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1.  Introduction

Food and feed safety is an increasing concern for consumers following 
major crises related directly or indirectly to human health. EU has created 
a key tool, the Rapid Alert System for Food and Feed (RASFF 2015), 
for reacting quickly to food and feed safety emergencies and incidents. 
Currently, European foods are recognized globally for their high standards 
of production, labelling and safety. This is not yet the case, however, for the 
detection of food fraud or the enforcement of the relevant legislation. There 
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is a clear need for an initiative that will link the major stakeholders, establish 
data-sharing tools and working practices, and provide rapid fit-for-purpose 
screening and verification methods. The European Food Integrity project 
(2014–2018) aims to address that need. It is not a single method based on 
a single technique that will address all the needs of farmers, producers, 
retailers, regulatory bodies and consumers, but rather a combination of 
methods and strict legislation. Farmers need analytical methods giving them 
the ability at the farm level to check that production matches the authenticity 
and quality criteria included in the product specifications. Food producers 
need analytical methods enabling them to define the authenticity criteria 
and check the compliance of the raw material produced. Retailers need tools 
enabling them to check that products reflect the criteria agreed with food 
producers. On the other hand, regulatory bodies need analytical methods 
for certifying the products in terms of the legislation on quality, safety and 
authenticity. Confirmatory methods are needed that provide indisputable 
information that could be used, if necessary, in court. The development of 
analytical tools is less important for consumers, who simply want enough 
information to feel reassured about the authenticity of a product and the 
likelihood of it meeting their expectations.

Currently, many methods based on various analytical techniques are used 
to authenticate agro-food products. Among them, vibrational spectroscopy 
techniques include NIR, MIR, Raman and Terahertz techniques. They are 
based on measuring the amount of electromagnetic radiation absorbed by a 
sample according to the Beer-Lambert law. They are techniques to consider 
when authenticity controls need to be established at the field level, at the 
point where products are delivered to factories or during the production 
process. Methods based on these techniques are indirect, rapid and do not 
require skilled staff. They are not confirmatory and are therefore seldom 
used in official control processes. Fingerprinting methods, however, are of 
interest to regulatory bodies because they allow rapid preventative action 
to be taken. It should be noted that, despite the many studies demonstrating 
their potential, the application of fingerprinting methods in routine analysis 
and food authenticity surveillance remains limited (Riedl et al. 2015). The 
second section of this chapter provides a general overview of the technology, 
main principles, instrumentation, sample presentation and new trends, as 
well as giving a brief overview of the chemometric tools used to extract 
chemically relevant information from the spectra.

In the third section of the chapter, several examples are discussed to 
illustrate the potential of vibrational spectroscopy in tackling authenticity 
challenges (e.g., the discrimination of cereal varieties), in identifying 
botanical origin, geographical origin and distillers’ dried grains and 
solubles (DDGS) production process, in the traceability and authentication 
of fruits and in the early detection of fraud in food/feed ingredients. Several 
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examples come from European projects focusing on authenticity: Qsaffe 
(2011–2014), which looked at the early detection of fraud in feed and at 
DDGS authentication; PhotonFruit (2014–2015), which dealt with emergent 
spectroscopic techniques for the quality control and traceability of fruits 
and fruit-based products; FoodIntegrity (2014–2018), which aims to provide 
industries and regulatory authorities in the food and feed sectors with 
information on the analytical methods available, their use, performance 
and cost, as well as the availability of reference data, with links to literature 
and other databases.

2.  Vibrational Spectroscopy Methods: NIR, MIR and Raman

This section gives the main principles of near-infrared, mid-infrared and 
Raman spectroscopy as well as new trends regarding instrumentation and 
sample presentation. It gives also a brief overview of the chemometric tools 
used through the examples presented in section 3.

2.1  Principle

The term ‘electromagnetic spectrum’ refers to the collection of radiant 
energy sources, from gamma rays to radio waves. These waves are 
characterized by wavelength λ (the length of one wave, cm), frequency 
ν (the number of vibrations per unit time, Hz) and wave number ν (the 
number of waves per unit length, cm–1). Spectroscopy can be defined as 
the study of the interaction between electromagnetic radiation and matter. 
The electromagnetic spectrum is divided into several regions, each of which 
induces specific molecular or atomic transition and is therefore suited to a 
specific type of spectroscopy. This chapter focuses on wavelengths in the 
12,500–50 cm–1 range within which mid-infrared (MIR), near-infrared (NIR) 
and Raman spectroscopies are used for traceability and authentication. 

Infrared radiation, lying between visible and microwave regions of the 
electromagnetic spectrum, is absorbed by organic molecules and converted 
into energy as molecular vibration. Vibrational transitions occur in the 
ground state of the molecule (Li-Chan 1996). Vibrational energy is quantized. 
Molecules can occupy discrete energy levels defined by whole numbers 
0, 1, 2, and so on. Molecules, in nature, occupy the lowest energy level, 
0. A transition from levels 0 to 1, in the MIR spectral region, is referred to 
as a fundamental transition. Transitions from levels 0 to 2 or 3, in the NIR 
spectral region, are defined as first and second overtones. 

Although it is beyond the scope of this chapter to present the theory 
of vibrational spectroscopy, it is necessary to outline some of its basic 
principles in order to understand how each spectroscopic technique works. 
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The overall objective of vibrational spectroscopic techniques is to analyze a 
product in order to obtain qualitative and/or quantitative information from 
the interaction between the electromagnetic spectrum and its constituents 
(Abbas et al. 2012, Baeten et al. 2016).

2.1.1  Mid-infrared spectroscopy (MIRS)

MIRS refers to the absorption measurement of different MIR frequencies 
by a sample positioned in the path of an MIR beam (Baranska 1987). When 
the frequency of a specific vibration is equal to the frequency of the infrared 
radiation directed at a molecule, the molecule absorbs the radiation. The 
method is simple, non-destructive, rapid and environmentally friendly.

The MIR spectrum lies in the 400–4,000 cm–1 range of the electromagnetic 
spectrum. It is considered as a fingerprint of the sample in that no two 
molecular structures produce the same infrared spectrum, making infrared 
spectroscopy very interesting for traceability analysis (Coates 2000). MIRS 
allows the quality and authenticity of a sample, as well as the quantity of 
its components, to be determined. Using the Beer-Lambert law, it is possible 
to correlate the intensity of one band with the concentration of the active 
group of the product. MIRS is sensitive to functional groups and to highly 
polar bonds. Hydroxyl, amine and carbonyl groups are very active in the 
MIR region and produce high spectral signals.

2.1.2  Near-infrared spectroscopy (NIRS)

NIRS is based on the same absorption phenomenon described above for 
MIRS, but relates to the 12,500–4,000 cm–1 wavelength range (equivalent to 
800–2,500 nm; nm is the unit usually used in NIRS) (Baranska 1987). This 
energy range is high enough to promote molecules from their fundamental 
vibrational energy levels to second or third excited vibrational states, but it 
is low enough not to reach the level of electron excitation in molecules. The 
method is simple, non-destructive and very fast (< 30 sec analysis time), 
but there is a greater penetration of the radiation than in MIRS. NIRS is 
suitable for in-line, on-line or at-line use, with minimum sample preparation 
requirements. It allows highly accurate and precise multi-component 
analysis (C-H, NH, S-H or O-H bonds). 

NIRS can be used as a qualitative method. Due to its large bands being 
less resolved than in the case of MIRS (Luykx and van Ruth 2008), it is used 
mainly for quantifying sample properties, such as chemical composition 
(e.g., protein, glucose, humidity), bulk properties (e.g., density, viscosity, 
ripeness) and physical properties (e.g., temperature, particle size). 
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2.1.3  Raman spectroscopy 

Unlike MIRS and NIRS, Raman spectroscopy is not concerned with 
an absorption phenomenon. It is based on irradiation with an intense 
monochromatic light source (usually a laser), which raises the energy of 
the system by inducing polarization in the chemical species. The polarized 
condition referred to a ‘virtual state’. The vibrational energy levels in the 
molecules rise from the ground state to a short-lived, high-energy collision 
state, which returns to a lower-energy state by emitting a photon that has 
a lower frequency than the laser light (Stokes Raman scattering). A Raman 
spectrum between 4,000 and 50 cm–1 is a plot of the intensity of Raman 
scattered radiation as a function of its frequency difference from the incident 
radiation (Baranska 1987). This difference is called the Raman shift. 

Raman spectroscopy has the advantage of requiring little or no sample 
preparation and allows samples to be measured through a glass container 
(samples can be analyzed directly inside a glass bottle or plastic bag). In 
addition, it is not affected by water band interference (ease of aqueous 
solutions analysis) or atmospheric perturbation, such as CO2 and humidity 
(no need to purge the instrument). 

As in the case of MIRS, Raman spectroscopy provides structural 
information and can be considered as a fingerprint. It also provides 
information from backbone structures and symmetric bonds (e.g., carbon 
double and triple bonds, and aromatic groups), as well as qualitative and 
quantitative information. No two molecules have exactly the same Raman 
spectrum, and the intensity of the scattered radiation is proportional to the 
amount of material present.

A brief overview of the three techniques is given in Table 1. For each 
technique, the table shows the spectral region, radiation source, excitation 
conditions, origin of bands, vibrational modes, band shape, particle size, 
drawbacks and a selection of applications. 

2.2  Instrumentation

Because of the increasing use of infrared and Raman spectroscopies as 
screening and quality control methods, spectrometers are evolving rapidly 
at the laboratory, industry, field and farm levels. 

2.2.1  Mid-infrared spectrometers 

Dispersive spectrometers were the first infrared instruments. The energy 
emitted from an infrared source is separated into individual frequencies by 
the use of a prism or grating system. The detector measures the quantity 
of energy at each frequency that has passed through or been reflected from 
a sample, resulting in a spectrum that is a plot of intensity vs. frequency. 
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Due to the limitations of these dispersive instruments, however (e.g., 
slow scanning and lack of reproducibility), they were replaced by Fourier 
transform (FT) spectrometers.

FT spectrometers enable all infrared frequencies to be measured rapidly 
and simultaneously. They are equipped with a simple optical device called 
an ‘interferometer’. It contains a beam splitter, which divides an incoming 
infrared beam into two parts. One beam is reflected off a fixed mirror and 
the other off a moving mirror, and then both beams are recombined at 
the beam splitter. Due to changes in the position of the moving mirror in 
relation to the fixed one, an interference pattern is generated that results 
in a signal called an ‘interferogram’. This signal, a function of time, cannot 
be interpreted directly. It is converted mathematically by FT, resulting in a 
frequency spectrum. The detectors used are deuterated-triglycine sulfate 
(DTGS), based on measuring temperature changes, and the nitrogen-cooled 
Mercury cadmium telluride (MCT) photon detector.

The advantages of MIR spectrometers include their speed (all 
frequencies are scanned simultaneously), sensitivity (high optical 
throughput and sensitive detectors), mechanical simplicity (only one 
mirror of the interferometer moves) and internal calibration (an internal 
wavelength calibration standard using a HeNe reference laser), making FT 
infrared analysis very accurate and reproducible. On-line MIR spectrometers 
are used for quantification at low analyte levels because they are very 

Table 1.  Some Characteristics of NIR, MIR and Raman Spectroscopies.

NIR MIR Raman

Spectral region 4,000–12,500 cm–1 
(800–2,500 nm)

400–4,000 cm–1 50–4,000 cm–1

Radiation source Polychromatic near-
infrared light from 
globar tungsten light 
source

Polychromatic mid-
infrared light from 
globar tungsten light 
source

Monochromatic 
visible or near-
infrared light from a 
laser

Excitation
conditions

Change in dipole 
moment 

Change in dipole 
moment 

Change in 
polarizability

Band origin Radiation absorption Radiation absorption Radiation scattering

Vibrational modes Overtones and 
combinations of 
vibrational modes 

Stretching and 
bending fundamental 
vibrations

Stretching and 
bending fundamental 
vibrations

Band shape Broad peaks arising 
from overlapping 
absorption bands

Well resolved, 
assignable to specific 
chemical groups

Well resolved, 
assignable to specific 
chemical groups

Particle size Dependent Dependent Independent

Interference Water Water Fluorescence

Main applications Quantification Structural elucidation 
and compound 
identification

Structural elucidation 
and compound 
identification
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sensitive, the main issue being the strong absorption of water (Bellon-
Maurel et al. 1994).

2.2.2  Near-infrared spectrometers

The characteristics of near-infrared instruments make them ideal for 
industrial applications, especially because of their robustness, simplicity and 
humidity resistance. Their main elements are a radiation source (thermal 
or non-thermal) (Osborne et al. 1993, McClure 2001), wavelength selectors, 
sampling accessories and detectors (Single-channel or Multichannel) 
(McClure 2001). 

Pasquini (2003) classified spectrometers according to the technology 
used for wavelength selection.

	 •	 Filter-based instruments using filters as wavelength selectors. 
	 •	 Light-emitting diodes (LED)-based instruments using LED as a source 

of narrow bands of NIR radiation or to produce a polychromatic, 
highly stable source in which radiation is dispersed by using a 
monochromator based on gratings or filter optics.

	 •	 Acousto-optical tunable filters (AOTF)-based instruments using 
AOTF, which allows constructing instruments that have no moving 
parts and can reach very high scan speeds over a broad NIR 
spectral range. The wavelength precision is about ± 0.05 nm and  
the resolution depends on the wavelength, with typical values of 
5–15 nm for a wavelength range of 1,000–2,500 nm.

	 •	 Dispersive optics-based instruments using diffraction gratings. 
Initially, these instruments suffered from slow scan speed, lack of 
wavelength precision and presence of moving parts, making them 
difficult to use. In the past decade, the construction of dispersive 
optics based on the concave grating and sensor array usually used in 
spectrophotometers with non-moving parts has meant that spectra 
can now be collected in a few milliseconds.

	 •	 FTIR using interferometer technology. These spectrometers combine 
most of the best characteristics in terms of wavelength precision and 
accuracy (wavelength accuracy is higher than 0.05 nm), high signal-
to-noise ratio and scan speed. 

On-line NIRS is well developed and widely implemented. Huang et 
al. (2008) conducted a review of NIR on-/in-line analysis of foods such as 
meat, fruit, grain, dairy products and beverages, covering the previous 
10 years of research in this field. The tendency is now to use miniaturized 
spectrometers adapted to specific conditions of measurement in fields, 
greenhouses and on-line agro-food industrial production. They are flexible 
enough for a wide range of optical fibers and measurement accessories to be 
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connected. These spectroscopic devices are currently the subject of extensive 
research and development (Crocombe 2013) aimed at the improvement of 
detector technologies, microelectro-mechanical systems (MEMS) and high-
precision optical components. Some of the new instruments are based on 
MEMS technology, on the Fabry–Perot-Based MidWave InfraRed (MWIR) 
microspectrometer (Ebermann et al. 2009) and others such as the NIR grating 
spectrometer for mobile phone applications (Pügner et al. 2016).

2.2.3  Raman spectrometers

Raman spectroscopy measures the shift in frequency from the photons 
emitted by the excitation laser. Because it can be performed using any range 
from UV to NIR, there are two types of Raman instruments, dispersive 
Raman spectrometers and FT-Raman spectrometers, each one with 
advantages for specific types of analysis.

With dispersive instruments, the scattered light is collected through a 
filter and focused onto a monochromator, which allows the separation of 
the different energies of the Raman scattering. The radiation is directed onto 
a silicon charge-coupled device (CCD). Visible laser excitation is usually 
done with these instruments (lasers emitting at 473 nm, 532 nm, 633 nm 
and 780 nm). Irradiation at these wavelengths enables obtaining of high 
Raman signals because the intensity of the Raman scatter is proportional 
to the fourth power of the Raman excitation frequency. A problem that 
can occur here is the fluorescence phenomenon, which saturates the CCD 
detector and makes it difficult to conduct Raman measurements. 

The near-infrared laser radiation range corresponding to less energy 
can provide a solution to the fluorescence problem, using FT-Raman 
spectrometers. These instruments have a neodymium-doped yttrium 
aluminium garnet (Nd3+:YAG) laser irradiating at 1,064 nm and sensitive, 
single-element, near-infrared detectors, such as indium gallium arsenide 
(InGaAs) or liquid nitrogen-cooled germanium (Ge) detectors. FT-Raman 
spectrometers use an interferometer that functions in the same way as  
FT-IR spectrometers and has the same advantages.

Depending on the nature of the sample and the objective of the analysis, 
dispersive or FT-Raman spectrometers can be used. Although the Raman 
instrument market is growing rapidly, the use of these devices in the agro-
food industry remains limited.

2.3  Sample presentation

MIR, NIR and Raman instruments enable the analysis of a great variety of 
feed and food samples in their liquid or solid form. In order to obtain the best 
quality spectrum and have confidence in the results, it is important to use 
the best handling technique for the analyzed sample. Table 2 lists the most 
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widely used infrared measurement modes and their principles, types of 
samples, accessories, advantages and drawbacks. Raman analysis requires 
only a glass container for liquids or a rotation sample holder for solids.

Combining NIRS, MIRS and Raman spectroscopy with imaging 
technology enables obtaining spectral and spatial information 
simultaneously. Analyses are achieved in a very short time by recording 
sequential images of the analyzed sample with each image plane being 
collected at a single wavelength band. Taking the example of NIR imaging, 
the compilation of the reflected energy images, taken sequentially at each 
wavelength, produces a hyperspectral cube. For each pixel, the compilation 
of absorbances at each wavelength produces a spectrum (Abbas et al. 2012). 
It should be noted that for feed and food applications, NIR hyperspectral 
imaging is far more widely used than MIR or Raman imaging, which are 
more suited to polymer and pharmaceutical applications. 

MIRS and Raman spectroscopy, and to some extent NIRS, have evolved 
from interesting research techniques and now provide valuable analytical 
tools that can be used on farms, in industries and at production sites. Using 
them for authentication purposes is of great interest.

2.4  Chemometrics

As these methods are indirect, they require the use of chemometrics to 
extract chemically relevant information from spectra with statistical, 
mathematical and computer tools (Massart et al. 1988). In the authenticity 
and traceability examples presented in the third section, several multivariate 
techniques were used to explore data patterns (principal component 
analysis, PCA) or build discrimination models for correctly identifying 
the products of different functional classes of any given food ingredient 
(linear discriminant analysis, LDA; soft independent method of class 
analogy, SIMCA; partial least squares discriminant analysis, PLS-DA). 
More sophisticated indicators/tools (e.g., GH for calculating Mahalanobis 
distance; weighted principal components analysis, WPCA) can be used 
(see Section 3.5). The results of the discrimination models can be expressed 
in different ways. Sensitivity refers to the percentage of samples from the 
class studied that have been correctly classified by the model. Specificity 
refers to the percentage of samples not from the class studied that have 
been correctly classified by the model. Classification error is the sum of 
the false positive results (percentage of samples predicted to belong to the 
class studied, when they do not) and false negative results (percentage of 
samples predicted not to belong to the class studied, when they do). 



308  Food Traceability and Authenticity: Analytical Techniques

3.  Traceability and Authenticity: Food and Feed Examples

This section gives several examples to illustrate the potential of vibrational 
spectroscopy regarding authenticity challenges such as the discrimination 
of barley varieties, the origin identification of distillers’ dried grains and 
solubles (DDGS), the authentication of fruits and finally, the early detection 
of fraud in food/feed ingredients.

3.1  Discrimination among varieties: the case of barley

Breeders, farmers and consumers are showing increasing interest in 
Triticum species other than common wheat (T. aestivum L.), such as emmer  
(T. dicoccum L.) and spelt (T. spelta L.), which are ancestral hulled wheat 
species characterized by higher resistance to stress and by specific 
nutritional qualities (Escarnot et al. 2012). Effective species discrimination 
among grains is increasingly important not only for the food industry in 
terms of the characteristics and qualities required, but also for the protection 
of Protected Geographical Indication (PGI)-certified species (e.g., farro 
della Garfagnana emmer). Discussions with representatives of the food 
industry involved in the cereal chain has shown that NIRS is undertaken 
in many cereal producer sites in order to rapidly check quality and safety 
parameters, with the potential to use fingerprinting approaches for detecting 
possible fraud (Suman 2016). In order to solve some authentication issues, 
the discrimination of species/varieties is needed at the kernel level. For 
instance, only 3% of common wheat (T. aestivum L.) and durum wheat  
(T. durum L.) crops are authorized to produce pasta in Italy. As the durum 
wheat price is generally higher than the price of common wheat (up to 
35% higher), there is a considerable risk of economic fraud by mixing 
common and durum wheat. Food production companies also often need to 
discriminate species/varieties at the particle level in the flour. For example, 
oats (Avena sativa L.) are widely used in breakfast cereals because of its high 
nutritional value. It is economically profitable to add wheat flour to oat 
flour, which can lead to health problems because wheat contains gluten, 
whereas oats are gluten-free (Wang et al. 2014).

A previous review (Vermeulen et al. 2010) showed that the use of 
NIRS in wheat analysis in the 1980s focused on discriminating among 
wheat varieties based on flour quality. In the decade following the year 
2000, more sophisticated NIR hyperspectral imaging systems (NIR-HIS) 
were developed, combining spatial and spectral information. The initial 
studies showed that applying chemometric tools in NIR-HIS offered new 
prospects to the agro-food industry for classifying kernels according to 
quality criteria (e.g., bread-baking quality, hardness) (Williams 2009a,b). 
The major advantages of NIR-HIS are that recognition does not depend on 
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the expertise of the analyst and that it is possible to automate all procedures 
and analyze a large number of samples. 

An original discrimination study of 176 barley samples representing 24 
varieties tested in trials for registration in the Belgium catalogue conducted 
over 3 years (2004–2006) in eight Belgium locations (Monfort et al. 2006) was 
performed by the Walloon Agricultural Research Centre (CRA-W) research 
team (Vermeulen et al. 2007). The study sought to develop a fast and reliable 
method for varietal discrimination, essential for the efficient traceability 
and quality control system required by the seed sector as well as by the 
food and feed sectors. In this study, the use of NIR imaging technology 
was investigated in order to classify barley varieties at the single kernel 
level. The results were compared with those obtained using classical NIR 
methods based on bulk analysis or classical field data (e.g., earliness, yield) 
and technological data (e.g., kernel size, thousand kernel weight [TKW], 
specific weight, protein, humidity) collected by breeders.

The 24 varieties were grouped into three classes: 6-row winter barley 
class (6RW); 2-row winter barley class (2RW); and 2-row spring barley 
class (2RS). The samples were selected to represent variations in climate, 
geographical location and agronomy in Belgium. Two sets of samples were 
selected for the study:

	 •	 Sample set 1 was used for discriminating the three barley classes 
(6RW, 2RW, 2RS). A set of 96 samples, including 24 varieties tested 
at four Belgian locations (Enghien, Gembloux, Havelange and 
Poperinge) and obtained from the 2005 harvest, was created. This 
dataset contained 11 varieties of 6RW, seven varieties of 2RW and 
six varieties of 2RS. 

	 •	 Sample set 2 included only 6RW samples and was used for 
discriminating the 6RW varieties. A set of 112 samples, including 
eight varieties tested at seven Belgian locations (Enghien, Gembloux, 
Havelange, Poperinge, Leffinge, Dommartin and Bassevelde) and 
obtained from the 2004 and 2005 harvests, was created. The varieties 
studied were Carola, Nikel, Seychelles, Sumatra, Palmyra, Jolival, 
Mandy and Pelican.

In this study, two types of NIR instruments were used: the classical 
NIR spectrometer and the NIR imaging spectrometer.

The classical NIR spectrometer was an NIR TECATOR Infratec 1241 
(FOSS, Hillerod, Denmark) working in the 850–1,050 nm range and used 
mainly at the cereal collection sites. With this instrument, one spectrum by 
sample (bulk of kernels) was obtained. Initially, the spectra were used to 
predict some technological parameters (protein content and humidity) by 
using the calibration equations developed from barley databases built at 
CRA-W over more than 30 years. The mean spectra per sample were then 
used to build the discrimination equations among barley classes or varieties.
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The NIR imaging spectrometer used in this experiment was a 
MatrixNIRTM Chemical Imaging System (Malvern, Olney, USA) described by 
Fernandez et al. (2005). Reflectance images on 10 kernels by barley sample 
were collected in the 900–1,700 nm window. The spectrum of each kernel 
was the average of the spectra acquired from the total surface of the kernel.

For each sample set (sets 1 and 2), the same methodology was applied 
to the agronomic and technological data, the classical NIR spectra and the 
NIR-HIS spectra. PLS-DA models were built in order to assess whether 
or not the differences observed among varietal classes or among varieties 
in term of agricultural and technological (agro-technological) data could 
also be identified with the spectral data. Models were built using samples 
with known classes and were validated by cross-validation using the 
leave-one-out method, where each sample was successively left out of 
the model formulation and independently predicted once. The models 
were also validated with a test set selected by splitting each sample set 
into two groups, one for training (model construction) and the other for 
testing (representing about 15% of the samples). The splitting was done 
by selecting, at random, four samples by group (6RW, 2RW, 2RS) or two 
samples by variety, representing the different locations and years. In order 
to compare the performance of the PLS-DA models with the three sets of 
data (agro-technological data, classical NIRS spectra and NIR-HIS spectra), 
the same varieties were selected for the test sets. 

In the first step, PLS-DA was used to build models for classifying the 
three barley classes 6RW, 2RW, 2RS (Sample set 1). Table 1 (left side) shows 
the sensitivity and specificity of each of the three groups at the calibration, 
cross-validation and test stages. The classification errors in cross-validation 
varied between 5 and 9% based on NIR imaging data, as opposed to 0–14% 
based on classical NIR or 12–17% based on agro-technological data. The 
performance of the models with the test set was better with NIR-HIS in 
terms of classification errors (3–14%), as opposed to classical NIR (6–25%) 
and agro-technological (6–25%) data. 

In the second step, PLS-DA was used to build models for classifying the 
six RW varieties (Sample set 2). Table 3 (right side) shows the sensitivity and 
specificity for each of the eight varieties at the calibration, cross-validation 
and test stages. The classification errors in cross-validation varied between 
23 and 38% based on NIR imaging data, as opposed to 1–34% based on 
classical NIR and 5–45% based on agro-technological data. The performance 
of the models with the test set was poorer, with high classification errors: 
7–43% using agro-technological data, 0–50% with classical NIR and 23–54% 
with NIR-HIS. 

In brief, PLS-DA classification models showed that NIR imaging had 
a classification accuracy of 91% for the three classes (2RS, 2RW, 6RW), as 
opposed to 87% for classical NIR and 83% for agro-technological data. With 
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regard to classifying varieties in the 6RW class, the results obtained were 
lower, with a classification accuracy of 78% for agro-technological data, 77% 
for classical NIR spectra and 63% for NIR-HIS. The classification of some 
varieties, such as Mandy, however, was better, with rates of 93%, 100% and 
74%, respectively. Mandy was clearly different from the other 6RW varieties, 
being a late variety and having a lower TKW. 

A recent study by Zhu et al. (2012) indicated that NIR-HIS could 
differentiate three types of wheat: strong gluten wheat, medium gluten 
wheat and weak gluten wheat. The classification accuracy of six wheat 
cultivars reached 93%. Similarly, Kong et al. (2013) showed the possibility 
of classifying four rice seed cultivars with a classification accuracy of 100%.

In order to improve classification accuracy, the trend now is to combine 
several techniques to examine the potential of sensor fusion and data fusion. 
Zhang et al. (2012) developed classification models to discriminate six maize 
seed varieties using HIS in the visible and near-infrared (380–1,030 nm) 
region (VIS-NIR). They showed that by combining textural variables and 
spectral data, they could achieve a classification accuracy of 98.9%. Yang 
et al. (2015) achieved a classification accuracy of 98.2% for four varieties of 
maize seeds by combining morphological, textural and spectral features 
extracted from VIS-NIR HIS (400–1,000 nm). Teye et al. (2014) showed that 
the single sensor NIRS and electronic tongue (ET) used to discriminate five 
cocoa bean varieties had a classification accuracy of 83–93%, whereas data 
fusion had a classification accuracy of 100%.

3.2  Distillers’ dried grains and solubles fraud in relation to 
botanical origin, geographical origin and production process 

The ban on using processed animal protein in the feed led the feed sector 
to look for other possible protein sources. Among the various possibilities 
and apart from soybean meal, which is the main source of proteins in feed, 
distillers’ dried grains and solubles (DDGS) could also be an important 
source. In the USA, 30% of corn is used for ethanol production and most 
of the DDGS obtained as a residue of the process are exported to Europe. 
The use of antibiotics or fermentation supplements to improve ethanol 
production process poses risks to the feed chain. Usually, the product 
labelling of an affected feed lot shows origin and the paper documentation 
shows traceability. Incorrect product labeling is common in embargo 
situations and alternative analytical strategies for ensuring feed authenticity 
are therefore needed.

Within the framework of the European QSaffe project (2011–2014), a 
study was conducted on authenticating the origin of DDGS. A total of 191 
DDGS samples were collected from reliable sources in Canada, China, 
Europe and the USA. They were produced from corn (Zea mays) and wheat 
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(Triticum aestivum L.) and obtained during the industrial production of 
bio-ethanol or alcoholic beverages. Various analytical techniques were 
used in this study: NIRS (Zhou et al. 2014), NIR microscopy (NIRM) (Tena 
et al. 2015), MIRS (Nietner et al. 2013, Vermeulen et al. 2015a) and Raman 
spectroscopy (Haughey et al. 2013), as well as MS-based approaches such 
as proton transfer reaction–mass spectrometry (PTR-MS) (Tres et al. 2014), 
DART-Orbitrap MS and liquid chromatograph quadrupole time-of-flight 
MS (LC/Q-TOF/MS) (Novotna et al. 2012). Two proven techniques in food 
authenticity, isotope ratio mass spectrometry (IRMS) (Nietner et al. 2014) 
and DNA analysis using polymerase chain reaction (PCR) (Debode et al. 
2012), were also among the methods that could identify the DDGS origin. 
The methods developed were able to determine the botanical origin of 
the DDGS (corn vs. wheat), and several of them were able to determine 
the geographical/production origin of the DDGS. These techniques were 
compared in terms of their complementarities, and an overall strategy for 
tracing and confirming DDGS origin was described by Vermeulen et al. 
(2015b). 

The results presented below illustrate another approach for studying 
variability in DDGS samples based on their composition. The 191 DDGS 
were initially analyzed using a FOSS XDS NIR spectrometer active in the 
400–2,500-nm range. Quality parameters such as moisture, protein, fat, 
fiber and ash were estimated using equations constructed with historical 
NIRS databases (Fernandez et al. 2010). Samples were described in detail 
by Vermeulen et al. (2015b). For this study, some samples were removed 
from the initial dataset because of doubt about their botanical origin based 
on IRMS analyses. In order to characterize the variability of the retained 181 
DDGS samples in terms of production origin, PCA was performed using the 
five quality parameters, with normalization and autoscale pre-processing 
applied to the data. 

Figure 1 shows the PC1 vs. PC2 scores plot that allowed DDGS samples 
from corn, wheat, rice and a mixture of wheat and corn to be distinguished. 
Wheat DDGS from several companies in various European countries were 
characterized by higher protein content (33.1%) and lower fat content (4.9%) 
than corn DDGS (28.7% and 8.3%, respectively). Mixtures of wheat and corn 
DDGS were characterized by medium protein content (30.3%) and low fat 
content (5.3%). The rice DDGS group was represented by only one sample; 
it differed considerably from wheat and corn and had a high ash content.

Figure 2 shows the same PC1 vs. PC2 scores plot where the sample 
marks are coloured according to information on geographical origin and 
process. Several corn DDGs groups were identified. One group of DDGS 
samples, residues from a bio-ethanol production company in China 
(Corn China Origin 1), was characterized by medium protein content 
(31.1%) and very low fat content (3.2%), which could be explained by fat 
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Figure 1.  PCA on Predicted Technological Values for Wheat, Corn, Rice and Wheat + Corn 
Mixtures DDGS Groups: Scores Discriminating the Botanical Groups.

Figure 2.  PCA on Predicted Technological Values for Wheat, Corn, Rice and Wheat + Corn 
Mixtures. DDGS Groups: Scores Discriminating the Industrial Processes.
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extraction in the production process. A second group of DDGS samples 
from another bio-ethanol production company in China (Corn China 
Origin 2) was characterized by medium fat (8.0%), protein (29.4%), fiber 
(7.3%) and ash (4.7%) content. A third group of DDGS from a bio-ethanol 
production company in the Czech Republic (Corn EU Czech Republic) was 
characterized by medium fat (8.4%) and protein (29.7%) content, but high 
fiber content (7.9%) and low ash content (3%). DDGS groups from several 
bio-ethanol or alcoholic beverage production companies in the USA (Corn 
USA bio-ethanol and Corn USA beverage) were characterized by low 
protein content (27.3% and 26.7%, respectively) and high fat content (9.8% 
and 10.1%, respectively). 

Figure 3 shows the PC1 and PC2 loadings of PCA. PC1 and PC2 explain 
39.6% and 26.5% of the variation, respectively, which are related mainly to 
protein and fat content (PC1) and ash and fiber content (PC2).

This study showed that PCA gave acceptable results for determining 
botanical and geographical origin based on compositional profiles. It 
enabled corn DDGS from three bio-ethanol plants (two in China, origins 
1 and 2, and one in the Czech Republic) to be visually distinguished from 
corn DDGS emanating from bio-ethanol and alcoholic beverage plants in 
the USA, indicating the potential of each ethanol plant to produce DDGS 
with consistent compositional characteristics. 

Figure 3.  PCA on Predicted Technological Values for Wheat, Corn, Rice and Wheat + Corn 
Mixtures. DDGS Groups: Loadings Discriminating the Botanical Groups and Industrial 

Processes.
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The study also showed that established analytical approaches in food 
analysis can be applied to DDGS and could be used for authenticating other 
materials in the animal feed sector.

3.3  Authentication of fruits and fruit-based products

The authentication and traceability of fruit and fruit-based products pose 
challenges that need solutions. The authenticity issues relating to these 
products include assessment of fruit varieties used, assessment of origin 
of production, assessment of process applied and absence of adulteration 
with unexpected fruits varieties or exogenous compounds (e.g., sugar, 
additives). These challenges required fast and reliable methods that can 
be applied at the level of field production (orchard), transformation unit 
(artisanal plant or industrial plant) and retailers (local retailer, open market 
and supermarket). NIRS-based methods could meet these requirements. 
The authentication and traceability of açai fruits (Euterpe oleracea) and cocoa 
beans (Theobroma cacao), both from the Amazonian basin were selected as 
examples to illustrate the potential of NIRS methods.

3.3.1  Study case 1: açai fruits	

More than 200 edible fruits are consumed in the Amazonian basin. Fruits 
are usually eaten fresh, as juice or puree, and are included in numerous 
desserts. Fruit production in the region is based on a mixture of extractivism 
and cultivation. Amongst the Amazonian fruit, açai has a special status. 
It is produced from a tall, multi-stemmed palm that can reach heights 
of 3–12 m and is indigenous to the Amazonian basin. The fruit is a dark, 
spherical berry with a diameter of about 0.7–1.5 cm, and a stone representing 
85–90% of the fruit weight (Bichara and Rogez 2011). Fruit production has 
doubled over the past ten years, being actually over one million tons (IBGE 
2016), Most açai production is for export to the USA and Europe, where 
açai juice is seen as an energy-enhancing drink rich in lipids, fiber and 
phenolic compounds (Schauss et al. 2006). The palm is native of floodplains 
ecosystem and has been extensively planted thanks to important irrigation 
systems in other Amazonian and non-Amazonian lands. In order to ensure 
traceability and authenticity of açai fruit from this region, it was necessary 
to develop technological tools for the agricultural industry in post-harvest 
monitoring and quality improvement. Results from a study conducted by 
the Federal University of Para (UFPA) in Brazil and CRA-W in Belgium 
showed that NIRS is an efficient, rapid and non-destructive analytical tool 
and therefore suitable for the post-harvest monitoring (Amaral 2015a,b). One 
of the experiments involved assessing the ability of NIRS to determine the 
geographical origin of açai fruits at a regional level as well as at the level of 
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the entire Amazon basin. In order to conduct this assessment, 106 samples of 
açai fruit were collected from three municipalities in the north of Pará state 
in Brazil, all bordering the Amazon river or its tributaries. Twenty fruits  
of each sample were randomly chosen for the NIR readings, using a  
handheld device (Phazir, from Polychromix, USA) to collect spectra in the 
1,596–2,396 nm range. PCA and LDA were applied to the mean spectra in 
order to study the potential of NIR to discriminate açai fruits according to 
their origin. PC-3 and PC-5 managed to partially discriminate Ponta de 
Pedras fruit samples from those from the other municipalities (Abaetetuba 
and Muana) (Fig. 4). With LDA permitted to construct discriminant 
models that could discriminate sample origins with a success rate of 
71–90% for locality of origin. A repeatability study showed that NIR has 
a coefficient of variation < 5%. The first study indicated that NIRS could 
be used to determine the geographical origin of açai fruits (Amaral et 
al. 2015a). Another study sought to discriminate açai fruit samples from 
two agronomically different areas (i.e., floodplains or irrigated lands) 
based on NIRS combined with chemometrics. The results showed that the 
methodology was suitable for quality control in the açai industry and could 
also be used for traceability and authenticity purposes (Amaral et al. 2015b).

3.3.2  Study case 2: cocoa beans

Cocoa (Theobroma cacao) is a native fruit from Amazonia widely cultivated 
in many tropical countries. Cocoa fruits, called pods, are collected by the 
farmers then the beans and the pulp are extracted by breaking the pods 
and fermented for about six days. The fermented beans are dried before 

Figure 4.  PCA for the Three Municipalities (PP = Ponta de Pedras, ABA = Abaetetuba, MUA 
= Muana).

Scores

ABA MUA PP
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being sold and processed. Cocoa is the basis of all chocolate products 
and the flavor of the beans depends on variety, cultivation method and 
conditions (including soil and climate) and post-harvest treatment, which 
consists mainly of fermentation and drying. In the context of international 
markets, cocoa-based companies need to manage the supply chain from 
producers to consumers carefully. Two broad categories of cocoa beans are 
distinguished by the International Cocoa Organization (ICCO) on the world 
cocoa market: “fine or flavor” cocoa beans, and “bulk” or “ordinary” cocoa 
beans. Fine or flavor cocoa beans are produced from Nacional, Criollo and 
Trinitario cocoa-tree varieties, while bulk cocoa beans come from Forastero 
trees, normally originating from the lower Amazon region. Currently, only 
5% of world cocoa is classified as fine or flavor. Fine or flavor cocoa beans 
are traded in a niche market that is relatively small but highly specialized 
and distinct from the bulk cocoa beans market. The unique organoleptic 
(flavor and aroma) characteristics of fine or flavor cocoa generally attract 
premium prices for this cocoa. Thus, there is a need for faster, cheaper 
and more accurate real-time traceability and authentication methods. 
Traceability to cocoa farms enables marketers to impose liability costs on 
farms, thereby creating incentives for farms to supply safe and high-quality 
cocoa beans. Cocoa beans that have been collected safely and have been 
well fermented and properly dried will attract a higher price. Some studies 
have described the use of vibrational spectroscopy for determining key 
quality parameters such as caffeine, theobromine and epicatechin content 
(Davrieux et al. 2006, 2007a,b, 2009, Hue et al. 2014a,b, Alvarez et al. 2012), 
as well as for discriminating cocoa beans in terms of variety, genotype or 
fermentation level.

Recently, the potential of using NIRS to discriminate cocoa genotypes 
from Ecuador has been assessed (Davrieux et al. 2013). The Ecuadorian 
cocoa production is 190,000 T per year. Two main clones are grown: Nacional 
and CCN-51. The Nacional accounts for 80% of the production and is 
recognized as fine cocoa. This variety is probably indigenous to Ecuador 
while the CCN-51 cacao variety (hybrid) became widely planted in Ecuador 
since 1997. Nowadays this variety represents 20% of the production and is 
classified as of poor quality.

In this study conducted by the Instituto Nacional de Investigaciones 
Agropecuarias (INIAP, Ecuador) and CIRAD (France), 641 samples 
were collected over 3 years (2009–2012), representing six different cocoa 
producing zones in Ecuador and the two genotypes (i.e., Nacional and 
CCN51). Roughly ground unshelled beans (nibs) were prepared just before 
analysis using a Seb 810004-Prepline grinder (Seb, Ecully, France). Cocoa 
samples were analyzed for their NIR diffuse reflectance spectrum using a 
XDS monochromator spectrometer (Foss NlRSystems, Silver Spring, USA) 
with rectangular cells and moving RSA system (Rapid Solid Analyser). 
About 100 g of cocoa were analyzed per sample. A principal component 
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analysis was done on the spectral matrix (n = 641), using centered data and 
variance/covariance matrix as metric, then the H Mahalanobis distances 
to the mean average spectra were calculated for each sample on the base 
of calculated PCs. According to H distance, five samples, presented H > 3, 
were considerate as spectral outliers and removed.

Then, the remaining sample set was separated in two sub-sets: learning 
set and validation set. To be representative of the original repartition, 
30% of the samples were selected randomly per year for both genotypes. 
Doing this way, 191 samples (81 CCN-51 and 110 Nacional) were selected 
as validation samples and the remaining 445 samples (186 CCN-51 and 
259 Nacional) were used for calibration. Different classification methods 
(LDA, Mahalanobis distance discrimination, and SIMCA) were tested using 
WinISI (Infrasoft, Port Matilda, USA), Xlstat (Addinsoft, Paris, France) and 
Pirouette (Infometrix Bothel, USA) software.

The best results, expressed as correct classification rates, were observed 
using SIMCA method. The correct classification rate for the learning set 
was 94.4% with 10 CCN51 and 15 Nacional misclassified and the correct 
classification rate was 94,8% for the validation set. The error in validation 
was about 5%, with only nine samples out of 191 misclassified: six CCN51 
(out of 81) and three Nacional (out of 110). One sample (CCN51) was 
unclassified.

The scatter plot of validation samples distances to each group centroids 
defined by the model, showed that few samples were close to the separation 
line (Fig. 5).

Figure 5.  NIRS Discrimination of Cocoa Samples in Terms of Genotype (Nacional Versus 
CCN51).
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The discriminating power calculation highlighted that fat -CH2 
absorptions bands (1724 nm and 2308 nm) were prominent in the 
discrimination.

The potential of NIR-HIS has been also studied for analyzing whole 
cacao beans from the Amazon basin (Rogez et al. 2015). The objective of 
the study conducted by UFPA and CRA-W was to discriminate individual 
beans in terms of their geographical origin and fermentation time. More 
than 2,000 cocoa beans from 147 samples from Para state were collected. 
Samples that had been fermented or dried and came from different areas and 
producers over two harvest years (2012–2013) were tested. Hyperspectral 
images were collected using an NIR hyperspectral line scan or push-broom 
imaging system combined with a conveyor belt (Burgermetrics, Latvia). 
Each image consisted of 320-pixel lines acquired in the 1,100–2,400 nm 
wavelength range. Figure 6 gives the PCA results (PC1 versus PC4), showing 
the discrimination of the beans in terms of process applied (fermented vs. 
non-fermented; sun-dried vs. dark-dried). 

Figure 6.  PCA plot (PC1 vs. PC4) of the 147 Cocoa Beans from Tome-Açu Municipality (Para 
State, BR) Analyzed, Showing the Discrimination of the Beans in Terms of Process Applied 

(fermented vs. non-fermented; sun-dried vs. dark-dried).

3.4  Early detection of fraud in food/feed ingredients: the case of 
unapproved protein enhancement with melamine

Among the many crises in the food and feed industries in recent years, one 
of the most serious in terms of health and economic effects was the use of 
melamine (WHO/FAO 2008, Tyan et al. 2009). In 2007, the US Food and 
Drug Administration (FDA) found melamine in pet food and in samples 
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of wheat gluten imported from China (FDA 2007). In 2008, almost 300 metric 
tons of soybean meal destined to organic chickens in France were withdrawn 
from the market after the authorities discovered melamine levels in them 
that were 50 times higher than the permitted standard (Adams 2008). Also 
in 2008, milk and infant formula in China was found to be adulterated with 
melamine, affecting more than 300,000 children, with six infants dying from 
kidney stones or other kidney damage (Branigan 2008). Melamine was 
deliberately added at milk-collecting stations to diluted raw milk, ostensibly 
to boost its protein content. Subsequently, melamine was detected in many 
milk and milk-containing products, as well as other food and feed products, 
exported to many countries worldwide. These crises illustrated the need 
for a sensitive, reliable and rapid procedure for detecting melamine in both 
food and feed products (Chan et al. 2008, Dobson et al. 2008, Chen 2009, 
Gossner et al. 2009). With this aim, in recent years public and private 
researchers have been focusing on the development of suitable screening 
methods. Currently, most of the available procedures use LC or gas 
chromatographic (GC) methods combined with MS. Alternative methods 
available include the use of antibodies, molecularly imprinted polymers, 
capillary electrophoresis or gold nanoparticles (Ai et al. 2009, Yan et al. 
2009, Sun et al. 2010, Rovina et al. 2015). A complete list of methods was 
presented by Lin et al. (2009) and Liu et al. (2012). Most of these methods, 
however, are expensive, matrix dependent, destructive and time-consuming, 
and require extensive sample preparation. A possible alternative could be 
the use of vibrational spectroscopy techniques, such as NIRS, which has 
been used for many years as a quality control tool in the food and feed 
sectors (Norris et al. 1976, Murray 1986, 1993, Barton and Windham 1988, 
Shenk and Westerhaus 1995). Only recently, with the development of 
multivariate calibration procedures, NIRS has been used to detect melamine 
adulteration in food/feed matrices (Dong et al. 2009, Lu et al. 2009, Mauer 
et al. 2009, Balabin et al. 2011, Smirnov 2011, Haughey et al. 2012, Abbas et 
al. 2013, Fernández Pierna et al. 2014, 2015, Baeten et al. 2016). In most of 
these studies, information from the spectra was obtained using classical 
and innovative chemometric tools in a targeted way (i.e., knowing in 
advance the fraudulent substance [melamine] to be detected). More studies 
are now focusing on the development of non-targeted procedures for 
characterizing certain products and detecting the presence of possible 
known or unknown contaminants or fraudulent substances, before the 
food/feed chain is reached (Baeten et al. 2014, de Jong et al. 2016, Fernández-
Pierna et al. 2016). The use of statistical tools to interpret multivariate data 
obtained from spectra should lead to the establishment of rules for checking 
compliance against product specifications. In industries already equipped 
with NIR technology for quality control, it would be easy to adapt it in 
order to simultaneously check possible contamination at both the start and 
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end of the production chain. Spectra could be combined with chemometric 
tools to simultaneously check whether or not a product adheres to fixed 
specifications in terms of composition and quality parameters. Classical 
chemometric tools could be useful for both tasks, but one tool will usually 
not be enough for characterizing a product because most of these tools are 
problem-oriented, meaning that it would be difficult to create thresholds 
that are useful in tackling future problems. Fernández Pierna et al. (2015) 
proposed a combination of chemometric techniques with individual 
characteristics and orientations. This combination includes pattern-
recognition techniques that provide adequate differentiation, as well as 
regression methods evaluated according to their ability to handle the 
available dataset and predict the status of new samples. The combination 
therefore facilitates decision-making about product acceptance or rejection. 
A new technique known as local window PCA (LWPCA), based on a moving 
window criterion, was proposed and considered as an untargeted method. 
In this method, a moving window was selected along the wavelength axes 
in vibrational spectroscopic data and then individual PCA analyses are 
performed. A calibration set was selected in a localized way from a historical 
data in order to characterize products that are the most spectroscopically 
similar to the one to be predicted. Spectral score residuals in this calibration 
set were extracted and used to build thresholds applied to spectral score 
residuals of the sample to be predicted. When a residual, at a certain 
wavenumber, did not meet the defined thresholds, the sample was viewed 
as abnormal, indicating the possible presence of unusual ingredients and 
therefore allowing non-targeted analysis. In the case of melamine 
contamination of milk, this technique was successfully applied (Fernández 
Pierna et al. 2016). The work was based on the FT-MIR spectra of milk 
contaminated with melamine. A dataset of 300 samples of UHT liquid milk 
was used as an historical and clean dataset. Another 12 UHT liquid milk 
samples were contaminated with melamine at various levels ranging from 
0.01% to 1% (100–10,000 ppm). Visual observation of the spectra did not 
enable clear conclusions to be drawn. GH values allowed abnormalities 
detection at levels higher than 500 ppm. LWPCA, however, allowed 
contamination at levels up to 100 ppm to be detected, but at those levels, 
the detection of melamine in milk became unstable, suggesting that the 
technique had probably reached its limit of detection. LWPCA technique 
can also be used for detecting adulterants in soybean meal. Fernández 
Pierna et al. (2015) devised a complete procedure based on chemometrics 
and the use of NIRS at the entrance of a feed mill in order to provide early 
evidence of non-conformity and unusual ingredients. The study focused 
on the characterization of pure soybean meal with the aim of creating an 
early control system for detecting and quantifying any unusual ingredients 
that might be present in the soybean meal, such as melamine, cyanuric acid 
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or whey powder (milk serum). Results showed that the use of NIR, 
combined with some simple chemometric tools based on distances and 
residuals from regression equations, was appropriate for authenticating 
important feed products (soybean meal) and detecting the presence of 
abnormal samples or impurities in the laboratory and at the feed mill. 
LWPCA can also be used to address this problem. Table 4 shows the results 
of the various criteria used to determine the presence of abnormal samples 
in the data. The first three datasets, collected directly at the feed mill 
(Fernández Pierna et al. 2015), contained 75, 66 and 57 samples of pure 
soybean meal, respectively, as well as 59 and 43 mixtures of soybean meal 
and whey for datasets 1 and 2, respectively, and 48 mixtures of soybean 
meal and DDGS for dataset 3. A fourth dataset contained five samples of 
pure soybean meal and 60 mixtures of soybean meal, melamine and cyanuric 
acid at varying concentrations. In Table 4, the results are presented in terms 
of classification accuracy, with black for pure soybean meal and red for the 
different mixtures. The methods used corresponded to the application of 
PLS regression models on historical data for protein and fat, the calculation 
of GH values and the application of LWPCA. Most of the methods applied 
enabled the soybean meal to be characterized. When detecting a possible 
contaminant, higher percentages of samples correctly detected were 
obtained with the LWPCA method. Applying a combination of the four 
techniques to the NIR data at the start of a production chain could lead to 

Table 4.  Classification Accuracy Percentage for Datasets of Soybean Meal and Soybean Meal 
Contaminated with Whey, DDGS, Melamine and/or Cyanuric Acid Using the PLS Model 

(Protein, fat), GH and LWPCA.

    Protein (%) Fat (%) GH (%) LWPCA (%)

Dataset 1 Soybean meal (75 samples) 93.3 100 94.7 96.0

Soybean meal + whey (59 
samples)

91.5 81.4 94.9 96.6

Dataset 2 Soybean meal (66 samples) 98.5 98.5 92.4 93.9

Soybean meal + whey  
(43 samples)

95.3 95.3 95.3 95.3

Dataset 3 Soybean meal (57 samples) 93.0 100 100 94.7

Soybean meal + DDGS  
(48 samples)

43.7 14.6 14.6 72.9

Dataset 4 Soybean meal (5 samples) 100 100 100 100

Soybean meal + melamine/cyan 
acid (60 samples)

63.3 66.7 95.0 95.0

Mean Soybean meal detection 96.2 99.6 96.8 96.2

Contaminant detection 73.5 64.5 75.0 90.0
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important cost-savings by detecting non-conformity and authenticating 
important food/feed products (in this case, soybean meal). A possible 
limitation would be the low sensitivity of NIR to minor constituents, which 
is probably not a major drawback when dealing with significant 
contamination crises. 

4.  Conclusions

The application of vibrational spectroscopy methods to agricultural and 
food product examples has shown the important potential of these analytical 
tools in traceability and authentication. NIRS is already widely accepted 
in the food and feed sectors for determining, in a unique analysis, a large 
variety of quality control parameters. Strategies using analytical NIR 
techniques combined with dedicated statistical data analysis tools could 
be easily implemented in both routine laboratories and in industries to 
address authentication issues. The ability to use this technique on-line in 
production plants and the possibility of building a network of spectrometers 
make NIRS a very attractive screening tool for the food and feed sectors. 
As shown in the species/varieties discrimination examples, the use of 
sensors and data fusion to identify varieties at the kernel level opens up new 
analytical approaches to be investigated. Such approaches could be used to 
improve the potential of grain sorters, depending on the quality required.
The example of DDGS authentication at the international level illustrated 
the analytical tools available for the feed sector. With the complexity of 
industrial processes used in plant feed companies and the tendency to 
promote both regional and organic feed production, more work is needed 
on feed authentication order to ensure animal feed safety. The examples 
of açai fruit and cocoa bean authentication and traceability demonstrated 
the potential of NIRS methods using miniature hand-held instruments as 
well as NIR-HIS. Using the example of melamine fraud, the description of 
the development of new chemometric tools such as LWPCA showed the 
possibility of using simple tools for NIR spectral data treatment in order 
to authenticate food and feed products and detect abnormal samples at an 
early stage. New initiatives at the European level, such as the FoodIntegrity 
and Authent-Net projects (2016–2018), enable analytical experts and funding 
bodies to provide Europe with an up-to-date and integrated ability to detect 
fraud and ensure the integrity of the food chain, as well as to coordinate 
inter-disciplinary research aimed at protecting consumers against fraud.

Keywords: near infrared, mid infrared, raman spectroscopy, vibrational 
spectroscopy, authenticity, traceability, food, feed
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