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A B S T R A C T

The nutrient use efficiency (NUE) of a system, generally computed as the amount of nutrients in valuable outputs
over the amount of nutrients in all inputs, is commonly used to benchmark the environmental performance of
dairy farms. Benchmarking the NUE of farms, however, may lead to biased conclusions because of differences in
major decisive characteristics between farms, such as soil type and production intensity, and because of epis-
temic uncertainty of input parameters caused by errors in measurement devices or observations. This study
aimed to benchmark the nitrogen use efficiency (NUEN; calculated as N output per unit of N input) of farm
clusters with similar characteristics while including epistemic uncertainty, using Monte Carlo simulation.
Subsequently, the uncertainty of the parameters explaining most of the output variance was reduced to examine
if this would improve benchmarking results. Farms in cluster 1 (n = 15) were located on sandy soils and farms in
cluster 2 (n = 17) on loamy soils. Cluster 1 farms were more intensive in terms of milk production per hectare
and per cow, had less grazing hours, and fed more concentrates compared to farms in cluster 2. The mean NUEN
of farm in cluster 1 was 43%, while in cluster 2 it was 26%. Input parameters that explained most of the output
variance differed between clusters. For cluster 1, input of feed and output of roughage were most important,
whereas for cluster 2, the input of mineral fertilizer (or fixation) was most important. For both clusters, the
output of milk was relatively important. Including the epistemic uncertainty of input parameters showed that
only 37% of the farms in cluster 1 (out of 105 mutual comparisons) differed significantly in terms of their NUEN,
whereas in cluster 2 this was 82% (out of 120 comparisons). Therefore, benchmarking NUEN of farms in cluster 1
was no longer possible, whereas farms in cluster 2 could still be ranked when uncertainty was included. After
reducing the uncertainties of the most important parameters, 72% of the farms in cluster 1 differed significantly
in terms of their NUEN, and in cluster 2 this was 87%. Results indicate that reducing epistemic uncertainty of
input parameters can significantly improve benchmarking results. The method presented in this study, therefore,
can be used to draw more reliable conclusions regarding benchmarking the NUE of farms, and to identify the
parameters that require more precision to do so.

1. Introduction

Nitrogen (N) is an essential nutrient for milk production. The input
of N into European milk production systems has increased in the past
decades, mainly via purchase of fertilizer and feed, but also via atmo-
spheric deposition and biological fixation (Powell et al., 2010). These
increased N inputs have also increased N losses to the environment, via
leaching of nitrate (NO3

−) and emissions of N-gases, such as nitrous
oxide (N2O) and ammonia (NH3). These N losses contribute to en-
vironmental problems, such as eutrophication, acidification and global

warming (Whitehead, 1995; Smith et al., 1999). To tackle this problem,
the European Union introduced legislation, such as the Nitrates Direc-
tive (EU, 2006), which set limits on N application per hectare to reduce
NO3

− leaching.
There have been on-going studies and discussions on how to reduce

N losses of dairy farms in Europe (e.g. Aarts et al., 1992; Schröder et al.,
2003; Nevens et al., 2006; Phuong et al., 2013; Mihailescu et al., 2015).
Calculating the nutrient balance at farm level is the most commonly
used approach to evaluate these losses. In the Netherlands, for example,
dairy farms are obliged to quantify their annual nitrogen and
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phosphorus balance from 2016 onwards (Veeteelt, 2015). A nutrient
balance reflects the difference in nutrients entering and leaving a
system, and allows computation of environmental indicators, such as
the nutrient use efficiency (NUE) or the nutrient surplus per ha of a
farming system (Spears et al., 2003). NUE generally is computed as the
amount of nutrients in valuable outputs of a system over the amount of
nutrients in all inputs of that system (Nevens et al., 2006).

Due to the simplicity of the method and relatively low data re-
quirement, the nutrient balance has been used as a tool to benchmark
the environmental performance of farms (Oenema et al., 2003;
Schröder et al., 2003). Benchmarking is defined by Camp (1989) as “the
search for those best practices that will lead to the superior perfor-
mance” and, in this study, relates to the comparison of farms based on
their environmental performance in order to identify differences and
potentially, improvement options. Benchmarking farms based on, for
example, their NUE, however, may lead to biased conclusions because
of two reasons. First, as pointed out by Schröder et al. (2003), com-
paring the NUE of farms is justified only if they have similar major
decisive characteristics. These characteristics can be based on: (un-
manageable) physical factors, such as soil type and climatic conditions
(Roberts, 2008; Powell et al., 2010); and long term strategic decisions,
such as the degree of self-sufficiency (e.g. grass-based versus con-
centrate-based), production intensity, or manure management system
(Nevens et al., 2006). Other characteristics that have an influence of the
NUE of a farm include short term tactical decisions, such as choice of
the feed crop, or grazing regime; operational decisions (i.e., day to day
decisions); and other management skills of the farmer, such as the ca-
pacity to reduce losses (e.g. losses of feed, nutrients, milk or cows
(culling)) (Nevens et al., 2006). Benchmarking NUE of farms should be
based on differences in short term strategic and tactical decision-
making, rather than differences in physical factors and long term de-
cisions. Second, comparing NUE of farms may be affected by epistemic
uncertainty of input data, caused by errors in measurement devices or
errors around observations. Epistemic uncertainty can arise from e.g.
errors in practically determining the N fixation by clover, measurement
errors around the feed intake of the cows or estimations around the N-
content of the animals (Oenema et al., 2015). Increasing knowledge or
better measurements can reduce epistemic uncertainty (Walker et al.,
2003; Groen et al., 2016).

Previous studies focused on examining the epistemic uncertainties
of nutrient flows by looking into e.g. quantity of nutrient inputs (Mulier
et al., 2003; Gourley et al., 2012; Oenema et al., 2015). However, they
did not examine the impact of epistemic uncertainties on benchmarking
results, nor did they benchmark farms with similar decisive farm
characteristics.

The objectives of this study were to benchmark the nutrient losses
by comparing nitrogen use efficiency (NUEN) of farms with similar
decisive characteristics while including epistemic uncertainty, and to
examine which input parameters explain most uncertainty of NUEN
results. In addition, the epistemic uncertainties of input parameters that
explain most of the output variance were reduced, to illustrate how this
will improve benchmarking results.

2. Materials and methods

2.1. Case study: European specialized dairy farms

We used data of specialized dairy farms from Dairyman. Dairyman
was a project directed at improving regional prosperity through better
resource utilization on 113 dairy farms in different European countries
(Dairyman, 2010). From the 113 farms, 32 specialized dairy farms were
selected. Specialized dairy farms were defined as farms that have< 5%
non-dairy purpose animals, and< 10% of their agricultural area in use
for non-dairy purpose activities. These 32 dairy farms were located in
different countries and regions (i.e. Netherlands (7), Ireland (13), Bel-
gium (Flanders 8, Wallonia 2), Germany (1) and Luxembourg (1)).

Selected dairy farms differed in soil types (i.e. sandy soil, loam soil),
milk production (i.e. milk production per cow and per ha), grazing
hours per year, and feed import (i.e. kg concentrate usage per cow per
year; Table 1). Whereas data on soil type, milk production and feed
import were based on measured farm data, data on grazing hours per
year were based on estimations by the farmers. Farm data from the year
2010 were used as baseline values to determine all N-flows.

2.2. Defining homogenous farm clusters

To enable benchmarking of NUEN of farms with similar character-
istics, farms were sorted into homogenous groups (i.e. typologies) based
on their characteristics (Table 1). For this purpose, we used a two-step
cluster analysis, because it allows using both continuous and catego-
rical variables as clustering criteria (Chiu et al., 2001). To perform a
cluster analysis with n criteria, a sample size of 2n farms is required
(Formann, 1984). Since our sample size included 32 farms, we selected
5 criteria for the cluster analysis, namely grazing hours, soil type,
concentrate per cow per year, milk production per cow per year and
milk production per ha (De Vries et al., 2015; Daatselaar et al., 2015).
The analysis was performed in the statistical software package IBM
SPSS statistics 22 (SPSS, 2015).

2.3. System boundary and model assumptions of calculating NUEN

The NUEN was quantified at farm level, implying that only on-farm
flows and losses were considered. The N-flows through a dairy farm
included in this study are visualized in Fig. 1. Inputs of N include N in
mineral fertilizers, manure, animals, concentrates, roughages, biolo-
gical N fixation and atmospheric N deposition. Outputs of N include N
in animals, milk, manure and roughage. Stock changes (defined as final
stock minus initial stock) of the mineral fertilizers, manure, animals,
concentrates and roughages were taken into consideration during the
computation processes. Manure output was subtracted from the total
fertilizer input (i.e. through mineral fertilizer and manure). If the total
manure output of the farm exceeded its total fertilizer input, excessive
manure was treated as a loss. The internal N-flow from crop production
to feed storage was based on the energy requirements of the herd,
minus feed input and stock changes of feed. The calculation rules are
specified in the Supplementary material. Losses of N from manure
storage were based on storage type (i.e. slurry, solid) and the baseline
values of manure N in all calculations (EEA, 2013).

2.4. Matrix based calculation for on-farm NUEN

We used the matrix-based approach developed by Suh and Yee
(2011) to quantify the N-efficiency of the 32 dairy farms. This approach
was used to describe the herd and crop balance (Fig. 1) in one equation,
which facilitates the global sensitivity analysis to examine epistemic
uncertainty. A matrix-based approach allows for the presence of loops
and parallel components, as is often the case on dairy farms (e.g.
manure is used for the production of feed crops, which are consequently
fed to the animals, producing manure). This approach requires a de-
tailed insight into the nutrient flows within the farm.

The difference between the matrix-based approach to assess the

Table 1
Characteristics of the 32 European specialized dairy farms used in this study.

Characteristics Unit Mean Minimum Maximum

Agricultural area ha 65 25 270
Herd size number of dairy cows 90 37 384
Milk production kg milk cow−1 year−1 7689 5700 9853
Milk production kg milk ha−1 year−1 12,598 3448 26,300
Grazing hours h year−1 2857 0 5146
Concentrate usage kg cow−1 year−1 1215 317 2459
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farm N-balance and the common nutrient balance approach is that in
case of the matrix-based approach the internal flows are considered
(e.g. the flows between manure storage and crop production, or crop
production and feed storage), just as in a substance flow analysis. In the
common nutrient balance, the farm is considered as a black box (e.g.
Oenema et al., 2015 and Mu et al., 2016). For more details, see the
Supplementary material.

In the matrix-based approach, the internal N-flows in Fig. 1 are
described by the V and U-matrix, where the V-matrix describes how

much kg N is supplied to each production process. The U-matrix de-
scribes how much kg N is used by each production process (Suh and
Yee, 2011). The N-flows are corrected for the stock changes (s) on the
farms. Combined, they are quantified in a matrix A for each (inter-
mediate) process. T refers to the transpose. The vector (b) gives the
amount of nutrients extracted (r) to produce 1 unit of final product,
which, in this case, is determined by the valuable outputs of the farm:

̂= − + =− −b r V U s rA( )T 1 1 (1)

Feed storage
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Fig. 1. N-flows on a dairy farm to assess nutrient
use efficiency; the production processes are given
by the solid boxes, the N-flows are given by the
arrows. A detailed description of the input para-
meters can be found in Table 2.

Table 2
Description of the parameters and their epistemic uncertainty given by the relative uncertainty (CV), which was taken from Oenema et al. (2015).

Process Type Parameter CV (%) Remark

Crop production Resource input N-fixation (kg N) Grassland area (ha) 5.0
Legume yield (kg/ha) 10
N-fixation (kg N/kg legume) 30

Deposition (kg N) Farm area (ha) 5.0
N-deposition (kg N/ha) 17

Mineral fertilizer (kg N) Mineral fertilizer (kg) 2.5
N-content mineral fertilizer (kg N/kg) 2.5

Stock change mineral fertilizer (kg N) Stock change mineral fertilizer (kg) 7.5
N-content stock change mineral fertilizer (kg N/kg) 2.5

Export Roughage (kg N) Roughage (kg) 7.5
N-content roughage (kg N/kg) 7.5

Losses N-losses crops (kg N) n.a. n.a Function
Feed storage Resource input Roughage (kg N) Roughage (kg) 7.5

N-content roughage (kg N/kg) 7.5
Stock change roughage (kg N) n.a. 17 GEPa

Fertilizer storage Resource input Manure (kg N) Manure (kg) 5.0
N-content manure (kg N/kg) 7.5

Stock change manure (kg N) n.a. 22 GEP
Losses N emissions from manure storage (kg N) n.a. Fixed

Milk and animal production Resource inputs Animals (kg N) Number of animals (−) 2.0
Life-weight per animal (kg) n.a.
N-content per animal (kg N/kg) 5.0

Stock change animals (kg N) n.a. 5.68 GEP
Concentrates (kg N) Concentrates (kg) 2.5

N-content concentrates (kg N/kg) 2.5
Stock change concentrates (kg N) n.a. 11 GEP

Final use Milk (kg N) Milk (kg) 1.0
N-content milk (kg N/kg) 2.0

Animals (kg N) Number of animals (−) 2.0
Life-weight per animal (kg) n.a.
N-content animal (kg N/kg) 5.0

Export Manure (kg N) Manure (kg) 5.0
N-content manure (kg N/kg) 7.5

a GEP: Gaussian error propagation is used to determine the CV of parameters when there is a lack of information to separate the N-content from the items in the stock change and
therefore only the kg N of stock change is available (e.g., roughage can include different items with different N contents). Details on the method can be found in (Heijungs and Lenzen,
2014).
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In our case, the four elements in b represent the production pro-
cesses of Fig. 1 (animal husbandry, manure storage, crop production,
feed storage). The nitrogen use efficiency (NUEN) for the production
process of the animal husbandry is quantified by:

= bNUE 1 husbandryN (2)

A detailed example of this procedure can be found in the
Supplementary material of Suh and Yee (2011).

2.5. Quantifying the effect of epistemic uncertainty on benchmarking

To quantify the effect of epistemic uncertainties of the input para-
meters on the benchmarking of farms based on their NUEN, the dis-
tribution functions of the parameters need to be defined first.
Subsequently, the input uncertainties are propagated through the NUEN
model.

2.5.1. Defining distribution functions
Each parameter in the NUEN model was considered as an uncertain

parameter, only the N-flow from crop production to feed storage and
the N losses during manure storage were fixed. The N-flow from crop
production was fixed, because it was based on the energy requirements
of the herd. The N losses during manure storage were fixed, because
they were based on storage specific emission factors. All input para-
meters are assumed to be normally distributed. Fixation was assumed to
be truncated normally distributed to avoid drawing negative numbers.
The coefficient of variation (CV = σ/μ) described the epistemic un-
certainty of the parameters and was based on Oenema et al. (2015)
(Table 2). Based on the equation for the CV, the standard deviation was
calculated per farm, because each farm had a different (i.e. farm spe-
cific) mean.

2.5.2. Quantifying the effect of epistemic uncertainty on benchmarking
The propagation of the uncertainties of the input parameters

through the NUEN model (Eq. (1)) was done using Monte Carlo simu-
lation and was performed for all farms in each cluster. The code for
performing the uncertainty and global sensitivity analysis is available
at: http://evelynegroen.github.io. From each distribution function
(Table 1) a random value was drawn, and used to calculate the NUEN.
The output uncertainty was given by the variance:

−∑=
−

−
=

NUE
n

NUE NUEvar( ) 1
1 ( )N

i

n

N i N
1

2

where the mean is given by:−= ∑NUE NUEN n i N i
1 , for a sample size of

n = 5000. We performed a discernibility analysis (Heijungs and Kleijn,
2001) to determine if the input uncertainties had an effect on bench-
marking. To determine if there was a significant difference between
farms the farms within a cluster were pairwise compared for the results
for each Monte Carlo run. This means that we counted how many times

the NUEN of one farm was better than another farm, expressed as a
frequency. A significance level of 5% was chosen (Heijungs and Kleijn,
2001; Henriksson et al., 2015). This means, for example, that if farm A
has a lower NUEN than farm B in 630 out of 1000 runs, difference in
NUEN of the two farms was considered as not significant
(63% > 2.5%). But, if farm A had a lower NUEN than farm C in 24 out
of 1000 runs, than farm C was considered as significantly better than
farm A (2.4% < 2.5%).

2.6. Explaining output uncertainty for different farm typologies

To identify which input parameter contributed most to the output
uncertainty within a specific farm cluster, a global sensitivity analysis
was performed by calculating the squared standardized regression
coefficients (Sj) as a measure for the sensitivity index (Saltelli et al.,
2008; Groen et al., 2016):

=S
var p

var NUE
b

( )
( ) ( )j

j

N
j

2

where var(pj) gives the variance of each input parameter (pj) based on
Table 2 and bj is equal to the regression coefficient.

3. Results

3.1. Farm clusters

Two homogeneous groups of farms, i.e. farm clusters, were derived
from the cluster analysis. Farms in the first group, further referred to as
farms in cluster 1, are located on sandy soils and relatively intensive in
terms of milk production per cow and per hectare (Table 3). The
number of grazing hours is low, whereas the amount of purchased
concentrates per cow per year is high relative to the farms in the other
cluster. Farms in cluster 2 are located on loam soils, and are less in-
tensive when compared to farms in cluster 1. The number of grazing
hours is higher, whereas the amount of concentrates per cow per year is
lower than on farms in cluster 1. The average NUEN of farms in cluster 1
is 43%, and for farms in cluster 2 this is 26%. The difference in NUEN
between the two clusters result from a combination of all 5 character-
istics that specify the group of farms in each cluster (Table 3).

3.2. The effect of epistemic uncertainties on benchmarking

For each farm, the input uncertainties of Table 2 were propagated
through the NUEN model (Eqs. (1) and (2)). For each farm in both
clusters, a median and a variance were derived (Fig. 2, cluster 1; Fig. 3,
cluster 2). Results show that each cluster has one outlier: farm 1 in
cluster 1 and farm 2 in cluster 2. For farm 1 in cluster 1, the output of
manure exceeds the input of fertilizer. Because we subtracted manure
output from fertilizer inputs, the input of fertilizer was set to 0. This
leads to the high NUEN of this farm. Farm 2 in cluster 2 is an organic
farm with only grassland and no cropland. The imported feed inputs are
low, and there is no input of synthetic fertilizer. Due to the low N inputs
and high N outputs of the farm, it has a high NUEN.

The results of the discernibility analysis for cluster 1 can be found in
Table 4. For example, farm 5 had a lower NUEN than farm 1, and a
higher NUEN than the other farms, except when compared to farm 8
and farm 14. In case of farm 6, only 52% of the Monte Carlo runs show
a higher NUEN than farm 3, meaning their performance is almost in-
distinguishable taking the epistemic uncertainties of the input para-
meters into account.

For farm 1, approximately 4% of the Monte Carlo runs resulted in a
negative value for N losses of crop production. This is explained by the
importance of deposition as an N input on this farm, and the large
uncertainty of this parameter (CV = 17%; Table 2). The negative va-
lues, therefore, are more likely related to the uncertainty of deposition,

Table 3
Results of the cluster analysis, showing the farm characteristics for 15 farms in cluster 1
and 17 farms in cluster 2, given by the mean (standard deviation) of each characteristic or
a categorical characteristic per cluster.

Characteristicsa Unit Cluster 1 Cluster 2

Soil type n.a. Sandy Loam
Milk production kg milk cow−1 year−1 8519 (854) 6956 (878)
Milk production kg milk cow−1 ha−1 15,970 (5108) 9623 (3792)
Grazing hours h cow−1 year−1 1115 (1099) 4393 (1175)
Concentrate use kg cow−1 year−1 1719 (499) 770 (207)
NUEN % 43 (10) 26 (12)

a Characteristics of these two clusters are significantly different (p < 0.05). The order
of importance of the characteristics in determining the final clusters are: grazing
hours > concentrate use > milk production per cow > soil type > milk production
per ha.
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than to display a realistic model outcome. The drawings from the Monte
Carlo simulation that included a negative value for N losses of crop
production, therefore, were removed from the analysis.

Applying the 5% significance level, results show that farm 1 is most
efficient when taking the epistemic uncertainty of the input parameters
into account, followed by farm 5, which is only not significantly better
than farm 8 and 14. The two least efficient farms are farm 3 and 6. The
NUEN of the other farms turned out to be very similar (Table 4).

The results of the discernibility analysis for cluster 2 are found in
Table 5. For farm 2, approximately 46% of the Monte Carlo runs re-
sulted in a negative value for N losses of crop production. This is ex-
plained by the importance of N fixation on this farm, in combination
with a relatively large uncertainty of this parameter (CV = 30%). Be-
cause we analysed quite intensive and productive farms, these

outcomes are more likely to result from the high CV than to display a
realistic situation. Similar to farm 1 in cluster 1, negative values were
assumed to display an unrealistic model outcome. Because of the high
percentage of unrealistic model outcomes, it was decided to remove
farm 2 from further analysis. The large number of unrealistic model
outcomes illustrates the need to reduce CVs by improving measure-
ments on farms.

Applying the 5% significance level, results show that farm 1 is most
efficient (only not significantly higher than farm 10 and 17). Of the 120
farm comparisons, 17% is significantly different (Table 5). Contrary to
the first cluster, including the epistemic uncertainties still allowed for
some kind of ranking, although most farms overlapped with at least two
other farms.

Fig. 2. Box plot of NUEN for the 15 farms in
cluster 1. The horizontal line in each box gives the
median, the box gives the 25–75% interval, and
the plusses are realizations that appear outside
the 10–90% interval.

Fig. 3. Box plot of NUEN for the 17 farms in
cluster 2. The horizontal line in each box gives the
median, the box gives the 25–75% interval, and
the plusses are realizations that appear outside
the 10–90% interval.
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3.3. Explaining the output variance

The global sensitivity analyses shows how much of the output var-
iance can be explained by the variance of the individual input para-
meters. The results of the global sensitivity analysis can be found in
Fig. 4 (cluster 1) and Fig. 5 (cluster 2).

Results show that in case of cluster 1, the input of concentrates,
roughage, mineral fertilizer, and deposition, and the output of milk,
roughage, and manure explain most of the output variance. Input of
animals and manure, stock change of each of the inputs, and output of
animals did not show up as important explanatory parameters in any of
the farms, except for stock change of mineral fertilizer for farm 12.
Further analysis showed that both the quantity as well as the N content
of each parameter is approximately equally important in terms of their
contribution to the output variance.

Fig. 5 shows that in case of cluster 2, for most of the farms the input
of mineral fertilizer and the output of milk and animals explain most of
the output variance. For a few farms, the most important parameter in
terms of contribution to the output variance is fixation (input); while
for one farm, this is the output of roughage. Input of concentrates,
roughage and manure and stock change of animals did not show up as
important explanatory parameters in any of the farms in cluster 2.

3.4. Effect of decreasing uncertainty on benchmarking

To analyse if decreasing epistemic uncertainty can improve bench-
marking, we reduced the uncertainty of the most important input
parameters and reran the discernibility analysis. For cluster 1, the input
uncertainty was reduced to 1% for: input of concentrates, roughage,
mineral fertilizer, deposition and the output of milk, roughage, and
manure (Fig. 4). For cluster 2, the input uncertainty was reduced to 1%
for: input of mineral fertilizer, and the output of milk and animals
(Fig. 5). Table 6 shows how many pairwise comparisons were made in
both cluster, and how many were significantly different, before and
after reducing input uncertainty. Results show that reducing the un-
certainty of the most important input parameters based on the global
sensitivity analysis, improved the ability to find significant differences
between the NUEN of the farms in both clusters. Benchmarking,
therefore, can be improved when input uncertainties are reduced,
especially for the farms in the first cluster.

4. Discussion

This study builds on, and extends the principles regarding epistemic
uncertainty of nitrogen flows on dairy farms presented by Oenema et al.
(2015). Although we used the same coefficients of variations of input

Table 4
Results of discernibility analysis for cluster 1 based on pairwise comparing Monte Carlo runs between farms. The column and row numbers 1 to 15 represent the 15 farms. The percentages
show how often a farm (row) has a higher NUEN than another farm (column). When α-value of 0.05 is applied, values between 2.5% and 97.5% indicate that the NUEN of the farms are no
longer considered as significantly different. The significant different farms are given by the bold-printed percentages.

% 1a 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1a 100 100 100 100 100 100 100 100 100 100 100 100 100 100
2 0 100 5 0 100 25 5 78 47 52 19 54 7 89
3 0 0 0 0 48 0 0 0 0 0 0 0 0 0
4 0 95 100 2 100 85 43 99 92 88 70 97 42 100
5 0 100 100 98 100 100 95 100 100 99 98 100 91 100
6 0 0 52 0 0 0 0 0 0 0 0 0 0 0
7 0 75 100 15 0 100 13 93 69 71 37 79 16 97
8 0 95 100 57 5 100 87 99 93 90 73 97 49 100
9 0 22 100 1 0 100 7 1 22 31 6 24 1 67
10 0 53 100 8 0 100 31 7 78 55 23 57 9 88
11 0 48 100 12 1 100 29 10 69 45 23 50 11 81
12 0 81 100 30 2 100 63 27 94 77 77 84 28 97
13 0 46 100 3 0 100 21 3 76 43 50 16 5 88
14 0 93 100 58 9 100 84 51 99 91 89 72 95 99
15 0 11 100 0 0 100 3 0 33 12 19 3 12 1

a Approximately 4% of the Monte Carlo runs were excluded from the analysis due to unrealistic model outcomes.

Table 5
Results of discernibility analysis for cluster 2 based on pairwise comparing Monte Carlo runs between farms. The column and row numbers 1 to 17 represent the 16 farmsa. The
percentages show how often a farm (row) has a higher NUEN than another farm (column). When α-value of 0.05 is applied, values between 2.5% and 97.5% indicate that the NUEN of the
farms are no longer considered as significantly different. The significant different farms are given by the bold-printed percentages.

% 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 100 100 100 100 100 100 100 95 100 100 100 100 100 99 62
3 0 0 12 0 14 0 14 0 82 0 92 1 0 0 0
4 0 100 100 31 100 99 100 0 100 98 100 100 57 4 0
5 0 88 0 0 59 0 59 0 100 0 100 2 0 0 0
6 0 100 69 100 100 100 100 0 100 100 100 100 76 9 0
7 0 86 0 41 0 0 49 0 100 0 100 1 0 0 0
8 0 100 1 100 0 100 100 0 100 45 100 93 2 0 0
9 0 86 0 41 0 51 0 0 100 0 100 1 0 0 0
10 5 100 100 100 100 100 100 100 100 100 100 100 100 90 8
11 0 18 0 0 0 0 0 0 0 0 83 0 0 0 0
12 0 100 2 100 0 100 55 100 0 100 100 94 2 0 0
13 0 8 0 0 0 0 0 0 0 17 0 0 0 0 0
14 0 99 0 98 0 99 7 99 0 100 6 100 0 0 0
15 0 100 43 100 24 100 99 100 0 100 98 100 100 2 0
16 1 100 96 100 91 100 100 100 11 100 100 100 100 98 1
17 37 100 100 100 100 100 100 100 92 100 100 100 100 100 99

a Approximately 46% of the Monte Carlo runs were excluded from the analysis due to unrealistic model outcomes of farm 2, therefore, this farm was excluded from further analysis.
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parameters, results of our study and Oenema et al. (2015) show im-
portant differences. Based on our analysis, input of concentrates and
roughage, and output of milk and roughage explain most of the output
variance in cluster 1. Input of mineral fertilizer and fixation, and output
of animals and milk explain most of the output variance in cluster 2.
Oenema et al. (2015), however, concluded that N fixation, atmospheric
deposition and stock changes of roughage and manure explain most of
the output variance when determining the N surplus of dairy farms.
Differences between our study and Oenema et al. (2015) can be ex-
plained by two reasons. First, the characteristics of the farms were
different. In general, Oenema et al. (2015) included farms with a lower
input of feed, but a higher stock change of roughage, and a higher N
input through fixation compared to the farms in our study. Un-
certainties related to stock changes of feed are higher than uncertainties
related to input of feed, whereas uncertainties related to N fixation is
highest among all N flows. Second, Oenema et al. (2015) used a dif-
ferent approach to determine N intake during grazing. In our study, N
intake from grazing and on-farm roughage production was fixed based
on feed requirements and the baseline values of input of purchased feed
(see Supplementary materials). Oenema et al. (2015) changed the N-

intake from grazing with a change in roughage and concentrate intake,
which consequently influenced the importance of feed parameters. The
contribution of the input of feed to the output variance was therefore
found to be lower in Oenema et al. (2015) than in our study.

Dairy farms in Europe show different decisive characteristics. For
example, most farms in the Netherlands have a high stocking density
because land resources are limited. The main N inputs on these farms
are through purchased concentrates and roughages. In Ireland, how-
ever, most farms are grass-based extensive farms. The main N inputs on

Parameter (%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Input animals 0 0    0    0   0 

Input concentrates 30 1 29 8 4 39 30 15 16 10 4 3 9 16 8 

Input roughage 0 17 0 3 0 49 25 51 20 2 28 22 30 

Input min. fertilizer 10 8 14 11 7 15 16 3 1 0 20 7 2 7 

Input manure 2 1 0 1 

Deposition 21 4 4 7 3 6 7 15 7 9 13 16 30 9 7 

Fixation 0 52 1 

SC animal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SC concentrates 0 0 0 0 0 0 0 0 0 0 

SC roughage 0 1 2 1 1 4 2 

SC min. fertilizer 0 1 31 0 

SC. manure 2 2 1 3 3 2 

Output animal 1 0 5 1 0 4 1 1 2 1 1 1 2 1 1 

Output milk 13 3 29 8 5 35 20 16 13 11 6 5 16 10 11 

Output roughage 4 81 0 63 77 19 3 

Output manure 35 0 4 26 29 12 2 2 30 33 

Explained 

variance 
n/a 100 100 99 99 100 100 97 99 100 100 100 100 100 100

Fig. 4. Sensitivity indices (Sj) for each input parameter, ex-
plaining how much each parameter contributes to the output
variance for each farm in cluster 1: the darker a cell, the higher
the contribution. SC: stock change. An empty cell means that
these parameters were zero for that farm; 0% means that this
parameter contributed 0% to the output variance; n/a not ap-
plicable, approximately 4% of the Monte Carlo runs were ex-
cluded from the analysis due to unrealistic model outcomes,
therefore the partial variances were not considered independent
and could not be added.

Parameter (%) 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Input animals 0 12 0 

Input concentrates 0 0 0 2 4 2 2 2 0 3 2 0 1 13 0 0 

Input roughage 3 0 8 0 0 0 0 1 1 1 0 2 6 

Input min. fertilizer 1 70 45 54 44 66 61 12 55 57 45 60 38 59 

Input manure 3 8 

Deposition 9 3 2 1 5 2 1 1 1 1 3 1 3 5 1 14 

Fixation 82 78 68 

SC animal 0 0 0 2 0 1 0 0 0 0 1 1 0 0 0 0 

SC concentrates 0 

SC roughage 1 

SC min. fertilizer 13 10 0 0 15 

SC. manure

Output animal 1 2 10 21 12 13 6 11 1 15 14 25 23 13 2 1 

Output milk 2 5 17 21 25 27 25 24 2 22 21 15 14 28 8 1 

Output roughage 73 11 8 

Explained variance 97 99 99 100 100 100 100 98 100 99 97 100 100 99 97 99

Fig. 5. Sensitivity indices (Sj) for each input para-
meter, explaining how much each parameter con-
tributes to the output variance for each farm in cluster
2: the darker a cell, the higher the contribution. SC:
stock change. An empty cell means that these para-
meters were to zero for that farm; 0% means that this
parameter contributed 0% to the output variance.
Output of manure is not included because none of the
farms in cluster 2 exported manure. Farm 2 was ex-
cluded from the global sensitivity analysis.

Table 6
Effect of decreasing the input uncertainties of the most important parameters to 1%, for
both clusters.

Cluster 1 Cluster 2

Total number of pairwise comparisons 105 120
Significantly different farms before reducing input

uncertainty
39 (37%) 99 (83%)

Significantly different farms after reducing input
uncertainty

76 (72%) 104 (87%)
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these farms are through purchased mineral fertilizer and N fixation.
Comparing NUE of Dutch and Irish farms can lead to biased conclusions
because of inherent differences between systems. Clustering of farms
into groups with similar decisive characteristics, therefore, is a pre-
requisite for benchmarking the NUE of farms and facilitates the iden-
tification of major parameters. When comparing results of the global
sensitivity analysis between the two farm clusters, for example, input of
feed and output of roughage show up to be most important in case of
cluster 1, whereas the input of mineral fertilizer (or fixation) is most
important in case of cluster 2. Results show that the importance of
parameters can vary between farm types (clusters). Methods to improve
benchmarking of farms, therefore, should account for differences in
decisive characteristics. The method presented in this study, can con-
tribute to more solid conclusions regarding the performance of farms in
terms of their NUE.

In this study, we used a matrix-based approach to assess NUE. The
advantage of this approach is that it facilitates the uncertainty and
sensitivity analysis. All input parameters are sampled at the same time,
and are subsequently used to calculate the internal flows for each
Monte Carlo run. Another advantage of the matrix-based approach is
that it is easy to extend the system boundary beyond the farm: pro-
duction of crops can be easily incorporated as additional production
flows.

Several methodological limitations could have affected the results of
this study. The first limitation is the choice of the parameter distribu-
tion function and, in link to our choice of Gaussian distribution, of CV
values. A Gaussian or normal distribution represents a symmetrical
uncertainty range which seems correct in case of (most) measurement
errors. Future studies, however, could use parameter specific distribu-
tion functions to improve the impact assessment. The CVs we used were
based on Oenema et al. (2015), focussing on Dutch pilot commercial
farms only. Farms in our study are from different countries in Europe.
Results of the uncertainty and global sensitivity analysis might have
been different if country specific coefficients of variation were applied,
but such information was not available. In addition, we used farm data
from the year 2010, which might not hold for any year. However, since
a similar measurement error over years can be expected, we do not
expect a big change in the CVs, but mainly in the mean values of the N-
flows on the farms. In general, it takes quite a big change in the CV to
influence the result of the sensitivity analysis as seen in Figs. 4 and 5. In
addition, only drastically decreasing the CVs of the most important
parameters (e.g. from 30% to 1%) influenced the number of sig-
nificantly different farms (mainly in the first cluster; Table 6). Differ-
ences in the CVs because of yearly variations, therefore, are not ex-
pected to influence the results. Nevertheless, the methodological
procedure that was presented in this study can be used to assess the
impact of epistemic uncertainty on different farms and based on dif-
ferent CVs. Results show that to benchmark the NUE of farms, epistemic
uncertainty of input parameters has to be reduced.

Secondly, changes in soil N-stock were not considered in this study
due to data limitations. Assessing changes in soil N stock at the farm
level is difficult but can significantly improve interpretation of nutrient
balance results (Godinot et al., 2014).

Thirdly, uncertainty related to on-farm crop and grass production
was not included in the model, because this was estimated based on the
energy requirements of the dairy herd and the energy in purchased feed
and stock changes of feed. Incorporating uncertainty of crop production
would increase the uncertainty of the model output. This would mainly
affect the farms relying more heavily on on-farm produced roughage,
such as the farms in cluster 2. Considering that input of mineral ferti-
lizer or fixation and output of N via milk an animals are the main ex-
planatory factors of the uncertainty around the NUE of these farms, we
do not expect that the additional uncertainty of on-farm crop (grass)
production would influence the results much.

Fourthly, to prevent purchase-resale bias (Godinot et al., 2014), the
output of roughage was subtracted from the input of roughage, and the

output of manure was subtracted from the input of fertilizers. As a re-
sult, exported manure is valued for its fertilizer capacity similar to
(synthetic) fertilizer inputs. The disadvantage of the approach is that
the output of manure results in an artificial reduction of fertilizer input,
while an actual reduction should form the basis for ecological in-
tensification and an improved NUE. The importance of manure output
and the impact of these methodological choices should be addressed
when benchmarking the NUE of dairy farms.

Fifthly, clustering of farms was based on 5 characteristics reflecting
physical and long term strategic decisions. In practice, farming systems
are much more complex than we considered in our study. Including
other (unmanageable) factors that affect NUE could influence the
clustering of farms and hence, the benchmarking of those farms.
Nevertheless, this study is a first step towards improving benchmarking
farms based on their NUE. Results emphasize the need to benchmark
NUE by comparing farms with similar decisive characteristics, and that
the importance of parameters that contribute to the uncertainty of the
NUE results differ among farm types.

Sixthly, this study focused on NUEN at farm level. Nitrogen losses
related to the production of purchased feed and fertilizers were not
considered. It should be kept in mind that, as a result, the NEU of a farm
increases with a decrease in self-sufficiency. This approach, therefore,
can contribute to biased conclusions and problem swapping, when on-
farm nutrient losses related to feed production are reduced at the ex-
pense of off-farm losses. Furthermore, NUE provides insight into the
efficiency of production rather than into the environmental impact re-
lated to nutrient losses. To gain insight into the impact of losses, in-
formation on nutrient losses per hectare should be combined with site
specific knowledge of local eco-systems. In addition to this, it should be
noted that the results of this study are limited to benchmarking the
NUEN of specialized dairy farms in Europe. For another indicator or
another set of farms, the impact of uncertainty on benchmarking the
environmental performance of dairy production could be different.

Reducing epistemic uncertainty and benchmarking NUE of farms
with similar decisive characteristics can contribute to the identification
of improvement options. Based on the variability between farms within
a cluster, farm specific management options can be identified.
Evaluating the (causes of) variability between farms within a farm
cluster, therefore, can be a next step for further improving the NUE of
farms.

5. Conclusion

Benchmarking the NUE of dairy farms requires an approach that
accounts for differences in major decisive characteristics among farms,
and for the impact of epistemic uncertainties of input parameters. The
parameters that are most important in terms of epistemic uncertainty
(i.e., explain most of the output variance), however, can vary among
farm types. Clustering farms based on their main characteristics and
understanding and reducing the impact of epistemic uncertainty of
major parameters can significantly improve benchmarking results. The
method presented in this study, therefore, can contribute to more solid
conclusions regarding the performance of farms in terms of their nu-
trient use efficiency.
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