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Agent-Based Models (ABMs) are becoming a widespread approach to model human-environment in-
teractions. They belong to the class of individual-based modelling approaches, which allow a bottom-up
representation of the system being modelled, eliciting its macro-level evolution while modelling the
micro-level behavior of its individuals.

This paper deals with the application of an ABM to simulate future crop patterns in the Grand-Duchy of
Luxembourg under a pre-defined scenario. The simulated scenario deals with the introduction of a
“green consciousness" component in farmers' decisions, substituting a purely rational approach based
only on profit maximization. The results of the ABM are used to perform a life cycle assessment of
Luxembourg's agricultural system. The paper first describes the difficulties and the challenges connected
with building an ABM for agriculture and then shows the results of the selected case study. The results
show that, from a lifecycle perspective, a “greenness” criterion aimed only at reducing greenhouse gases
emissions reveals patently a sub-optimal choice and causes burden shifts to other impact categories.
Finally the ABM-based (bottom-up) approach is compared with a top-down approach applied in a
previous study by the same authors to model the same system. Assets and drawbacks of the two ap-
proaches are highlighted.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

easily taken into account by classical bio-economic farm modelling
tools (Edwards-Jones, 2006), essentially due to their human

Under business-as-usual conditions, the expected cropland
expansion would overshoot the “safe operating space” by 2050,
both for the case of net and gross expansion of cropland ((UNEP,
2014), page 13). Sustainability assessment of agricultural systems,
is therefore a key issue for policy makers, from local to global scales
(Mclntyre et al., 2009).

Farmers' choices depend not only on the ecological, economic,
and social environments of their farms, but also on the perceptions
they have about these environments (Edwards-Jones, 2006). The
general choices at farm scale are translated into strategies and then
into practices through decision-making processes which are not
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dimension. In fact, human behavior is often the result of bounded
rationality, due to limited information about exogenous factors or
because of personal preferences and beliefs. Moreover, cultural
reasons may play an important role in land use decisions, and in-
formation biases may limit knowledge about market developments
and technology trends. For this reason, purely rational approaches
fall shortin capturing the complexity of human behavior (Navarrete
Gutiérrez et al., 2015, 2017).

A better understanding of the knowledge and behavior of the
main actors of farms management, i.e. the farmers, is crucial and
this is why approaches based on Agent-Based Models (ABMs) have
gained increasing attention in modelling human-environment in-
teractions (Rounsevell et al., 2012, 2011), such as land management
(Matthews et al., 2007; Wise and Crooks, 2012) and agricultural
modelling (Freeman et al.,, 2009; Mialhe et al., 2012; Murray-Rust
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et al, 2014; Valbuena et al, 2010). Given the elements briefly
outlined above, agricultural systems exhibit the features of complex
systems, as they have multiple scales of interactions, are strongly
influenced by human decision-making and include feedbacks with
natural ecosystems (Bert et al., 2014). Complex systems simulations
are increasingly being used to shed light upon issues of social and
policy importance (Squazzoni et al., 2014). Such waork is starting to
be influential in policymaking, being used to explore some of the
complex consequences of policy action (Smajgl and Bohensky,
2013). However, as pointed out by Waldherr and Wijermans
(2013), still some criticisms persist towards ABMs and social
simulation methods, mainly due to: 1) lack of understanding (the
model is very often seen as a “black box"); and 2) academic terri-
torialism, i.e. academics defending their areas of competence.
Nonetheless there are signs of some maturation in the acceptance
and use of such models (Hegselmann, 2012), including conceptual
frameworks and successful practical applications to policy steering
(Smajgl, 2010; Smajgl et al., 2015a; Smajgl and Ward, 2013).

Several ABMs have been built to simulate agricultural and land
use change systems. A comprehensive review would however be
out of the scope of this paper. Some of them rely on heuristic rules
or single-objective optimization to determine agents' actions.
Consequently, agents are often programmed to act in an econom-
ically rational way (Berger et al., 2006; Filatova et al., 2009; Happe
et al,, 2008; Parker et al., 2008; Schreinemachers and Berger, 2011).
Such models, like the agricultural model AgriPoliS (Happe et al.,
2006), have substantial explanatory power, in describing for
instance the evolution of farms in competitive markets. However,
humans employ a number of strategies in land use decision making
that go beyond maximization of profit, and opportunity cost and
rislk minimization (Bonabeau, 2002; Parker et al., 2008). Therefore
the optimization approaches exclusively based on microeconomic
theory need to be complemented by other approaches imple-
menting a more behavioral-based set of rules of action. These ap-
proaches have indeed gained increasing attention in land use
change (Matthews et al., 2007; Parker et al., 2003) and agricultural
modelling (Berger et al., 2006; Freeman et al., 2009; Happe et al.,
2008; Mialhe et al., 2012; Schreinemachers and Berger, 2011).

Kaye-Blale et al. (2010) provides a review of multi agent (MA)
simulation models in agriculture, also including optimization. They
suggest that a two-part model including both a MA sub-model and
a cellular automata (CA) sub-model is the most suitable to describe
agricultural systems.

However, in this solution, the two parts still remain separated,
therefore one cannot really think about “spatial agents”. Marohn
et al. (2013) assess low-cost soil conservation strategies for high-
land agriculture, using an AB modelling approach to couple two
software packages: i) a process-based model of natural resource
dynamics and crop yields to simulate soil, water and plant dy-
namics, and ii) a mathematical programming-based MA system to
simulate farm decision-making. Zellner et al. (2008) present a
generic ABM to model land use decisions and consequent energy
consumption and pollution dynamics. The model described in Wise
and Crooks (2012) is empirically grounded, reaching a very realistic
representation of a complex socio-physical system. The model is a
spatially explicit ABM programmed in [ava, and based on the use of
GIS maps; it consists of a number of modules that capture the
physical, economic, and social processes that impact land-use
patterns. It is endowed with a graphical user interface (GUI), and
includes a number of parameters which can be adjusted to suit the
underlying assumptions of the researcher. The same empirically
grounded character and GUI functionalities are shared by Smajgl
et al. (2015b). Astier et al. (2012) in their critical analysis of sus-
tainability assessment of natural resource management by small
farmers, use AB modelling together with role play games to support

participatory processes. Murray-Rust et al. (2014) presents a new
ABM frameworl that allows exploring the influence of different
factors (such as social, economic and environmental factors, and
subsidy adoption) in farmers’ decision making process. The
approach described combines several advances in ABM of land use,
a detailed multilevel handling of temporality, a varied socio-
economic context, and ecosystem service modelling.

Manson et al. (2016) is an example of application of ABMs to
simulate the effect of bottom-up social interaction components in
the adoption of a systemic change (namely rotational grazing) in
the United States dairy system. The social network model is
implemented starting from interviews conducted with 53 selected
farmers in three different US states. The interviews support the
definition and estimation of parameters to formalize the process of
ties formation with peers, institutions, organizations, and people
groups.

The examples of coupling of ABMs with life cycle assessment
(LCA) are not numerous in the literature because, on one side the
AB paradigm probably still lacks shared acceptance in the LCA
community, and on the other side, it suffers from the difficulties
linked to its implementation.

In the field of agricultural modelling (Miller et al., 2013) applied
ABM, from an LCA perspective, to the assessment of planting
switchgrass by farmers responding to policies. All agents are
landowners who have the potential to adopt the use of switchgrass
and Bayesian probabilities are used to evaluate farmers' orientation
towards switchgrass adoption as opposed to resistance to change.
The same problem is addressed by Bichraoui-Draper et al. (2015),
who use a decision tree based on variables such as familiarity with
the new crop, risk aversion, economic profit and neighbours’
imitation to implement agents decisions to plant switchgrass.

The present paper deals with the application of a bottom-up
approach (an ABM) to simulate future crop patterns in the Grand-
Duchy of Luxembourg under a pre-defined scenario. The results
of the ABM are used to perform a LCA of Luxembourg's agricultural
system. The paper first describes the difficulties connected with
building an ABM for agriculture, then shows the results of the
selected case study and finally compares the ABM-based approach
with a top-down approach applied by the same authors to the same
system in a previous study (Rege et al., 2015), Assets and drawbaclks
of the two approaches are highlighted here. This paper is not meant
to provide an exhaustive discussion and a possible solution to all
the existing challenges in the empirical characterization and
parameterisation of an ABM, but to approach and analyse some of
these challenges from the point of view of LCA and not only AB
modellers. For a broader discussion the interested reader can refer
to Smajgl et al. (2011) and Smajgl and Barreteau (2014).

2. Methods

In the framework of the project MUSA we have built an ABM to
simulate the agricultural system in the Grand-duchy of
Luxembourg. In a previous study a similar problem had been
tackled exclusively from a rational perspective, cansidering only
revenue maximization and opportunity cost minimization as the
farmers' decision criteria (Rege et al., 2015; Vdzquez-Rowe et al.,
2014). The implementation of an ABM allowed reversing the
modelling perspective, passing from a top-down (economic madel)
to a bottom-up (ABM) approach, thus allowing, among other
things, the addition of the farmers' behavioral aspects to the
modelling exercise.

In this section we outline our experience with the model
building and highlight the difficulties encountered, including the
way they have been addressed. We begin with the goals that ane
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wishes to achieve in the “ideal” situation and the model structure in
such a case. We then identify the data available and the limitations
that are imposed on the modelling structure and how they force the
modeller to modify the original conceptual structure of the ABM.
We finally highlight the implications for LCA in the light of these
modifications.

2.1. Setting the context

All farming system are composed of farmers who may be
involved in growing only crops, rearing animals in a traditional
open pasture or an industrial intensive operation, or a combination
of both, i.e. growing crops and rearing animals. Additionally,
farmers own fields that may aggregate to farms, Each field may well
have a soil type that is different and may be suitable to a specific
crop. In order to preserve soil quality, crop rotation is practiced,
Crop rotation is considered essential for integrated farming
(Brankatschk and Finkbeiner, 2015; Dury et al,, 2011) as mono-
cropping has major consequences in terms of environmental sus-
tainability, such as a reduction in the biodiversity of arable
ecosystems and a decline in landscape diversity (Stoate et al., 2001).

As a consequence, when one wants to model the agricultural
system, all fields have a rotation scheme wherein the farmer plants
different crops on the same field. We modelled the rotation scheme
as per the information taken from agronomists and from KTBL
(2005). The choice of a rotation scheme depends on the farmer
and is assumed to be stable for a farmer over time. Pastures and
meadows are not a part of the rotation scheme because preserva-
tion of permanent pasture is one of the main principles for the Basic
Payment Scheme under the Common Agricultural Policy (CAP). The
other principles are crop diversification and preservation of
Ecological Focus Areas on arable land (SER, 2014). Vineyards are
also exempt from changes, because of the very favourable micro-
climate conditions in the areas where grapes are grown (basically
the region along the river Moselle). Finally, orchards and fruits are
also not subject to changes (therefore they do not enter in the crop
rotation schemes) because they are specialized cultures, that
cannot be changed on a short term horizon,

In the case of Luxembourg, the majority of the farmers are
involved in growing crops as well as rearing animals. In such a case,
feed for animals is an important aspect of the agricultural system,

Table 1 shows the distribution of farms by size in Luxembourg in
2009 (the base year used to calibrate our ABM model).

As shown in Table 1, in 2009 there existed 2242 farms in
Luxembourg covering an area of 130,762 hectares (ha). The farms
were split into nine farm size classes (A to I) based on their area.
Each farm would have a certain number of fields with crops being
planted by season (summer or winter) along with number and type
of animals.

In order to program a consistent ABM model, able to reproduce
reality in a likely way, the modeller should have access to the
number and size of each and every field belonging to each farmer.
In addition one should also have information on the crop planted
on each field and the prevalent rotation scheme on that field. In-
formation on the number and type (bovines, swine, horses and
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poultry) of animals by age, sex and purpose (meat, milk or suckler
cows) should also be available for each farm. In the case of the
application introduced in this paper, only a small part of the
abovementioned information was available in the public domain.
The data available for 2009 are reported in Table 2 (KTBL, 2005;
STATEC, 2015).

Each labelling has different explanations: “mixed grain” in-
cludes all the possible mixtures of the different cereal species;
“other forage crops” all the crops not included in the categories
listed in the table are included; “maize (dry matter)” is the maize
used as forage or to produce biogas; “dried pulses” means peas,
lupine, etc.; “clover grass mix” represents temporary grasslands
with clover; “crops NES” stands for “crops not elsewhere specified"
and refers to orchards, vegetables and other marginal crops that are
observed as statistics but are marginal in area under plantation.

For additional data manipulations to produce a data set
consistent with the 2009 information, the reader is forwarded to
(Rege et al., 2015).

In the given context, we face three different problems: a need
for fine grained spatial information (fields associated to farms,
farms associated to farmers); the exogenous nature of crop prices
that must be included in the model and the need for additional data
to what current public statistics offer. We discuss each problem in
the remaining of the paper.

2.2. The different components of the ABM model

The modelling strategy used for the ABM described in this paper
follows the KISS (Keep it simple, stupid!) principle (Edmonds and
Mass, 2005). In the following paragraphs we describe how spe-
cific problems related not only to the model building, but also on
the retrieval of the necessary data, were dealt with.

2.2.1. Dealing with lack of fine grained spatial information

In the absence of information on the number of fields belonging
to each farm, we generated this information randomly such that the
initial allocation matches the base data of 2009. For each farm type
(A to I) we generated a random number extracted from a uniform
distribution and allocate the area to each farmer between the
minimum and maximum for that farm type. We then randomly
allotted a rotation scheme to each farmer from the original list of
six schemes mentioned earlier. As indicated in Table 2, crops are
classified as leaf (L), cereals (C) or others (O). The crops falling in
group O (meadows, pastures, vineyards and crops NES) do not take
part in the crop rotation process, because their allocation never
changes.

Rotation schemes rotate leaf (L) and cereal (C) crops in different
sequences; LCC, LCCC, LCCLC, LC, LLCC, LLLLC are some of the
rotation schemes, where crops are planted in the sequence they
appear. We take the share of each crop in the total for that type
(share of a cereal crop in total cereals) and use that share to
compute the number of farms that would be planting the specific
crop. In case we find the number too low, we scale it up such that
the crop is being planted by a reasonable number of farms. Having
selected the number of farms planting a specific crop, we randomly

Table 1
Distribution of Farms by Size (ha) in Luxembourg in 2009 (letters from A to I indicate the farm size class).
Total A B C D E F G H I
<2 2—-49 5-9.9 10-19.9 20-29.9 30—-499 50-60.9 70—-99.9 100+
Number 2242 230 165 217 186 116 246 263 398 421
Area (ha) 130,762 131 598 1533 2667 2890 9956 15,743 33,583 63,661
Average size (ha) 58.32 0.57 3.62 7.06 14.34 2491 4047 59.86 8438 151.21
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Table 2

Public information available for the crops planted in Luxembourg in 2009 (T = Type, S = Start Month, E = End Month, Qutput = quantity yielded: NES = not elsewhere

specified).
Crop name T S E Season Yield (t/ha) Price (€/t) Qutput (L)
Wheat (winter) C 10 8 Winter 6.66 145.74 43,761
Wheat (summer) € 2 3 Summer 6.62 105.76 45,451
Spelt C 10 8 Winter 4.64 208.94 1866
Rye (winter) C 10 8 Winter 6.29 80.30 6937
Barley (winter) C 10 7 Winter 6.15 87.02 36,050
Barley (spring) C 3 8 Summer 523 50.76 18,354
Qats = 3 8 Summer 520 87.68 7197
Mixed grain (winter) C 10 8 Winter 5.26 87.68 652
Mixed grain (spring) C 3 8 Summer 5.26 87.68 615
Maize grain L 4 11 Summer 6.00 134.12 2453
Triticale (winter) & 10 8 Winter 6.27 86.16 25,415
Other forage crops I 4 10 Summer 13.67 98.57 155,108
Maize (dry matter) L 4 10 Summer 13.67 98.57 173,691
Dried pulses L 3 8 Summer 3.95 2529 1206
Beans L 1 1 All 3.52 125.00 271
Potatoes L 4 10 Summer 33.19 179.14 20,044
Rapeseed L 9 7 Winter 392 259.84 17,572
Clover grass mix 1 9 7 Winter 53.13 29.26 98,297
Meadows 0 1 1 All 8.22 163.53 74,229
Pastures 0 1 1 All 8.23 222.87 479,877
Vineyards (o] 1 1 All 10,851.37¢ 1.97° 14106786*
Crops NES (o] 1 1 All 6.2023 330.04 1985

* Yield expressed in litres of wine per ha; price expressed in €/1; output expressed in litres of wine.

choose which farms will plant the crop. The total area for the crop
under each farm type is then distributed to each farm in proportion
to the farm's area amongst the total area of the farms chosen to
plant the crop. Repeating the procedure for each crop, we have the
initial allocation of crops to farms. The summation of the area under
each crop planted by each farm then equals the total area of the
farm.

The problem with this approach is that there are no specific
numbers of fields assigned to each farm in the beginning and there
is no information about the distribution of the crops on those fields.
From a simulation perspective, the change in cropping pattern due
to environmental, policy or financial shock is restricted to the field
level and built up from the field level. In absence of field infor-
mation, the same transmission mechanisms hold but to different
scales of cropping areas.

A LCA modeller is interested in knowing the variations of
cropping areas (and their environmental implications) (Marvuglia
et al,, 2013). The strategy to deal with field related information
(described above) has implications for the quantification of these
variations in the system because the scale is much larger and hence
prone to mare extreme values in response to shocks.

Farmers plant crops based on the expected future price of the
harvest. The expectation could be naive or based on past price data,
with constraints of crop rotation playing a role. The expectation of
price would implicitly filter the subsidy component, if any, which is
normally crop-based. However, if the subsidy component is based
on the amount of [and held, then it is not a driving force behind the
decision to select a crop for sowing.

ABMs are bottom-up models with no closed feedback loop ar-
chitecture. In closed feedback loop architectures, agents think
about a decision and the implications of their decisions on others
and the response of others and repeat this process until it results in
equilibrium, where no agent has any incentive to deviate from the
proposed behavior. Agents respond to external stimuli based on
pre-programmed behavior eliciting a response when the threshold
is triggered, thus moving in a unidirectional forward looking time
path.

For a very detailed analysis at the level of an individual agent,
and in order to enable a greater degree of confidence in the variance

of the results, one would require information on field ownership by
each farmer besides the soil type and rotation scheme on each field
over time to arrive at reasonable estimates of crop output and
variations,

Despite the theoretical concept is very simple, the realistic
allocation of a rotation scheme for every farmer, for every field on
the farm, and for the type of crop planted is far more difficult.
Firstly, on account of the unavailability of the data for privacy
reasons or the sheer size of collection making, it is impossible to
cover the whole population. Just having sample estimates for larger
countries like the Russia, Canada, China, Australia, Brazil, and India,
to name a few, makes this approach all but feasible, Even for a
country like Luxembourg where this data is available for each field
for each farmer, privacy concerns makes it impossible to access the
data and build an ABM based on the fields. In such a scenario, the
modeller is left to use the top-down approach of calibrating the
farm sizes to the data available with field sizes that may not reflect
the reality. The variance in field sizes could be substantially
different from what is observed and has a direct impact on the
variance of land under crops and therefore leads to a chain reaction
to analysis down the line, Using cellular automata (Kaye-Blake
et al,, 2010) to circumvent the problem is not a solution, as it
leads to crucial loss of information regarding the cells that undergo
change. This puts an added onus on the modeller to introduce
biases on the cells that undergo or do not undergo cropping change.
To complicate the problem further, in mixed farming systems
wherein animals are an integral part of the system (despite the
natural limitation on the maximum number of animals per hectare
that are normally affordable), the sheer variability of the animals
(cows, bulls, suckler cows, heifers, oxen for slaughter, pigs, sows,
piglets, sheep, poultry) and the target of the farmer (meat, milk,
rearing and selling calves) makes it impossible to allocate animals
to farms. The amount and type of animals on each farm determine
the feed needs and hence impose a constraint on the types of cash
crops that can be sowed.

2.2.2. Solving the crops price discovery problem
The model under cansideration does not include means to use
global information to generate a set of prices for each crop in the
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future based on some formal mechanisms whose foundations are
rooted in optimization or economic phenomena. This creates a
particular dilemma for modelling farmer behavior. The variation in
price of crops over time exhibits periods of high volatility followed
by low volatility, as it has been the case with prices in Luxembourg.
The year 2009 was particularly interesting due to the fact that
prices had reached the lowest in years. In the absence of some
exogenous data generation process for price generation that
mimics the observed price fluctuations, ABM structures incorpo-
rating own and cross-price elasticity of supply would be irrelevant,
because the price signals on which these responses are based
would be incorrect.

We aim to study the changes in cropping patterns in
Luxembourg, with the ideal aim of exploring under which condi-
tions the system would evolve toward an increased production of a
given crop (which in our case is represented by maize to be used for
biogas production; with a minimum amount of fresh matter of
80,000 additional tons by 2020, as explained in Vdzquez-Rowe et al.
(2014) and Vazquez-Rowe et al. (2013)). This problem is not
location-specific, nor is crop-specific. Therefore, upon information
availability, the model could be replicated in a different
geographical context while focusing the analysis on a different
crop. The results from simulations though will be specific to the
location and crop as the crop and location are interdependent due
to constraints imposed by nature and climate.

Normal fluctuations in cropping patterns occur on account of
crop rotations to maintain soil quality and fertility, to limit disease
and pest pressure, to prevent erosion, to answer to market de-
mands. Indeed, farmers' expectations on future prices, that exert
financial pressures, lead to a bias for or against specific crops. Ex-
pectations of future prices, and responses to those expectations, are
individual-specific and depend on the risk profile of a farmer. The
remaining factors are instead determined by nature. Any generic
farm across the globe would have fields on which a crop is planted
for a specific season. Multiple crops on the same field during the
same calendar year are a distinct possibility and one needs to be
careful to account for it. This leads to statistical data showing
greater area under crop cultivation than the arable land of a region.
The rotation schemes and size of fields will lead to a natural fluc-
tuation in the output of crops due to fluctuations in yield, in the
absence of any market or behavioral response. The aim of the ABM
is to account for changes over and above the normal ones,

In the mixed type of farms, the profit is a function of both the
final animal product and also the crops production, wherein there
is an opportunity cost associated with a crop used for feed. To
complicate the situation further, national trade policies have an
impact on the amount of feed that can be imported in case of a
shortfall adding to the vagaries of an already risky situation in
agriculture, This input uncertainty is a systemic uncertainty that
cannot be mitigated except by accurate data at the field level for
each farm, It is a herculean task that may well be outside the scope
of many countries data monitoring systems.

2.2.3. Collecting information to define agent's profiles

When the level of knowledge of the entities that one intends to
model using agents is not sufficient to achieve a realistic definition
of the agents themselves, data surveys can be carried out in order to
better define the characteristics (attributes) of the agents, as well as
their rules of action and interaction.

This was the case for the model described in this paper. The
survey we distributed to the farmers is available at the following
website:  http://musa.tudorlu/surveyresults. The computer-
assisted web interviewing (CAWI) surveying technique was
employed to conduct the survey, which was completed at the end
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Fig. 1. Characteristics of the respondents (distribution by age of the farmer and size of
the farm).

of January 2015. It was distributed to 1191 farmers, with a response
rate of 14% (168 respondents) and respondents located in 97
different areas.! This is already a very good response rate generally
speaking, and even more so given the length of the survey (Galesic
and Bosnjal, 2009).

The survey took several months to be designed (requiring
continuous refinement and interaction among the project partners)
and three months to be completed. A reminder by email and
another by phone call were necessary respectively after 1.5 months
and 2 months from the first launch of the survey.

The questionnaire (translated and distributed to the farmers in
German) included 79 questions (some of which were optional) and
was divided in four parts: Part | about the farm; Part Il about the
farmer's land use choice (with section II.1 about a previous change;
1.2 about a planned change; [1.3 about a previous attempt to change
which failed; 1.4 about no change); Part Il about farmer's incli-
nation/aversion to risk and Part IV about the composition of
farmer's household.

Fig. 1 presents the distribution of the answers by age of the
farmer and size of the farm (7 respondents are missing because
they did not specify their age and/or the size of their farm).

From the Part [1l of the questionnaire we could infer what share
of farmers had a certain willingness to male changes in the tradi-
tional way of running their business.

In particular, when we asked how likely (on a scale from 1 to 10)
would be that they could consider investing in biogas production in
a time horizon of 10 years (supposing they had the financial means
to do that), the distribution of the answers tool the shape shown in
Fig. 2.

It is therefore apparent that without a proper incentive, it would
be very difficult getting to the objectives set for 2020 in terms of
biomass production for biogas.

2.3. A short presentation of the proposed model

As to the agents' definition, our model is based on a reactive
approach (Bandini et al., 2009), in which the agents have simple
behaviors based on reaction to stimuli coming from the sur-
rounding environment” and the observation of the results of their
actions (which may trigger correcting behaviors). The behaviors are
the actions the agents will take as a reaction to the interaction with

! The actual locations of the single farms was masked because of canfidentiality
reasons; only aggregated responses were disclosed, coming from 97 communes out
of the 116 communes of the country.

2 As the environment we mean here the setting in which agents operate,
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Fig. 2. Frequency distribution of the answers to the question about willingness to
invest on biogas (question 59).

Legend:
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Fig. 3. Example of possible distribution of 6 different crops (C1 to C6) in 3 different
farms. Each farm has its own value of the “index of relative environmental perfor-
mance” If at time f,

the environment, These behaviors are governed by a set of rules
that must be defined beforehand.

The model includes the following entities:

Farmers. These are the independent agents of the simulated
system.

Farms. These are container objects underpinning the organi-
zation of the model. A given rotation scheme is associated to each
farm. Besides the initial rotation scheme, an initial set of crops
planted in given proportions is associated to each farm. When a
farmer agent has to decide upon a crop to plant in his farm in a
given rotation cycle, he will check the list of available crops that
meet the existing rotation scheme constraints and maximise his
revenue. In the web-based application interfacing the AB simulator
(see Fig. 3) one can also select an option which activates a green
consciousness mechanisms in agents' behavior. The green conscience
(gc) of an agent is a value between 0 and 1. If an agent has gc > 0.5
he will ook at the global warming potential (GWP) of each crop (in
addition to its selling price on the market) before deciding which
crop to plant (Navarrete Gutiérrez et al., 2015). This doesn't exempt
the farmer from respecting the rules on crop rotation schemes in
terms of rotation of crops of leaf (L) or cereal (C) type. Different
scenarios are implemented using different probabhility distributions
for the gc values (uniform between 0 and 1; Gamma with &« = 2 and

f# =5; Gamma with @ =5 and § = 1). A further scenario is also
implemented, in which the green behavior is based on the envi-
ronmental performance of the agent in comparison to the other
agents. In order to do so, we rank the farms according to the value
of the following “index of relative environmental performance”:

GWP}I_

% (1)

Ik =

where t is the time step of the simulation; F; is the i-th generic farm
(belonging to farmer i); A; is the area of the farm F;

GWPE = E;L GWPc(t) is the GWP of the crops planted in the farm

F; at time t; n{ is the number of crops planted in farm F; at time ¢;
GWP (1) is the GWP of the crop (; planted in the farm F; at time ¢
(i.e. the GWP per hectare of crop G, multiplied by the area A (1) of
farm F; planted under crop G at time ¢,

At each simulation step ¢, and for each farmer i, ifI}i is below the
median of all the indices Jf,l, then the farmer will activate his green
consciousness.

An example for only three farms and six different crops is given
in Fig. 3.

Product Buyers. Buyers are actors offering to buy the produce of
the farmers. In the model there is only one buyer offering to buy the
entire produce of all the farms in the country. The prices offered by
the buyer are set up beforehand in a given pre-set scenario. One
option is applying a time series forecast model for crop prices (Rege
and Navarrete Gutiérrez, 2015),

Crop. As mentioned above, crops can be either cereals (C) or
leafs (L). Each crop has an associated yield in tons per hectare.

The following different elements represent the overall model:

Description levels. Concerning farms and farming resources, the
model is run at the individual level. The prices, which are set
identical for all farmers, are obtained using the Holt Winters time
series forecast model (Navarrete Gutiérrez et al.,, 2015). A constant
price set can also be chosen by the users.

Time. The simulations are currently run in time steps of one
year. At the beginning of each time step the agent sows, then in the
spam of one year he harvests, sells the produce, and finally decides
which specific crop to plant (if he decides to replace some of the
crops) for this rotation scheme (substitute a C or a L),

Space. Each farm has an assigned (and invariable) size of arable
land. The spatial granularity of the available information (crops and
fields in a given commune's territory) is not detailed enough to
identify specific farms and geographically locate them in the
country.

Design concepts. The model is implemented following the
reactive architecture, The agents observe the prices and change
their main behavior accordingly.

Implementation. The simulator is implemented in the Java
programming language, The choice of building the model from
scratch and not using an existing agent-based platform allows a
maximum of flexibility and facilitates the coupling of the agent-
based simulator with the LCA calculator,

A schematic representation of the model is provided in Fig. 4.
Inventory data coming from the survey concluded in January 2015,
as well as from agricultural technical support books (KTBL, 2005),
the website of the Luxembourgish national statistics institute
(STATEC), the project partners and national institutional sources
(like the rural economic services bureau - SER), were used to
describe the foreground system, while the Ecoinvent database
version 2.2 (Frischlknecht et al., 2007) was used for the background
system. All these pieces of information, as well as other information
about the external environment (e.g. time series of crop prices;
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Fig. 4. Schematic representation of the model, made of an agent-based simulator coupled with a LCA software.

agents-related information, such as the estimated level of risk
aversion) are used to initialize the model.

2.3.1. ABM and LCA model coupling

The modeller initializes the model (using an initial parameters
setting procedure) and lets it run for a certain number of time steps.
Time steps (ts) of 1 year are used in our model. The simulation isrun
for the time period from 2009 to 2020. The result of each simulation
step is the set of changes (that we call deltas, As) in land use pat-
terns resulting from the chosen parameters and the interaction
among the agents. These As are then fed to a LCA software to
calculate the potential lifecycle environmental impact using a
chosen life cycle impact assessment (LCIA) method. The LCIA
method used in this paper is ReCiPe (Goedkoop et al,, 2013). No
other LCIA methods were used, based on the findings of Vazquez-
Rowe et al. (2014), which proved no major differences existed in
the results for the Luxembourgish agricultural sector between
different LCIA methods. The functional unit used in our LCA model
is the entire agricultural surface of the country, which remains
constant over the simulation steps, given the fact that conversion of
forest, pastures and meadows to cropland is not allowed (SER,
2014).

Ideally, a hard-coupling of the AB simulator with the LCA soft-
ware should be achieved, so that the LCIA results produced by the
LCA software (at time step tp+n-ts) could be automatically fed back
to the simulator. In this way the agents could possibly adjust their
behavior using the behavioral rules set up by the modellers, until
the end of the simulation. In our case to+n-ts = 11, which is the time
between the calibration year (2009) and the end year (2020). A
suitable solution to achieve the hard-coupling would be the

utilization of the software Brightway2 (Brightway2, 201G), which
has the advantage of having an open interface that can be accessed
in different ways. For example, one could just write a script, and call
it from an external program (the agent-based simulator in this case)
or create a distributed remote service that can be accessed from a
web browser. Although other LCA software include similar func-
tionalities, they either require the use of a GUI, or are limited to a
specific operating system platform, or cannot work as a standalone
service provider for third applications.

The final aim of a model like the one we describe in this paper
should be informing (e.g. via synthetic impact indicators) policy
makers and allowing them the evaluation of the possible (ex-
pected) environmental consequences of certain choices. This in
order to take better informed policy and development decisions
and possibly activate correction actions, if necessary. The model is
also accompanied by a web-based interface, through which users
(with some limited expertise) can run simulations, changing a
limited set of model's parameters. It is also foreseen to allow the
communications of users' feedback to the modellers. Ideally,
external users of the web-hased interface could also communicate
directly with decision makers (e.g. via farmers' associations),
although this communication channel (represented with the dash
dot line in Fig. 3) is probably more difficult to activate.

2.3.2. Model validation

Our experience in ABMs suggests the use of the “Simulation and
modelling” framework of Zeigler et al. (2000) to evaluate the val-
idity of our model. This would be related to the specific ABM, but as
our work is inscribed in the sustainability domain, and LCA in
particular, we would also need to look at the validity of the LCA
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results, However, in this section we will deal only with the vali-
dation of the ABM model and not of the LCA background inventory
data and of the LCIA results,

Following Zeigler et al. (2000) we could identify elements that
would allow defining the validity of the model at replicative, pre-
dictive and structural levels. As the model is currently still being
refined, we can only consider this first validation as preliminary.
Given the nature of our model (a cropping pattern change model
with a few interlinked economic and environmental variables) a
suitable validation procedure would be what (Topping et al., 2012)
refer to as Post-hoc Pattern Oriented Modelling (POM) (Grimm
et al., 2005), where the variable to be considered as an indicator
for validity will be the overall distribution of crops being planted
per year.

Over the simulations run during the construction of the model,
the different proportions of crops planted (which altogether make
the existing cropping pattern) we observed are in line with the
information available for the base year 2009. Although we could
quantify the difference between the proportions output by the
simulator and the statistics available (from 2009 to 2014) we would
not be able to do equally until the end of the simulation (2020) for
obvious reasons. Now, if we consider that our model can actually
include unforeseen elements in the timeline, such as a change in
crop prices, this accounts for at least a first example of predictive
validity. Finally, for what concerns the structural validity, we are
incapable to asses it at this stage of the development of the model.
So far, we have not identified the different transitions that the
system would be able to undergo. This is not an inherent charac-
teristic of the ABM in general, but rather an issue in direct rela-
tionship to a European agricultural system. With the recent
changes in the CAP, the future evolution will certainly modify
practices in the agricultural sector (Galin-Martin et al., 2015).

A word of warning must be issued considering LCA results val-
idity. The results of an LCA are expressed in terms of “potential”
environmental consequences, but are by nature not suitable to be
measured and compared against theoretical values. There is little
room to question the scientific groundings of the LCA methodology,
but it is impossible to measure exactly which specific actor of an
ABM for example produced a given proportion of greenhouse gases.
At least from this point of view, validation of the LCA results must
be considered with caution.

2.3.3. Stakeholders’ interaction

Staleholders' interaction is part of the so-called participatory
approach philosophy. Following the classification by Jan Rotmans
(2006) our interaction with stakeholders in building the model
has conferred them the role of “advisors”, In our approach we did
not apply neither an ex ante, nor an ex post evaluation with stake-
holders (Smajgl and Ward, 2015), but rather an evaluation in itinere.
As we built parts of the model we tried to interact with local
stakeholders (namely public servants from the Ministry of Agri-
culture, Vine growing and Consumers' protection, and, in a later
phase, the Chamber of Agriculture), showing the functionalities of
our model and asking for their advice in terms of missing elements
and possibilities to improve the model's capabilities, given the
quality (especially the high level of aggregation) of the available
data.

Moreover, a preliminary version of the model and the related
web-based application was presented in the framework of a
workshop organized in early 2015. During the workshop, we tried
to highlight the importance and potential added value of using
ABMs to steer policy. The audience was composed of about 35
people coming mostly from research environment and a few
stakeholders (members of farmers associations, partners of the

project, public servants, etc.).

At the end of each presentation, a discussion session was held,
during which interaction was promoted. During the various dis-
cussion sessions, the following questions were asked to the audi-
ence, which was invited to answer on post-it papers to sticlk on a
whiteboard:

1) Do you believe ABMs are potentially a good tool to abtain useful
results to base strategic decisions on, or they are too far from a
practical application?

2) Let us suppose you had the possibility to design an ABM of the
farming system of your country.

e Who would you ask what?
o What are the elements you think you would never forget to
add to your agents' profiles?

In Table 3 we grouped the main answers to each question.

The attendees were also asked to comment on important ele-
ments that an ABM of agriculture should in their opinion have and
the addition of the weather component emerged as a fairly shared
point. However, it is noteworthy underlining that issues like the
difficulty to model structural changes to the system (e.g. when a
completely unforeseen event occurs that cannot be modelled given
the existing and past data) is a shortcoming plaguing all tools of
research from econometrics, to partial and general equilibrium
modelling, and time series forecast.

3. Results and discussion

The areas under each crop for each simulation step (i.e. each
year), for the scenario with farmers' green consciousness activated
by the “index of relative environmental performance” based on the
GWP scores of the crops are plotted in Fig. 5. For the same scenario,
Fig. G shows the areas differences with respect to 2009 and Fig. 7
the related impacts for the climate change (CC) category and the
other ReCiPe midpoint categories affected by the most relevant
changes. The results for the remaining categories are shown in
Fig. 524 of the supplementary material. As one can see, imple-
menting this scenario allows the reduction of the CC effects over
the entire simulated period, but it worsens the performances (as
compared to 2009) in all the other environmental impact in-
dicators, except the agricultural land occupation (ALO) category.

This fact shows that a plan to reduce environmental impacts
based only on one indicator (which in this case is the CC, that is
directly linked to GWP and is the most known by the general
public) risks to cause burden shifts to other impact categories, thus
orienting the decision-making process towards sub-optimal
choices. A more comprehensive and holistic approach should be
based on an index which encompasses several impact categories.

The main reason for the reduction of the CC impacts is the
drastic and rapid decrease of maize cultivation, being maize's im-
pacts on CC higher that the other crops. The reason for that is linked
to the nitrogen oxides emissions during the production of nitric
acid, which is used for the neutralization of ammonia in the pro-
duction of ammonium nitrate, used as mineral fertilizer (in the
quantity of 150 kg/ha) in maize cultivation. Maize elimination from
the crops pattern is also the reasons for the reduction of the impacts
on the ALO category. As one can see from Fig. 6, maize is in fact the
crop that undergoes by far to the highest loss of area.

ALO shows an increase around years 2013 and 2018 due to rises
in the area under other forage crops and triticale (see Fig. 5).

The categories showing the most significant increases are ma-
rine eutrophication (ME), terrestrial ecotoxicity (TET), freshwater
eco-toxicity (FET), marine ecotoxicity (MET), ionising radiation (IR),
and metal depletion (MD). Most of these effects are due to the
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Table 3

Answers to the questions asked to the workshop's participants, grouped by background of the respondents.

Answers

Respondents main background

Question 1

ABMs could be the appropriate approach, but unforeseeable developments and
changes of the context of farmers might “overlay" the model development

Can be useful for decision, but should be used for “supporting”, not “making" the
decision.

There are limitation because of the irrational behavior of humans and more
particularly the independent spirit of farmers, There is potential to study
animal population behavior

ABM could be interesting to model environmental pracesses for strategic
decisions (elements)

Good tool to feed multi-actor discussions and interactions that can lead at the
end to decision making

It is a quite fragile tool to rely your decisions on. But, if fed with relevant data, it
would be a non-negligible additional piece of information

There is potential in ABMs for practical applications but only if the outcomes are
spatially explicit (i.e. maps at the highest possible resolution). However, only
if the model abides by the KISS (Keep It Simple, Stupid) principle. Excessive
complication keeps the model far from reality

Question 2

It depends on the purpose. Ask data to the national statistics office. The elements
to consider and quantify in the definition of farmers' profiles are: the
preference (when making choices) for profit (economic net-benefits),
environment and family traditions; the suitability of the soils available in the
specific farms; the experience of the farmer with specific crops and also
availability of technical equipment and know how; crop rotation issues/
schemes; legal aspects (Common Agricultural Policy, subsidies, fertilizers,
pesticides)

Behaviors linked to the acceptance and practice of agricultural management
practices play a major role in defining sustainable agricultural development

Asl data to the national statistics institute (STATEC); Ministry of Agriculture;
Administration of technical agricultural services (ASTA) for legal regulations,
statistics, farmer reactions and behavior; the Service of Rural Economy (SER);
CONVIS and other farmers associations (if they exist).

Farmers are income-driven, but also strongly legislation-driven, Farmers do not
like changing their habits without legal requirements or financial (preferably
both) suppert it might be difficult to influence a change of the current profits

Administration; Food chain actors; Focus groups, Strongly encourage to worl
through open questioning,

Elements of the EU Common Agricultural Policy (CAP); Input prices, Workload;
Land availability.

Farmers drivers for achieving their financial good or their well-being; EU CAP;
Ministry of Agriculture; Farmers associations; Industries producing for
agriculture (subsidies, fertilizers).

How long has the farm been in the “family"? Who will take over, or are they
planning to sell when retired? What is the (rough) location (post code)?

Computer scientists with limited ABM background; people with some energy
background
Agronomy/agriculture management background

Scientists/Engineers from the biomass field
Agriculture and farming experts
Energy optimization experts

Academic, not better specified

Computer scientists with limited ABM background; people with some energy
background

Agronomy/agriculture management background

Not specified

Scientist/Engineers from the biomass field

Agriculture and farming experts

Agronomy/agriculture management background

Academic, not better specified

increased area of potatoes (see Figs. 5 and 6). The cultivation of this
crop requires a high amount (in terms of kg per unit area) of seeds
(2520 kgfha based on (Nemecek and Kdgi, 2007) and 2500 kg/ha,
considered as optimal value in (KTBL, 2005), i.e. at least 14 times
more compared to the other crops). The seeds production generates
nitrates leaching from fertilization processes, which causes high
impacts on ME (since this category generically accounts for impacts
arising from aquatic emissions of N-compounds), on TET and FET
(due to heavy metals emissions from fertilization process and from
agricultural machines production), on IR (due to electricity use with
significant share of imported nuclear energy), and on metal
depletion (due to the construction of storage infrastructure). MD
impacts are also caused by the production of agricultural machin-
ery used for the field operations. Finally, the increase of MET im-
pacts is caused by potatoes, rye fodder and other forage crops, all of
which undergo an increase with respect to 2009, in the simulated
scenario, In particular, the process contributing the most to this
impact category is the disposal of sulfidic tailings in the production
of copper used for the infrastructures of ammonium nitrate (used
as fertilizer) manufacturing.

4. Conclusions

Generally speaking, the use as ABM, as opposed to other ap-
proaches (in particular top-down approaches, like those based on
economic equilibrium models), carries some opportunities, as well
as some drawbacks.

Table 4 summarizes our lessons learned from the two ap-
proaches. The first column lists various aspects of the modelling
exercise and the other columns mention how they are addressed in
the two types of modelling approaches.

The biggest challenge in any model is to portray the behavior
and the response to external stimuli as accurately as possible, In
models with economic underpinnings, the profit motive is the
driving force and is a function of the price. The price is either
discovered endogenously within the model, or imposed from the
outside to study the adjustment response of the system. In typical
top-down models there exists a coherent profit maximization
structure that accounts for “all” markets in the system and thus
accounts for any feedbacks. Computational general equilibrium
(CGE) models are a typical illustration of this approach. Using CGE
models for every problem is neither feasible, nor appropriate,
despite the need for some sort of consistent global price discovery
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Fig. 5. Areas under each of the crops included in the model for each simulation step (i.e. each year), for the scenario with farmers’ green consciousness activated by the “index of
relative environmental performance” based only on the GWP scores of each crop. The areas are the means calculated over 90 simulations per each year and the red whiskers
represent the standard errors. Note: Compared to the list reported in Table 2, same crops have been aggregated with no loss of information,

as the behavior aspect for a single market is superficial. To model detailed structural edifice before one can draw meaningful con-
electricity, natural gas, agriculture markets etc, one needs a clusions from shocks. The markets structure on the supply
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Fig. 6. Areas differences with respect to 2009,

(monopoly, duopoly, oligopoly, perfect competition) and demand
side (monopsony, perfect competition etc.) drives the way the
model will respond to changes.

In the top-down framework farmers respond to exogenously
given prices and based on optimization criteria they modify their
land allocation to crops. These exogenous prices are subject to
sensitivity analysis and one then observes the variation in the land
allocation across crops. One thus obtains a distribution of the As
needed for conducting a LCA, On a conceptual level, the modeller
can model as many farmers as there exist with an optimization
problem for each farmer. The difficult arises when one is forced to
implement this in practice.

In the bottom-up ABM frameworlk, the prices are also given
exogenously, except for the fact that response to shock is not based
on optimization principles, but rooted in behavior responses. Thus,
based on individual responses on expectations of future prices,

attitude to risk, concern for environment, ability to store crops to
smoothen inventory etc., the land allocation is decided. Running
multiple simulations leads to a distribution of the land allocation
across crops. One can build sophisticated mechanisms to
endogenise the price discovery process, but this approach has the
limitation that the existing information set is the driver for price
determination. In such a case, it is difficult (if not impossible) to
replicate the volatility in prices, as there is no external information
on the price setting. To cite an example, a drought in China or India
or war in Ukraine will destroy the output of wheat and impose an
upward pressure on the prices. Conversely a bumper crop of maize
in USA or Brazil would lead to lower prices for maize, These aspects
are starkly missing from the endogenous price discovery and affect
both models, although there have been attempts to combine ABM
and CGE in a soft coupling fashion, where the price paths derived
from the CGE are used to partly parameterize the ABM (Smajgl,
2010). Another approach to overcome this lacuna is using time
series forecast methods to generate the prices over time, but this
approach also suffers from the usual limitations of time series, in
addition to the fact that this data is generated on an annual basis for
agriculture.

The ABM models can best approximate the distribution of re-
sponses, Thus it becomes difficult to infer the actual adjustment
mechanism from the ABM model itself, owing to the numerous
parameters prevalent in the model. In principle, both models will
tend asymptotically to each other if the top-down approach has the
granularity of the bottom-up and the bottom-up has the optimi-
zation behavior of the top-down.

From a practical perspective, both models require a complete
diverse set of skills to put them into practice. The top-down
approach requires competencies in optimization, while the
bottom-up requires competencies in object oriented programming,.
Conceptually speaking, the ABMs are much simpler in their
mathematical structure as compared to the top-down approach.
After the simulation the ABMs will produce a number that may or
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Table 4

Synopsis of top-down vs bottom-up approaches in agricultural system's modelling.

Issue Top-down approach Battoam-up approach
Objectives Maximise Profits; Environmental Protection Maximise Profits; Environmental Protection
Number of players Normally 1 or few but can be 2242 in principle 2242 agents or farms

Price discovery Any time-series method

Any time-series method

Parameters Fixed, but in case of 2242 farms, random if data unavailable, else fixed Random if data unavailable, else fixed

Model Structure Objective function and constraints (LP/NLP) or just objective function No objective function but behavioral rules and individual responses
(PMP)

Shock Exogenously imposed as direct change or indirect change via policy tool Only possible via policy tool like subsidy, quotas ...

like subsidy, quotas ...

Social Interaction Feasible but difficult

Behavior Rooted in optimization, exhibit “rational” approach of maximising

profits or minimising environmental damage

Easily incorporated

Some farmers (agents) may exhibit behavior that appears
“irrational” to the outsider, such as specific crop rotation schemes
out of sync with profits

Computing As non-stochastic and depend only on exogenous parameter Stochastic, even though they depend on exogenous parameters as
behavioral response is random under a pre specified distribution
Total shock Imposed exogenously and if a feasible solution exists one can find an Difficult to generate the level of aggregate shock due to stochastic

optimal

response of agents

may not make sense to the researcher and, as seen above, there is
limited space for a concrete validation. In the top-down approach,
infeasibility of the solution is instead a real practical issue and
incorrect parameters or prices may not have a feasible solution
given the constraints.

Any other mathematical tool, such as artificial neural networlks,
time series analysis, logistic regressions etc., would be the same for
both approaches and not a distinguishing factor while choosing a
particular approach over the other. The main factor discerning the
two approaches is the extent of bias that one can accept. In the top-
down approach, one has to accept the bias towards optimization
while in case of the bottom-up approach, it is one of the possibil-
ities albeit difficult to implement in practice.
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