of an individual relative error below 

5% in the experimental retention time could not be met by any of the participants, we believe 

that more specific descriptors that can integrate topological and conformational information 

are needed and may constitute the next step forward to improve QSPR models in RPLC.
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Table 4 Summary of results. Each model was computed with different object and variable sizes. Participant 1; 
Participant 2; Participant 3: Organiser have developed both models for log kW and S with 91 molecular descriptors 
and 72 steroids objects.

Model summary Calibration set Validation set

Variables
Participants Algorithm Objects

logkW S
R2 tR Error tR RMSEC R2 tR Error tR RMSEC

1 RF 73 5 6 0.98 2.8% 0.61 0.89 8.6% 1.43

2 PLS 65 80 80 0.75 8.7% 2.81 0.88 7.9% 1.45

3
Stepwise 

MLR
50 6 5 0.98 2.9% 0.77 0.91 6.5% 1.12

Organisers SVR 71 91 91 0.85 6.6% 1.73 0.92 7.0% 1.29
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Table 1. List of selected molecular descriptors for both responses, S and log kW. The 
descriptors in bold correspond to a more stringent selection.

Ordered list of the VolSurf+ descriptors 

S "LgBB", "LOGP.c.Hex", "CACO2", "CW2", "ACACDO", "SKIN", "PSAR", "PHSAR", "CW1", 

"MetStab", "HSA", "CW4", "CW3", "CW5"

Log kW "Vol", "ACACDO", "POL", "ACACAC", "DIFF",  “CD7",  "DRDRDR", "FLEX", "VD", "LgS7", 

"MW", "CD5",  "LgS6", "Surf", "%FU9", "HSA","%FU8", "IW2" , "%FU10", "D7", "L0LgS"



Table 2. Results of RF models for both responses, S and log kW. For each 
response, the three conditions with various model’s parameters were considered.

# predictors mtry nodesize RMSEOOB R2

S
127 40 2 0.703 0.973
14 3 2 0.675 0.975
6 1 1 0.665 0.974

Log kW
127 60 2 0.101 0.953
21 3 2 0.088 0.964
5 1 1 0.101 0.947



Table 3. MLR calibration results

 MLR MODEL FOR LOGK  R2=0.82 SEC=0.07  MLR MODEL FOR S  R2=0.93  SEC=0.39 
 Coefficients Ftest Data Point Var  Coefficients Ftest Data Point Var
 -0.7777     7.4249    
1 -4.6159 50.6 40 ID2 1 -0.3591 28.8 69 LgD8
2 12.0909 60.4 39 ID1 2 -1.6329 254.4 97 SKIN
3 2.1894 56.4 42 CD1 3 0.1653 16.8 107 DD3
4 0.0796 139.1 54 POL 4 -0.0207 32.7 55 MW
5 -0.0469 17.5 60 LOGP c-Hex 5 94.0455 44.9 46 CD5
6 6.6006 3.4 38 CW8      



Table 4. Summary of results. 

Model Summary Calibration set Validation set

Variables
Participants Algorithm Objects

log kW S
R2 tR Error tR RMSEP R2 tR Error tR RMSEP

1 RF 73 5 6 0.98 2.8% 0.61 0.89 8.6% 1.43

2 PLS 65 80 80 0.75 8.7% 2.81 0.88 7.9% 1.45

3
Stepwise 

MLR
50 6 5 0.98 2.9% 0.77 0.91 6.5% 1.12

Organisers SVR 71 91 91 0.85 6.6% 1.73 0.92 7.0% 1.29



Highlights

 Accurate retention time prediction is essential for steroid isomers 
identification.

 Quantitative Structure-Retention Relationship constitutes a very potent 
approach.

 Indirect retention time prediction can be used in any gradient 
conditions.

 The best results of the "Chimiométrie 2016" challenge are presented.



Table S1: List of VolSurf+ descriptors used to build models.

This table summarises the physicochemical characteristics of the descriptors 
for further models interpretation. An exhaustive and detailed list is available in 
the VolSurf+ manual. This documentation is part of a commercial license. For 
any other details please contact Molecular discovery at 
http://www.moldiscovery.com

Descriptor name Description
V Molecular volume
S Molecular surface area

R Rugosity of the molecule calculated through V 
and S

G Globularity defined as the ratio of the surface S 
to the sphere of the same volume

W1-W8 Volumes of the hydrophilic interaction estimated 
at 8 energy levels

D1-D8 Volumes of the hydrophobic interaction 
estimated at 8 energy levels

WN1-WN6 Hydrogen bond acceptors volumes at 6 energy 
levels.

IW1-IW4
Unbalance between the center of mass of the 
molecule and the barycenter of its hydrophilic 
regions at 4 energy levels

ID1-ID4
Unbalance between the center of mass of the 
molecule and the barycenter of its hydrophobic 
regions at 4 energy levels

CW1-CW8 Ratio between the hydrophilic volumes at 8 
energy levels over the total molecular surface.

CD1-CD8 Ratio between the hydrophobic volumes at 8 
energy levels over the total molecular surface.

HL1-HL2 Ratio between the hydrophilic and hydrophobic 
volumes at 2 energy levels

A
The vector pointing from the center of 
hydrophobic domain to the center of the 
hydrophilic domain

FLEX Maximum molecular flexibility
FLEX_RB Ratio between FLEX and the rotatable bonds

CP Ratio between the hydrophilic and the lipophilic 
part of a molecule.

POL Molecular polarizability
MW Molecular weight 
Log P n-oct Logarithm of the partition coefficient in n-octanol
Log P c-hex Logarithm of the partition coefficient in c-hexane

LogD5-LogD10 Logarithm of the partition coefficient in n-octanol 
at different pH

PSA Polar surface area
HSA Hydrophobic surface area

http://www.moldiscovery.com


PSAR Ratio between the PSA and S

PHSAR Ration between HSA and S

NCC Number of the charged centers
DRDRDR, DRDRAC, 
DRDRDO, DRACAC, 
DRACDO, DRDODO, 
ACACAC, ACACDO, 
ACDODO, DODODO

3D pharmacophoric descriptors based on triplets 
of acceptors (AC), donors (DO) and hydrophobic 
(DR)

Soly Solubility model calculated with VolSurf+ 
descriptors

DD1-DD8 Differences with the maximum hydrophobic 
volumes and D1-D8

AUS7.4: available uncharged species at pH 7.4

%FU4-%FU10 Percentage of unionized species at various pH

LgS1-LgS11 Solubility at various pH

Caco2 Caco2 permeability model calculated with 
VolSurf+ descriptors

SKIN Skin permeability model calculated with 
VolSurf+ descriptors



%PB Percentage of the protein bounding

LgBB: Blood barrier brain permeability model 
calculated with VolSurf+ descriptors

MetStab Metabolic stability model

HTSFlags: High throughput screening flag

L0LgS-L4LgS Solubility profiling coefficients


