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ABSTRACT

An increasing number of models are being developed 
to provide information from milk Fourier transform 
mid-infrared (FT-MIR) spectra on fine milk composi-
tion, technological properties of milk, or even cows’ 
physiological status. In this context, and to take ad-
vantage of these existing models, the purpose of this 
work was to evaluate whether a spectral standardiza-
tion method can enable the use of multiple equations 
within a network of different FT-MIR spectrometers. 
The piecewise direct standardization method was used, 
matching “slave” instruments to a common reference, 
the “master.” The effect of standardization on network 
reproducibility was assessed on 66 instruments from 3 
different brands by comparing the spectral variability 
of the slaves and the master with and without stan-
dardization. With standardization, the global Maha-
lanobis distance from the slave spectra to the master 
spectra was reduced on average from 2,655.9 to 14.3, 
representing a significant reduction of noninformative 
spectral variability. The transfer of models from instru-
ment to instrument was tested using 3 FT-MIR models 
predicting (1) the quantity of daily methane emitted 
by dairy cows, (2) the concentration of polyunsaturated 
fatty acids in milk, and (3) the fresh cheese yield. The 
differences, in terms of root mean squared error, be-
tween master predictions and slave predictions were 
reduced after standardization on average from 103 to 
17 g/d, from 0.0315 to 0.0045 g/100 mL of milk, and 
from 2.55 to 0.49 g of curd/100 g of milk, respectively. 
For all the models, standard deviations of predictions 
among all the instruments were also reduced by 5.11 
times for methane, 5.01 times for polyunsaturated fatty 
acids, and 7.05 times for fresh cheese yield, showing 
an improvement of prediction reproducibility within 

the network. Regarding the results obtained, spectral 
standardization allows the transfer and use of multiple 
models on all instruments as well as the improvement 
of spectral and prediction reproducibility within the 
network. The method makes the models universal, 
thereby offering opportunities for data exchange and 
the creation and use of common robust models at an 
international level to provide more information to the 
dairy sector from direct analysis of milk.
Key words: Fourier transform mid-infrared spectra, 
standardization, milk, model transfer

INTRODUCTION

Over the past decade, the number of research stud-
ies seeking to extract more quantitative information 
from the Fourier transform mid-infrared (FT-MIR) 
spectra has increased constantly (De Marchi et al., 
2014). Equations based on the full spectrum have been 
developed for the determination of fine milk compo-
nents such as fatty acid profiles (Soyeurt et al., 2006; 
Rutten et al., 2009), protein composition (Bonfatti et 
al., 2011), minerals (Soyeurt et al., 2009), ketone bodies 
(van Knegsel et al., 2010), citrate (Grelet et al., 2016), 
and lactoferrin (Soyeurt et al., 2007). Other studies 
have focused on FT-MIR spectra to build equations 
predicting technological properties of milk such as milk 
acidity (De Marchi et al., 2009), ability to coagulate, 
firmness of curd, or cheese yield (Dal Zotto et al., 2008; 
Colinet et al., 2015). Recent work has directly consid-
ered the FT-MIR spectrum of milk as a reflection of 
cows’ status, with FT-MIR equations being developed 
to predict methane emissions of dairy cows (Dehareng 
et al., 2012; Vanlierde et al., 2016), likelihood of con-
ception (Hempstalk et al., 2015), body energy status 
(McParland et al., 2011), energy intake and efficiency 
(McParland et al., 2014). In the work of Lainé et al. 
(2017), the spectrum is even considered as a response 
for which the effect of pregnancy is evaluated. Hence, 
the FT-MIR analysis of milk allows the measurement 
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of multiple variables to be used for fine milk quality 
control in industry, management of herds, or the gen-
eration of new phenotypes for genetic studies. Even if 
some models could be statistically considered as low 
quality, they are of major interest for the dairy sector 
because they provide the opportunity to predict key 
variables that were not available before on a large scale 
and in a cost-effective way.

However, developing such models is time consuming 
and expensive given that they require the analysis of a 
large number of samples to cover the whole distribution 
of the studied trait as well as a large spectral vari-
ability. Therefore, there is a clear interest in sharing 
predictive models among milk laboratories and milk 
recording organizations. However, a major issue with 
FT-MIR data is related to the specific instrumental 
response produced by each spectrometer. These differ-
ences between spectral responses of instruments origi-
nate from the physical characteristics and acquisition 
modes specific to each model of machine and from the 
different uses, piece replacements, and maintenance 
operations specific to each spectrometer. Differences in 
spectral response cause difficulties in combining spec-
tra as well as bias in predictions when transferring a 
calibration model built on one instrument to another 
instrument. Consequently, exchanges of data and mod-
els are limited. To cope with this issue, classical models 
predicting the main milk components by FT-MIR (e.g., 
fat and proteins) are monitored and adjusted over in-
struments and over time using slope and intercept cor-
rection. The method is based on the adjustment of the 
models according to interlaboratory study samples, in 
which the content of the relevant components is known. 
However, for most of the new predicted variables (e.g., 
cows’ physiological status or hard-to-measure fine milk 
components), it is expensive or almost impossible to 
produce interlaboratory study samples with a known 
content of the variable of interest. This makes it dif-
ficult or impossible to adjust a model after transfer 
to another spectrometer. Consequently, a model devel-
oped on one instrument theoretically can be used only 
by that instrument because of its specific format. In the 
context of increasing interest in using new models, the 
impossibility of transferring them leads to a suboptimal 
situation, as the creation of robust models is difficult 
and expensive.

For this reason, it is necessary to implement a pre-
liminary step of spectral standardization permitting 
the sharing of models. In the context of projects in-
volving international networking, since December 2011 
a large instrument standardization network has been 
developed to harmonize the format of FT-MIR milk 
spectral response. The objective is to clear the way for 
potential collaborations between organizations using 

FT-MIR spectrometers for milk analysis. The possibil-
ity of creating common data sets and common models 
that can be transferred from laboratory to laboratory 
and used by all instruments allows financial and techni-
cal resources to be pooled. Moreover, the possibility of 
merging spectral data, as far as the reference methods 
are comparable, allows the inclusion of different feed-
ing systems, breeds, and management, thus increas-
ing the robustness of the developed common models. 
Over the years the network size has increased, and as 
many as 127 instruments of 3 different brands com-
ing from 14 countries on 4 continents (North America, 
Asia, Europe, and Oceania) have been standardized. 
Recently, it has been shown that using the piecewise 
direct standardization (PDS) method it is possible to 
transfer a high-quality fat model from one instrument 
to more than 20 different instruments in the network 
(Grelet et al., 2015). However, there is no information 
about the possibility of transferring models with lower 
accuracy or predicting fine milk composition or indirect 
variables, which are not milk components and conse-
quently are predicted indirectly, despite the fact that 
these models are of great interest to the dairy sector. 
Furthermore, the effects of standardization on spec-
tral and prediction reproducibility over the network 
have never been assessed even though it is essential 
for management or breeding purposes. Therefore, the 
objectives of this study were to evaluate the effect of 
the PDS standardization method (1) on spectral re-
producibility over spectrometers in a network, (2) on 
transferring multiple and varied FT-MIR models from 
one instrument to another, and (3) on the accuracy and 
reproducibility of predictions among all apparatus. The 
global perspective is to make all spectrometers speak 
the same language, thereby allowing the transfer and 
exchange of developed models predicting classical and 
new parameters throughout the network.

MATERIALS AND METHODS

Instrumentation

The different instruments available through the 
network are FT 6000, FT+, FT2, and FT120 (Foss, 
Hillerød, Denmark); FTS (Bentley, Chaska, MN); and 
Standard Lactoscope FT-MIR automatic (Delta Instru-
ments, Drachten, the Netherlands). The wave number 
ranges of the different brands were 925.66 to 5,010.15 
cm−1 for Foss instruments, 649.03 to 3,998.59 cm−1 
for Bentley instruments, and 397.31 to 4,000 cm−1 for 
Delta instruments. The resolution used was 8 cm−1 for 
Delta and Bentley instruments and unknown for Foss 
instruments. As the goal of this work was to validate 
the standardization method rather than to compare 
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the results of the different brands, the brands were 
anonymized as brand A, brand B, and brand C. In 
this study we used data coming from a December 2015 
interlaboratory study involving 66 instruments of the 3 
brands located in 26 laboratories in Austria, Belgium, 
Canada, France, Germany, Luxembourg, Switzerland, 
and the United Kingdom.

Standardization

The standardization procedure, based on the PDS 
method, is described in Grelet et al. (2015). A set of 
standardization samples were measured on a reference 
instrument (the “master” instrument) and on each 
instrument that needs to be aligned (the “slave” in-
struments), leading to different response matrices. As 
reported by Grelet et al. (2015) and Wang et al. (2016), 
individual FT-MIR spectrometers suffer from instabil-
ity over time. To cope with this instability, the master 
cannot be a single instrument. To bring stability to the 
reference, the master was therefore a fictitious machine 
that is an average of 18 instruments selected for their 
stability over time. In this configuration, the reference 
was linked to and dependent on the network but had 
a proper and stable spectral response to which all the 
slaves were matched. The response measured at a pre-
cise wave number on the master instrument was related 
to the response located in a small window around the 
same wave number measured on each slave instrument. 
A linear regression was then performed between the 
spectral response of the master at each wave number 
and the corresponding windows on the slaves. The 
coefficients generated for all wave numbers are called 
standardization coefficients. Whenever a new sample 
was measured on the slave instrument, the obtained 
spectra could be standardized to the master response 
format using these standardization coefficients. A 
standardization model needed to be designed for every 
master–slave combination, correcting the shift between 
each slave instrument and the master instrument.

To match each slave to the master, a set of stan-
dardization samples needed to be analyzed by all 
instruments following the same procedure. To achieve 
this, interlaboratory studies have been organized in the 
network every month since December 2011, distributing 
sets of identical samples to the different participating 
laboratories. The various partial least squares (PLS) 
models can make use of different spectral areas, so all 
the spectral regions containing information need to be 
standardized independently to the model used. The 
samples were created to cover sufficient variability in 
the absorbance values at each wave number to allow a 
regression between slave and master absorbance values 
at each region of the spectra. All the sets generated 

consisted of 5 samples of raw milk with large and or-
thogonal variations in fat (between 2 and 6% wt/vol) 
and protein (between 2 and 5% wt/vol). The samples 
were created by blending skim milk, cream, ultrafiltra-
tion retentate, and permeate. These sets of samples were 
produced according to the method described in ISO 
(1999). Samples were preserved with bronopol (0.02%) 
and sent at 4°C in isothermal packages containing ice 
packs and using express delivery (within 24 h). The 
day of receipt, the milk samples were homogenized and 
analyzed at 40 ± 2°C in triplicate by each laboratory 
following a common protocol.

The creation of samples and the generation of stan-
dardization coefficients were done centrally at Walloon 
Agricultural Research Center (Gembloux, Belgium). 
The instrument-specific standardization coefficients 
were transferred to the respective labs to be applied on 
the raw spectra of the corresponding slave spectrom-
eters to obtain standardized spectra.

Spectral Reproducibility Within the Network

The spectral variability between instruments of the 
network was assessed by performing a principal com-
ponent analysis (PCA) with the spectra of the master 
and all 66 instruments before standardization based 
on the analysis of the 5 common interlaboratory study 
samples in triplicate. The effect of standardization on 
the spectral reproducibility of the network was assessed 
by performing a second PCA with spectra of the master 
and all 66 instruments before and after standardization 
based on the same samples. All the spectra were trans-
formed in absorbance and interpolated to match the 
wave number range of the master to observe differences 
from spectral response only. A PCA was performed on 
spectra after a first derivative with a gap of 5 and using 
212 selected wave numbers, from 968.1 to 1,577.5 cm−1, 
1,731.8 to 1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, and 
2,831.0 to 2,966.0 cm−1 (Grelet et al., 2016). Based on 
the second PCA, the improvement of spectral repro-
ducibility was quantitatively assessed by comparing the 
global Mahalanobis distances (GH) of the slaves from 
the master before and after standardization.

Transfer of Individual Calibration Models

To cover the wide diversity of predicted variables 
that can be found in the milk sector, the effect of stan-
dardization on the transfer of models from instrument 
to instrument was tested for 3 varied models relating to 
(1) cows’ status (daily CH4 emitted by dairy cows), (2) 
fine milk composition (PUFA), and (3) technological 
properties of milk (fresh individual laboratory cheese 
yield of milk; FCY). The CH4 model was developed 
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by Vanlierde et al. (2016) and contains samples from 
Belgium and Ireland. In this study the Legendre 
polynomial transformation was removed because the 
interlaboratory study samples, which are not natural 
samples, cannot be associated with DIM information. 
The PUFA model comes from the work performed 
by Soyeurt et al. (2011) and contains samples from 7 
different countries in the European Union. The FCY 
equation was built within the framework of research 
by Colinet et al. (2015) based on Belgian samples. All 
the models were developed using PLS regression with 
a first derivative and a gap of 5 and using the 212 
wave numbers mentioned previously. Calibration and 
cross-validation statistics of the calibrations are shown 
in Table 1.

Based on the analysis of the standardization samples, 
the calibration models were applied to the master and 
slave instruments before and after the standardiza-
tion procedure. All the slave predictions were then 
compared with the predictions obtained by the master 
instrument. The results of the comparison between 
slave predictions and master predictions, before and 
after standardization, are expressed by the root mean 
squared error (RMSE). This reflects the differences 
between predictions of the master and predictions of 
the slaves due to specific spectral responses, highlighted 
by model transfer. However, as RMSE is related to the 
level and the unit of the variable predicted, a relative 
error was also calculated. The relative error due to 
model transfer was calculated by looking at the ratio of 
RMSE between slaves and master predictions divided 
by the average of the reference values from the calibra-
tion data sets.

Accuracy and Reproducibility of Predictions  
Over the Network

For the 3 models, the accuracy of the predictions 
within the network was assessed by comparing the 
global averages of the master predictions and of the 
predictions of all slave instruments before and after 
standardization. Comparisons were done using the 
Tukey test. The reproducibility of the predictions 

within the network was approached by calculating the 
standard deviation of the predictions of all instruments 
before and after standardization for the 5 samples and 
with the 3 models. Reproducibility within the network 
was also compared with the 10-d repeatability of pre-
dictions of individual instruments calculated, for each 
model, with the analysis of a common UHT milk set 
during 10 d. All computations, chemometric analyses, 
and graphics were carried out with programs developed 
in Matlab version 7.5.0. (The MathWorks Inc., Natick, 
MA) and PLS toolbox version 4.11 (Eigenvector Re-
search Inc., Wenatchee, WA).

RESULTS AND DISCUSSION

Spectral Reproducibility Within the Network

From the first PCA done with spectra of all instru-
ments before standardization, the principal components 
from 1 to 4 discriminate the 5 samples of the interlabo-
ratory study. Therefore, these principal components 
comprise spectral information on milk composition. 
Principal components 5 and 6 allow discriminating 
the instruments and thus report information on the 
spectral variability among instruments (Figure 1). On 
this PCA figure, the spectra of the 66 instruments are 
represented by a color–symbol association. The hetero-
geneous distribution of the instruments highlights the 
considerable variability of spectral response between 
the different spectrometers within the network. Princi-
pal components 5 and 6 of the second PCA performed 
on spectra of the master (red stars) and all 66 instru-
ments before (blue triangles) and after (green squares) 
standardization are reported in Figure 2. On this PCA 
figure, the master showed reduced variability, with 
spectra concentrated into a small space showing good 
homogeneity of the reference spectral response. By 
contrast with the considerable spectral heterogeneity 
observed without standardization, the spectral vari-
ability of the slaves was relatively limited after PDS. 
Spectral reproducibility was considerably improved 
after standardization, and standardized slaves’ spectra 
were concentrated around the master spectra. This in-

Table 1. Calibration and cross-validation statistics of equations used1

Predicted variable Terms Samples Mean SD SEC R2c CV groups SECV R2cv RPDcv

Methane emitted (g/d) 12 532 430 129 66 0.74 5 72 0.69 1.79
Total PUFA (g/100 mL of milk) 11 1,799 0.159 0.045 0.021 0.78 4 0.021 0.77 2.10
Fresh cheese yield (g of curd/100 g of milk) 8 337 26.51 7.11 3.44 0.77 4 3.62 0.74 1.96
1Terms = number of terms used in the regressions; Samples = number of samples in the calibration data sets; SEC = SE of calibration; R2c = 
coefficient of determination of calibration; CV groups = number of subsets used in cross-validation; SECV = SE of cross-validation; R2cv = 
coefficient of determination of cross-validation; RPDcv = ratio of SD to SECV.
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Figure 1. Principal component analysis (PCA) of the spectra of all instruments before standardization (n = 66). The PCA is based on the 
common analysis of 5 standardization samples in triplicate after selection of 212 informative wave numbers and a first derivative. Plot of princi-
pal components (PC) 5 and 6 summarizes the spectral variability between instruments. Each color–symbol association represents an individual 
instrument. Color version available online.

Figure 2. Principal component analysis (PCA) of the spectra of all instruments, including the master, before and after standardization (n = 
66). The PCA is based on the common analysis of 5 standardization samples in triplicate after selection of 212 informative wave numbers and 
a first derivative. Plot of principal components (PC) 5 and 6 summarizes the spectral variability between instruments. Color version available 
online.
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dicates that slaves’ spectral responses were much closer 
to the master’s spectral response than before and that 
the spectral homogeneity within the network increased.

The GH from the slaves to the master were calculat-
ed to evaluate quantitatively the spectral homogeneity 
within the network before and after standardization. 
Before PDS, the GH ranged from 6.17 to 8,6759.36, 
with an average value of 2,655.92. These very high GH 
can be explained by the fact that GH is the ratio of 
the Mahalanobis distance of a spectrum to the aver-
age of Mahalanobis distances of a reference data set. 
Classically, the GH is used to compare a sample with 
a database in a calibration step or as quality control 
when using an equation to predict new samples. These 
databases are built to contain as much variability as 
possible, which makes the denominator—the global 
Mahalanobis distance of the database—high. The 
threshold of 3 is then frequently used to define samples 
as outliers. In this study the GH was used in a different 
way, by comparing spectra with a reference containing 
very low variability, making the denominator really low. 
This reflects the fact that slaves’ spectra contain an im-
portant variability compared with the master spectra, 
which constitute a homogeneous reference with limited 
spectral variations. Therefore, the threshold of 3 is not 
adapted in this case because the GH is used to compare 
another type of data, with another variability. After 
standardization the GH ranged from 0.50 to 350.24, 
with an average of 14.26. These quantitative results, 
with an average GH from the slaves to the master that 
is 186 times smaller, confirm the first conclusions ob-
tained by visual observation of the PCA. The standard-
ization process strongly reduces the spectral variability 
within the network and makes the spectra closer to the 
master response, which is expected to have a positive 
effect on the transfer of models.

Transfer of Individual Calibration Models

Figure 3 shows the transfer of the CH4 model to an 
instrument of each brand before and after standard-
ization. It illustrates the bias potentially generated in 
predictions by the transfer of a model without a prelim-
inary step of spectral standardization. The figure also 
shows the reduction of the differences between slave 
and master predictions induced by the standardization. 
For all instruments, the differences between master and 
slave predictions before standardization were substan-
tial, with RMSE ranging from 6 to 422 g/d for CH4, 
from 0.0017 to 0.1333 g/100 mL for the PUFA model, 
and from 0.1110 to 39.57 g of curd/100 g of milk for 
FCY. Average RMSE for the 66 instruments without 
standardization was 103 g/d, 0.0315 g/100 mL, and 
2.55 g of curd/100 g of milk, respectively (Table 2). 

These errors due to model transfer were not negligible, 
with relative RMSE of 23.9, 19.8, and 9.6%. Without 
standardization, RMSE fluctuated among brands, with 
different levels of average (Table 2) and maximum (Ta-
ble 3) RMSE. However, these levels are relatively high 
compared with the standard error of cross-validation 
of the respective equations (Table 1), meaning that the 
transfer of models will add a fairly considerable error to 
the predictions compared with the inherent error of the 
models. For the CH4 and PUFA models, for all brands 
the transfer from the master to other instruments led 
in the majority of cases to strong bias in the predic-
tions, making the transfer of models inconceivable. In 
the case of the FCY model, for brands A and B the 
transfer from the master to other instruments also led 
to important bias in the predictions. Concerning brand 
C, the average difference from the master prediction 
before PDS was limited, suggesting that the model 
could be transferred without the standardization step. 
However, some instruments show elevated RMSE (up 
to 3.95 g of curd/100 g of milk), inducing substantial 
errors in predictions when transferring the model with-
out standardization.

After standardization, the RMSE between slave and 
master predictions was considerably decreased and 
ranged from 2 to 61 g/d for CH4, 0.0013 to 0.0152 
g/100 mL for PUFA, and 0.09 to 2.10 g of curd/100 
g of milk for FCY. The average RMSE for the 66 in-
struments was reduced to 17 g/d, 0.0045 g/100 mL, 
and 0.49 g of curd/100 g of milk, respectively (Table 
2). Consequently, the relative RMSE decreased after 
standardization from 23.9 to 4.0% for CH4, from 19.8 to 
2.8% for PUFA, and from 9.6 to 1.8% for FCY, meaning 
that the relative error induced by model transfer was 
reduced to a more acceptable level for the routine use of 
the predictions. Indeed, after PDS, the average RMSE 
was relatively limited compared with the inherent stan-
dard error of cross-validation of each model, meaning 
that the transfer did not add a significant error to the 
final predictions. The averaged and maximum RMSE 
still varied among the 3 brands but were considerably 
decreased for all of them after PDS (Tables 2 and 3). 
The average differences between master and slave pre-
dictions were 6.8, 8.7, and 4.5 times less, respectively. 
For the 3 models and the 3 brands, the effect of the 
standardization was a considerable reduction of the dif-
ferences from master predictions, allowing the transfer 
of the models to all slave instruments.

Accuracy, Reproducibility, and Use  
of Predictions Over the Network

Figure 4 illustrates, for one sample of the interlabora-
tory study, the improvement of the reproducibility of 
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PUFA predictions after standardization compared with 
predictions from raw spectra. After standardization the 
distribution of the PUFA predictions was much tighter, 
meaning that the predictions were more precise. The 

mean was also closer than the master prediction mean, 
showing an increase in the accuracy of the predictions.

To evaluate the effect of standardization on network 
accuracy for the 66 instruments, the slave prediction 

Figure 3. Comparison of methane predictions (g/d) by the master and by 3 slaves from the 3 brands before (left) and after (right) stan-
dardization. Dashed line is y = x; continuous line is the regression line between slave and master predictions. RMSE = root mean squared error. 
Color version available online.
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means were compared with the master prediction means 
(Table 4). For CH4 and PUFA, the prediction means 
for all instruments without standardization were sig-
nificantly different from the master prediction means, 
with 431 versus 496 g/d for CH4 and 0.093 versus 0.117 
g/100 mL for PUFA. After standardization, the predic-
tion means were 495 g/d and 0.117 g/100 mL, respec-
tively, and could not be significantly differentiated from 
the master prediction mean. For FCY, the prediction 
means without (25.92 g of curd/100 g of milk) and with 
(24.46 g of curd/100 g of milk) standardization could 
not be significantly differentiated from the master pre-
diction mean (24.47 g of curd/100 g of milk), although 
the prediction mean after PDS seemed closer. Network 
accuracy was significantly improved after standardiza-
tion for CH4 and PUFA models. This also seemed to be 
the case for FCY, although this could not be demon-
strated statistically. After PDS, for the 3 brands taken 
separately and for each model, there was no difference 
between the predictions of the master and of the slaves 
of each brand of instrument (Table 5).

Network reproducibility was improved, with SD 
between instruments’ predictions reduced after stan-
dardization from 126 to 25 g/d for CH4, from 0.0346 
to 0.0069 g/100 mL for PUFA, and from 4.89 to 0.69 
g of curd/100 g of milk for FCY (Table 4). For the 3 
models and for brands A, B, and C, the average 10-d 
repeatability of the instruments was 45, 22, and 50 g/d 
per cow; 0.0108, 0.0095, and 0.0063 g/100 mL of milk; 
and 1.06, 0.72, and 0.57 g of curd/100 g of milk, respec-
tively. The reproducibility levels obtained were there-
fore in the same order of magnitude as the inherent 
repeatability of individual spectrometers, meaning that 
predictions throughout the network were as precise as 
for an individual instrument. These results show that 
at the network level the method improved the accuracy 
and reproducibility of predictions by matching all spec-
trometers to a common reference response format.

As shown in Figure 3, improved network reproducibil-
ity harmonized the regression lines between spectrom-
eters. In breeding studies this increases the usefulness 
of prediction. Indeed, if intraherd differences can be 
adjusted through the herd means, heterogeneity of vari-
ances due to instruments would be a major challenge 
in genetic evaluations and could only be approximately 
adjusted postprediction with very complex methods 
(e.g., Gengler et al., 2004) if sources of variation, which 
are numerous and unforeseeable, are correctly identi-
fied for each instrument, which is not realistic on a 
network-wide scale.

General Discussion

The goal of this work was to evaluate the effect of 
a standardization method on the transfer of multiple 
models with low accuracy from instrument to instru-
ment. A previous study (Grelet et al., 2015) demon-
strated that until now it was possible to transfer only 
high-quality models (fat). The results confirm the first 
conclusions obtained with the fat model: without the 
use of a standardization step, the transfer of models 
leads to considerable errors in the predictions, reducing 
the value of information from FT-MIR milk spectra for 

Table 2. Root mean squared error (RMSE) between master and slaves predictions, averaged by brand, before and after piecewise direct 
standardization (PDS; n = 66 instruments)

Item

Methane emitted (g/d)

 

PUFA (g/100 mL of milk)

 

Cheese fresh yield  
(g of curd/100 g of milk)

Before PDS After PDS Before PDS After PDS Before PDS After PDS

Brand A 231 33   0.0733 0.0089   6.73 1.47
Brand B 348 25   0.1281 0.0027   23.94 1.15
Brand C 73 14   0.0211 0.0039   1.09 0.31
Global average 103 17   0.0315 0.0045   2.55 0.49

Figure 4. Box plot representation of PUFA predictions for a sam-
ple of the interlaboratory study analyzed on 66 instruments for master 
spectra, nonstandardized spectra, and spectra after standardization 
after removing aberrant values.
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the dairy sector. This study shows that standardiza-
tion greatly reduced the spectral variability between 
spectrometers of the network by bringing the spectra 
closer to a common reference response. Moreover, the 
use of PDS strongly increased the reproducibility and 
accuracy of predictions across all instruments. With the 
3 models used (CH4 emitted by dairy cows, PUFA in 
milk, and FCY), the developed method substantially 
reduced the relative error due to transfer of equations. 
The differences between master and slave predictions 
were 6.8, 8.7, and 4.5 times less, respectively. This 
demonstrates the possibility of transferring different 
models relating to cow status, fine milk composition, 
or technological properties of milk within the network.

However, the levels of reduction obtained were less 
impressive than those obtained for the fat model, where 
the differences between slave and master predictions 
were reduced on average by a factor of 29.5, whereas 
the spectral correction was the same. Furthermore, the 
relative RMSE after standardization were 4.0, 2.8, and 
1.8% for CH4, PUFA, and FCY, respectively, whereas 
it was only 0.4% for the fat model. Compared with 
the models used in the study, the main characteristics 
of the fat model were greater accuracy and a direct 
and strong signature of fat molecules in the spectra. 
Figure 5 illustrates the link between the coefficient of 
determination of cross-validation (R2cv) of the mod-
els and the performances of the transfer. This clearly 
shows that the error does not depend only on the stan-
dardization method, which does not increase the error 
in the final predictions, but mainly on the quality of 

models used. As the standardization did not interfere 
with the error of the final results, the decision to put 
effort into developing and sharing a model relies only 
on the quality of the model regarding the accuracy 
needed. Williams (2014) proposed a scale regarding 
the quality of models using the ratio of performance 
to deviation (RPD), which is the standard deviation 
of the reference values divided by the standard error of 
prediction. From this scale, the models with an RPD 
of <2.3 are very poor and not recommended. Hence, 
one can think that developing and transferring such 
models is useless. However, in Williams (2014), the aim 
was related to quality control of products, and the scal-
ing of the RPD was done in line with this objective, 
which is quite demanding. Furthermore, the paper also 
mentioned that due to some complications (e.g., dif-
ficulties obtaining high variance in the sample set) high 
RPD can be difficult to obtain, whereas the models 
can still be of interest for industry or research. In the 
present study, the models used were not dedicated to 
quality control, and in another context (e.g., animal 
management advisory and especially breeding) they 
can be of interest despite their low accuracy. There are 
several reasons for this. First, even if these models are 
phenotypically imprecise, they provide useful informa-
tion that was not available before (e.g., predictors for 
direct traits that were very difficult to obtain). Second, 
if prediction errors are random, having multiple records 
reduces the predictive noise globally. Third, in genetic 
studies, they are repeated throughout a family, and a 
common genetic background (being heritable) can be 

Table 3. Maximum root mean squared error (RMSE) between master and slaves predictions, sorted by brand, before and after piecewise direct 
standardization (PDS; n = 66 instruments)

Item

Methane emitted (g/d)

 

PUFA (g/100 mL of milk)  
Cheese fresh yield  

(g of curd/100 g of milk)

Before PDS After PDS Before PDS After PDS   Before PDS After PDS

Brand A 420 61   0.1009 0.0152   12.14 2.10
Brand B 422 26   0.1333 0.0041   39.58 1.35
Brand C 247 27   0.0529 0.0112   3.95 1.07

Table 4. Accuracy and reproducibility of predictions within the network; comparison of predictions from master, nonstandardized, and 
standardized spectra, from samples of the interlaboratory study analyzed on 66 instruments using 3 different Fourier transform mid-infrared 
calibrations

Item

Mean

 

SD

Master Slaves before PDS1 Slaves after PDS Before PDS After PDS

Methane emitted (g/d) 496a 431b 495a   126 25
PUFA (g/100 mL of milk) 0.117a 0.093b 0.117a   0.0346 0.0069
Fresh cheese yield (g of curd/100 g of milk) 24.47ab 25.92b 24.46a   4.893 0.694
a,bMeans within a row with different superscripts are significantly different by the Tukey test (P < 0.05).
1PDS = piecewise direct standardization.
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genetically correlated with other traits of interest (e.g., 
direct health traits). Usefulness of models with lower 
phenotypic predictive power is linked to their genetic 
correlation to other traits of interest. Concretely, there 
are various examples of how such models with low sta-
tistics (RPD < 2.3, which is equivalent to R2 < 0.81) 
can be of interest for the dairy sector. For example, 
Leclercq et al. (2013) studied the genetic variability of 
lactoferrin based on a model with R2cv = 0.71, Cec-
chinato et al. (2009) used coagulation property models 
with R2cv between 0.46 and 0.69 to estimate heritabili-
ties and genetic correlations, and the models developed 
by de Roos et al. (2007) with R2 of 0.72 for acetone and 
0.64 for BHB are currently routinely used for ketosis 
screening. In a genetic study, Bonfatti et al. (2017b) 
concluded that genetic progress will be faster with good 
models and that less accurate equations might be suc-
cessfully used for breeding purposes. Finally, McPar-
land et al. (2015) showed that the ultimate issue for 
the use of such models for breeding is the existence of 
genetic correlations. Based on models predicting energy 
intake and energy balance with R2cv of 0.56 and 0.53, 
respectively, they reported genetic correlations between 
measured and MIR-predicted traits of 0.84 for energy 
intake and 0.54 for energy balance, indicating that selec-
tion based on MIR-predicted variables would improve 
true energy intake and energy balance. Consequently, 
the RPD needed should be defined by the users, and 
this level will be different following their own purposes 
and applications.

Furthermore, the presented standardization method 
will improve the usefulness of models with low predictive 
power. These models provide useful information that 
was not available before; however, this type of data has 
to be accumulated across large populations, therefore 
involving many instruments. Having multiple records 
reduces the predictive noise globally, but only if these 
records are comparable across time and instruments. 
For breeding studies, usefulness of models is linked to 
their genetic correlation to other traits of interest. How-
ever, these studies have to rely on many comparable 
records. Nonstandardized data would inflate residual—
not modeled—variance and therefore reduce heritabil-
ity and genetic progress. It would also affect genetic 
correlations between FT-MIR models and direct traits. 

McParland et al. (2015) reported good genetic correla-
tions between measured and MIR-predicted traits, but 
this study was based on a single spectrometer. One can 
hypothesize that genetic correlation would have been 
lower with nonstandardized FT-MIR data from several 
instruments.

In addition to the standardization methods, some 
important parameters need to be considered to ensure 
reproducible and accurate predictions for routine use. 
First, complementary to the homogeneity of spectral 
response, the robustness of models is an essential el-
ement. This capacity of the models to be all terrain 
is affected not only by the statistical performances of 
the models (e.g., the RPD), which are well known, but 
mainly by others factors not frequently mentioned. 
Models can be transferred into the network, but it is 
necessary to ensure that calibration data sets cover the 
spectral variability of the different geographical regions, 
breeds, and diets to obtain valid predictions. Robust-
ness is also affected by the number of latent variables 
used in the PLS models (which should be reasonable) 
as well as the precision of the reference method, the use 
of a repeatability file, the integration of several brands 
of FT-MIR spectrometers into the data set, and the 

Figure 5. Plots representing the link between the quality of the 
model (coefficient of determination of cross-validation; R2cv) and 
the performance of the transfer by piecewise direct standardization 
[relative root mean squared error (RMSE) between slaves and mas-
ter predictions after standardization] from the 5 interlaboratory study 
samples analyzed on 66 instruments. CH4 = methane emitted by dairy 
cows; PUFA = PUFA in milk; FCY = fresh cheese yield; Fat = fat 
model used in Grelet et al. (2015).

Table 5. Reproducibility of predictions among the different brands after standardization; comparison of predictions from master and standardized 
spectra, from samples of the interlaboratory study analyzed on 66 instruments using 3 different Fourier transform mid-infrared calibrations

Item Master Brand A Brand B Brand C P-value

Methane emitted (g/d) 496.1a 496.0a 487.5a 494.93a 0.967
PUFA (g/100 mL of milk) 0.117a 0.117a 0.118a 0.117a 0.999
Fresh cheese yield (g of curd/100 g of milk) 24.47a 24.50a 24.35a 24.45a 1.000
aMeans within a row with different superscripts are significantly different by the Tukey test (P < 0.05).
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reproducibility of wave number areas selected within 
the models. Second, the models have to be developed 
with standardized spectra to be compatible with the 
reference spectral response and to be used by all the 
spectrometers. Third, there is a need for a thorough 
investigation of the spectral stability of individual in-
struments over time, as this could potentially affect the 
predictions within 2 interlaboratory studies.

The developed method makes it possible to har-
monize a network precisely and hence to constitute a 
standardized historical database usable for multiple 
purposes. A new model predicting an interesting phe-
notype can be applied to past standardized spectra to 
take advantage of a depth of data (e.g., to realize a 
genetic study). However, the developed method is valid 
only once a slave instrument has been integrated in the 
network and has analyzed the standardization samples. 
Recently, a study aimed to standardize spectra over 
instruments and over time using historical data sets 
as a basis (Bonfatti et al., 2017a). This method al-
lows the harmonizing of historical databases and the 
use a posteriori of models when instruments have not 
been standardized. However, it is concluded in this 
work that to guarantee the correct application of the 
calibration models on a running spectrometer the in-
strument should be standardized using the traditional 
standardization methods, which make use of spectra 
acquired on common reference samples. The potential 
risk induced by using historical data sets is that it may 
correct not only differences attributable to instruments 
but also those attributable to other factors that may 
affect the different data sets, such as feed diets, breeds, 
or seasons. The methods are therefore complementary 
to retroactively standardize an instrument and to pre-
cisely harmonize a running network.

CONCLUSIONS

The results obtained in this work show that spectral 
standardization allows the transfer and use of multiple 
models on all instruments and the improvement of 
the spectral and prediction reproducibility within the 
network. The transfer does not add significant error 
to the final predictions, which are largely affected by 
the quality of the models used. The method makes the 
equations universal, thereby offering opportunities for 
data exchange and the creation and use of common 
robust models at an international level to provide more 
information to the dairy sector from milk analysis.
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