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Quantification of protein in wheat using
near infrared hyperspectral imaging:
Performance comparison with conventional
near infrared spectroscopy
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Pierre Dardenne2 and Vincent Baeten2

Abstract
Hyperspectral imaging is a powerful technique that combines the advantages of near infrared spectroscopy and imaging

technologies. Most hyperspectral imaging studies focus on qualitative analysis, but there is growing interest in using such

technique for the quantitative analysis of agro-food products in order to use them as universal tools. The overall objective of

this study was to compare the performance of a hyperspectral imaging instrument with a classical near infrared instrument

for predicting chemical composition. The determination of the protein content of wheat flour was selected as example.

Spectra acquisition was made in individual sealed cells using two classical near infrared instruments (NIR-DS and

NIR-Perstop) and a near infrared hyperspectral line-scan camera (NIR-HSI). In the latter, they were also acquired in

open cells in order to study the possibility of accelerating the measurement process. Calibration models were developed

using partial least squares for the full wavelength range of each individual instrument and for the common range between

instruments (1120–2424 nm). The partial least squares models were validated using the ‘‘leave-one-out’’ cross-validation

procedure and an independent validation set. The results showed that the NIR-HSI system worked as well as the classical

near infrared spectrometers when a common wavelength range was used, with an r2 of 0.99 for all instruments and Root

Mean Square Error in Prediction (RMSEP) values of 0.15% for NIR-HSI and NIR-DS and 0.16% for NIR-Perstop. The high

residual predictive deviation values obtained (8.08 for NIR-DS, 7.92 for NIR-HSI, and 7.56 for NIR-Perstop) demonstrate the

precision of the models built. In addition, the prediction performance with open cells was almost identical to that obtained

with sealed cells.
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Introduction

Since near infrared (NIR) spectroscopy was first
applied in agriculture by K.H. Norris in 1964, to meas-
ure moisture in grains,1 this technique has been widely
used by the agro-food industry for determining the
chemical composition and other quality properties in
biological samples. NIR spectroscopy is based on
sample absorption at specific wavelengths of incident
radiation. This absorption depends on the chemical
composition and physical state of the sample.
Like other vibrational spectroscopic techniques, NIR
is classified as an indirect analytical technique because
a calibration step is required in order to subsequently
predict a particular property from the spectra of
unknown samples. Robust and flexible NIR

instruments, as well as easy-to-use software for building
calibration models, are now available for routine con-
trol. Chemical determination based on NIR spectra is
fairly simple, rapid, nondestructive, and cost effective.
It requires a low input of reagents and can be imple-
mented at-line, on-line, or in-line at the site of food
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or feed production. At the laboratory level, under
ISO17025 conditions and taking account of all the
sample preparation and analysis steps, up to 100 sam-
ples of agro-food products can be analyzed in duplicate
in one day and by one analyst.2–4

More recently, NIR hyperspectral imaging (HSI) has
been developed as a powerful technique that combines
the advantages of NIR spectroscopy and imaging tech-
nologies. The great advantage of HSI is its ability to
acquire simultaneously spectral and spatial information
from a sample. Whereas classical NIR instruments col-
lect spectral data from an area of a fraction of the
sample, HSI collects spatially distributed NIR spectra
responses at many subsample areas or pixels (usually
hundreds or thousands) of the sample.5–7 Each hyper-
spectral image is represented in a 3D spectral cube,
usually called hypercube, with 2D spatial information
and 1D spectral information (i.e. absorbance at specific
wavelengths). The most important HSI applications
in the agro-food industry are in detecting defects,8,9

discriminating botanical species, cultivars and quality
classes,10–12 determining fruit ripeness7–13 and chemical
composition,14–16 and detecting and quantifying
contaminants.6,17–24

Traditionally, hyperspectral instruments are classi-
fied into three groups, depending on the way the hyper-
cube is generated: point-scan, line-scan, and plane-scan
instruments. Point-scan instruments successively
acquire a spectrum at a simple spatial location of the
scene of interest. For this, a spectrometer (equipped
with a single detector), coupled with a microscope
equipped with an automatic sample stage, is used to
perform the mapping in order to construct the hyper-
cube. Line-scan instruments, through the use of a 2D
focal plane array (FPA) detector, allow the spectra of
several pixels from a line to be collected simultaneously.
The hypercube is generated by moving the camera or
samples horizontally in order to scan the whole scene.
Plane-scan instruments allow the absorbance at
continuous wavelengths of the scene of interest to be
gathered successively. With this equipment, an FPA
detector is also used, but a device is needed to select
the absorbance at specific frequency, the hypercube
being built through a step-by-step acquisition of the
absorbance images at the successive wavelengths.
In agro-food product analysis, line-scan instruments
seem to be the best compromise for speed of analysis,
flexibility, and possible use for on-line control.10,25

As noted earlier, NIR HSI is used mainly in quali-
tative studies and its use in quantification is still limited.
However, there is an interest for the development of glo-
bal tools where bulk calibration of classical quantitative
constituents for quality control could be determined
with the same apparatus used for the determination
of properties that are easy or could only be detected
with an imaging system mainly related to qualitative
aspects as contaminant or fraud detection. In this dir-
ection, only in recent years, several studies have demon-
strated the feasibility of using an HSI system for the

quantitative prediction of the internal composition
of agro-food products. Several studies have reported
on the use of HSI to predict, inter alia, the content of
water, fat, protein, and total saturated and total unsat-
urated fatty acids in red meat26–29; fat and protein con-
tent in cheese30; moisture and fat content in various
species of fish31; soluble solids, moisture content, and
acidity in fruits and vegetables32–35; and moisture, fat,
starch, and oleic acid content in cereals.14,36,37 Studies
have also been conducted to predict the content of
minor compounds such as anthocyanins and flavonols
in grape skin38 and grape seed,39 respectively; total pig-
ment in red meat40; synthetic astaxanthin coating and
total volatile basic nitrogen in fish41,42; and total gluco-
sinolate in freeze-dried broccoli.43 Macronutrients in
oilseed rape leaves44 and wheat leaves45 have been
also determined using HSI. In addition to predicting
internal composition, NIR HSI has been used for pre-
dicting water holding capacity, color, pH, tenderness,
and microbiological attributes, such as total viable
counts of bacteria, in red meat46,47 and in fish,48–52 as
well as firmness in fruits and vegetables.7,34

Based on these references, HSI appears to be a
powerful technique for the quantitative prediction
of the composition of food products. However, it is
not known how similar its performance is to any
other classical NIR instrument. Knowing more about
its comparative performance would enhance the poten-
tial of HSI for quantitative aspects until now mainly
conducted with classical NIR spectrometers. New HSI
instruments are now cheaper and faster, and the devel-
opment of adequate chemometric tools and computer
software will undoubtedly help to optimize the explor-
ation of both spatial and spectral information for quali-
tative and/or quantitative determination. With the
decreasing cost of HSI instruments, there is growing
interest in finding out if they can be used in the same
way as classical NIR spectrometers for determining
quantitative parameters. So far as we know, there
have been only a few studies comparing HSI with
conventional NIR spectroscopy for quantitative predic-
tion. They have focused on agro-food products usually
considered a challenge for classical NIR techniques
because of the heterogeneous physical nature of the
sample (raw instead of ground material) and the het-
erogeneous spatial distribution of the parameters of
interest. Burger and Geladi30 compared an HSI instru-
ment based on plane-scan technology with two NIR
spectrophotometers (i.e. a scanning grating one with
rotating sample holders and an FT-NIR one equipped
with a fiber-optic sampling probe) for predicting the
protein and fat content of cheese. By selecting a
subset region of interest in the hyperspectral images
and reducing it to a single average spectrum, the
authors obtained almost identical results to those
obtained with classical NIR instruments. The predic-
tion error in terms of the average bias of the HSI instru-
ment was 0.6% for protein and 0.2% for fat content
compared with those obtained with the classical NIR
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instruments. The scanning grating spectrometer showed
the best results (0.2% for protein content and 0.5% for
fat content) and the FT-NIR the worst results (3.0%
for protein content and 0.7% for fat content). Xing
et al.53 compared a line-scan HSI system with an
FT-NIR spectrophotometer for predicting alpha-
amylase activity in individual wheat kernels. The per-
formance of the HSI system when using the average
spectra from the region of interest (i.e. the germ
region, where the alpha-amylase is mainly located)
was almost identical to the performance achieved with
classical FT-NIR instruments. For the HSI system, the
best model produced a coefficient of determination r2

for the validation set of 0.82 and a root mean square
error (RMSE) of 0.54. The predictive ability of the
FT-NIR was lower; the best model was obtained with
the original data (r2 and RMSE were 0.71 and 11.76,
respectively). Mendoza et al.,54 however, compared the
ability of an on-line hyperspectral scattering system and
a short NIR spectrometer (USB400, with a range of
460–1100 nm) for predicting the firmness and soluble
solids content (SSC) in three apple cultivars over two
seasons. Based on SEP and residual predictive devi-
ation (RPD) values, the NIR instrument was always
better at predicting SSC, although the RPD values
were< 2.5. In contrast, the hyperspectral scattering
system was better at predicting firmness. Ignat et al.55

showed that an HSI system based on electronically
tuned band-pass filter (AOTF) performed poorly com-
pared with a short NIR spectrometer (USB2000, with
350–1000 nm of spectral range) and a Liga SWIR spec-
trophotometer in predicting several quality parameters
in intact bell peppers. The best prediction models were
found for the SSC and the dry matter content. For
SSC, the RPD values were 3.9, 3.3, and 2.6 for the
short NIR, Liga SWIR and HSI systems, respectively;
for the dry matter, the RPD values were 3.8, 3.0, and
2.4, respectively. Rady et al.56 compared the potential
of an NIR hyperspectral line-scan system with two clas-
sical NIR spectrometers (i.e. an NIR transmittance
system and a visible/NIR interactance system using a
fiber optic), inter alia, for predicting the glucose and
sucrose content and the SSC of two potato cultivars.
All the instruments performed well for glucose, particu-
larly sliced samples. The visible/NIR interactance
system showed the best prediction models in terms of
the correlation coefficient r2 and RPD (�0.90 and 2.14,
respectively) for glucose. For the NIR hyperspectral
system, the best model for glucose was an r2 and
RPD of 0.74 (r2 of 0.55) and 1.49, respectively.

This study sought to assess the potential of an NIR
hyperspectral line-scan system for predicting some
important quality parameters of agro-food matrices
and comparing its performance with that of two clas-
sical NIR instruments widely used in the agro-food
industry and research laboratories. The overall object-
ive was to determine if an HSI instrument is as efficient
for predicting chemical composition as a classical NIR
instrument. This is performed because there is an

increasing need of developing global instruments,
i.e. instruments for the simultaneous determination
of different properties. On the basis of this consider-
ation, it could be more worthy to calibrate protein on
wheat kernels, for instance, where simultaneously the
same analysis could reveal the presence of pests, contam-
inants, etc. The collection of spectra on a very fine (pixel-
based) spatial level, the heterogeneity of the imaged
substance as well as size and shape characteristics for
intact objects can be obtained for defects/contaminants
detection; while with the average of pixels of the scene or
fraction of it to obtain a representative spectrum can be
of utility to perform quantitative analysis.

In this study, the determination of the protein con-
tent of wheat flour, historically one of the most
common uses of NIR spectroscopy in the agricultural
and food industry,57 was selected as an example. Wheat
flour samples are easy to handle using classical NIR
because the grinding process homogenizes the product
and protein content is a parameter that is stable over
time. Moreover, cereals products are usually studied
with a HSI in order to detect their purity, homogeneity,
and contamination among others.58–60

Materials and methods

Samples

A set of 79 wheat flour samples was used for this study.
The samples were collected in 2013, with 57 coming
from Belgian mills and 22 from the Bureau
Interprofessionnel des Etudes Analytiques (Bipea) in
France, an independent association that provides test-
ing programs to laboratories.

Reference analysis

The Dumas combustion method61,62 was used to deter-
mine the total nitrogen, and therefore the crude protein,
content. The method involves the total combustion of
samples under oxygen. Via subsequent oxidation and
reduction tubes, nitrogen is quantitatively converted to
N2. Results are given as % or mg nitrogen, which may
be converted into protein by using conversion factors.63

The reference value (% of protein content) for the Bipea
samples was 11.06� 0.90, with a minimum of 9.50 and a
maximum of 12.67. For the rest of the samples, the mean
value was 11.10� 1.28 and varied between 9.00 and
14.40. The estimated uncertainty of the method for
determination of total protein content is of 0.27.

Instrumentation and spectra acquisition

Two classical NIR instruments working in reflection
mode, as well as a NIR hyperspectral line-scan
camera were used in this study. Table 1 gives the
main characteristics of the instruments used.

The first NIR instruments is a NIR System DS2500
(Foss—hereafter referred to as NIR-DS) that operates

Sillero et al. 3



in reflection mode in the 400–2498 nm range, with a
spectral resolution of 0.5 nm. It averages a certain
number of spectra collected at different locations in a
sample cup (rotating sampling device) during analysis.
Spectra were collected using the ISIscan Nova software
across the original wavelength range. Each spectrum
was the average of 32 scans performed on the sample
and it was acquired in 66 s. The sample area measured
was about 2 cm2.

The second NIR instruments is a 5000 Autocup
DVP6BX instrument (Foss—hereafter referred to as
NIR-Perstop) that operates in reflection mode in the
1100–2498 nm range, with a spectral resolution of
0.5 nm. It also has a rotating sampling device.

Spectra were collected using ISIscan software across
the original wavelength range and each spectrum was
the average of 32 scans performed on the sample. The
sample area measured was about 2 cm2, and 57 s was
needed to analyze a cell. The difference of time of
analysis (i.e. 9 s) between both NIR instruments (i.e.
NIR-DS and NIR-Perstop) was due mainly to the auto-
sampler device of the NIR-Perstop instrument.

The third instrument is a NIR hyperspectral line-
scan camera (Burgermetrics—hereafter referred to as
NIR-HSI) or push-broom imaging system was used to
collect hyperspectral images. The NIR-HSI instrument
was a SWIR XEVA CL 2.5 320 TE4 camera using a
spectrograph. It has a cooled, temperature-stabilized
Mercury–Cadmium–Telluride detector combined with
a conveyor belt that presents the sample to the
camera. There is more information on this instrument
in Vermeulen et al.23 and Dale et al.10

Spectra acquisition was made using HyperPro soft-
ware (Burger-Metrics SIA, Riga, Latvia). All the
images consisted of 420 lines of 320 pixels acquired at
209 wavelength channels (1128–2425 nm) and 32 scans
per image. A 15mm lens was used to analyze the total
width of the plate. The lens was set up to cover 10 cm of
the width of the conveyor belt. The conveyor belt speed
was fixed at 3mm/s (i.e. 20 lines/s) so as to produce
clear images. In order to compensate for offset due to
the dark current, the light source temperature drift, and

the lack of spatial lighting uniformity, the spectral ima-
ging system was calibrated with a dark image
(by blocking the lens entrance) and a white image
(background) collected from a standard white reference
board (empty Teflon plate). The spectra were then
automatically corrected.

After spectral acquisition, a total of 2601 spectra
(51� 51 pixels) corresponding to a sample area of
� 3 cm2 were selected from the center of each image
and averaged in order to obtain the mean spectra of
each sample measured. In the configuration selected,
the time required to analyze one sample was 28.8 s.

For each instrument, the 79 samples of wheat flour
were measured in individual sealed cells with a glass
cover, first with the NIR-DS instrument, then with
the NIR-HSI instrument, and finally with the
NIR-Perstop instrument. Sealed cells were used to pre-
vent small moisture content changes in the samples and
to ensure that the same portion of each sample was
presented in the same condition to the different instru-
ments. In order to study whether or not the measuring
process in the line-scan system could be accelerated,
after the NIR-Perstop measurements with sealed cells,
spectra were also acquired in open cells and compared
with spectra of the sealed cells. In all cases, the samples
were measured randomly, although always in the same
order for all the instruments. The NIR measurements
were done in duplicate (i.e. the batch of samples was
measured consecutively two times according to the
protocol described before). The analysis of all the
samples with the three instruments was simultaneously
performed over three consecutive days.

Figure 1 shows the mean spectra of the 79 wheat
flour samples obtained with each instrument (i.e.
NIR-DS, NIR-Perstop, and NIR-HSI). For all instru-
ments, typical reflectance spectra are obtained with the
traditional bands and shape observed for ground
wheat.64 The different bands are related mainly to the
different stretching vibrational bands assigned to the
O–H, N–H, and C–H groups.65

Spectral data analysis

The spectral data were processed using Matlab software,
v. 7.0 (The Mathworks, Inc, Natick, MA, USA).
Chemometric tools were applied using the PLS
Toolbox (v. 4.11, Eigenvector, Inc., Manson, WA, USA).

Principal component analysis (PCA) was used for
exploratory analysis in order to extract the maximum
amount of information from each set of data.
Calibration models were developed using partial least
squares (PLS) for predicting the protein content for the
three instruments. These models were built using the
full wavelength range, which varied from instrument
to instrument (see Table 1) and also with the common
range between them (reduced wavelength range), which
corresponded to 1120–2424 nm. The number of PLS
latent variables has been determined through the
‘leave-one-out’ cross-validation (LOOCV) procedure,

Table 1. Characteristics of NIR instruments and NIR-HSI: total

wavelength range, common wavelength range, spot size, and

analysis time by sample.

Instrument

name

Wavelength

range

Common

range

Spot

sizea
Analysis

timeb

(nm) (nm) (cm2) (s/sample)

NIR-DS 400–2498 1120–2424 1.8 66.0

NIR-Perstop 1100–2498 1120–2424 1.8 57.6

NIR-HSI 1118–2425 1120–2424 3.0 28.8

NIR: near infrared.
aFor NIR-DS and NIR-Perstop, spot size is fixed at 15 cm in diameter; for

NIR HSI, a total of 2601 spectra (51 pixels� 51 pixels) were selected from

the center of each image.
bDetermined from the total time required by instrument for the measure-

ments of all samples (n¼ 79).
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and then an external/independent validation has been
applied. For LOOCV, one sample was left out and the
multivariate models were constructed with the rest
of the samples. The process was repeated until all the
samples had been used once in the validation set. For
independent validation, the samples were split into
two groups using two strategies: a calibration model
with 75% of samples randomly selected and validation
with the remaining 25% (Strategy 1); and a calibration
model with the first 60 samples in order of measure-
ment, and validation with the remaining 19 samples

(Strategy 2). The aim of Strategy 2 was to check stabil-
ity over time, as mentioned earlier. In both strategies,
the samples of the validation set were independent (i.e.
they came from different sources, wheat cultivars,
growing conditions, harvesting regimes, etc.).

The quality of the constructed models was evaluated
using the RMSE for calibration (RMSEC), cross-vali-
dation (RMSECV), and external validation (RMSEP).
The coefficients for calibration and prediction (r2) were
determined, as well as the RPD for calibration and val-
idation (RDPcal¼SD/RMSEC and RDPval¼SD/
RMSEP, respectively; with SD¼ standard deviation).
The best prediction models were those with higher
values of r2 and RPD and lower values of RMSEC
and RMSECV. Values of RPD greater than 3.0 indi-
cate excellent prediction accuracy.66

Results and discussion

The PCA score and loading plots of the sealed samples
are shown in Figure 2. The first two PCs explained
99.73% of the total variation in the raw NIR spectral
matrix. PC1 showed a clear separation between the
spectra from all the instruments clearly visible in the
loading plot and PC2 allowed the NIR spectra from
the NIR-HSI instrument to be discriminated from
those coming from the NIR-DS and NIR-Perstop
instruments.

The Hotelling’s T2, a measure of the distance from
the multivariate mean to the projection of each sample

Figure 2. Principal Component Analysis (PC1 and PC2).
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onto these two PCs, gave average values of 7.62, 6.87,
and 15.38 for NIR-DS, NIR-Perstop, and NIR-HSI,
respectively, indicating that the distance between
the conventional NIR instruments was smaller, and
so they are almost equivalent. These results were
confirmed when a three-nearest-neighbors distance
calculation was performed, with average values of
0.08, 0.05, and 0.179 for NIR-DS, NIR-Perstop, and
NIR-HSI, respectively. This suggests that there was
more variability in the raw data coming probably
from HSI due to a large measurement surface and non-
homogeneous light distribution.

Table 2 shows the results for the PLS models for the
determination of protein content for all the instruments
tested and using both the whole wavelength ranges and
the common range. The most efficient preprocessing
tool involved the use of standard normal variate fol-
lowed by a second derivative Savitzky–Golay (window:
11, polynomial: 2). As shown in the table, good predic-
tions with sealed cells were obtained when considering
the total wavelength range with an r2 of 0.99 for all the
instruments. NIR-DS gave the best results in terms of
RMSEP (0.14%) compared to NIR-Perstop (0.16%)
and NIR-HSI (0.17%). The generally good perform-
ance of the NIR spectroscopy instruments (NIR-DS
and NIR-Perstop) was not really a surprise, as NIR
spectroscopy is used routinely in the cereal industry
worldwide for quantifying protein content and other
chemical components of wheat flour.67 However,
the similar performance of NIR-HSI demonstrates
the potential of this technique for similar quantitative
applications. Looking at the RPD values, which
were higher than 3.0, the independent validations pro-
duced excellent predictions for protein, regardless of
instrument.

When the common wavelength range (1120–
2424 nm) was considered, Strategy 1 gave the best
prediction model, with a similar r2 (0.99) for all instru-
ments. NIR-HSI showed the same RMSEP values
(0.15%) as NIR-DS. NIR-Perstop showed the highest
value (0.16%) and an almost identical performance for
the total wavelength. The RPD values (8.08, 7.92, and
7.56 for NIR-DS, NIR-HSI, and NIR-Perstop, respect-
ively) showed excellent predictions of protein content.
These results demonstrate the potential of NIR-HSI
compared with conventional NIR instruments for
quantification, agreeing with earlier studies that
showed even better prediction of protein and fat con-
tent in cheese by hyperspectral plane-scan imaging than
FT-NIR,30 better prediction of alpha-amylase activity
in individual wheat kernels by hyperspectral line-scan
imaging than FT,53 and better prediction of firmness in
apple fruits using an on-line hyperspectral scattering
system than with using a short NIR spectrometer.54

The results differed, however, with regard to the
outputs of Strategy 2 (i.e. the first measured 60 samples
of the wheat flour set were used for calibration
and the remaining 19 samples for validation). Here,
the performances of the NIR-DS and NIR-Perstop Ta
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instruments were similar, but worse than in Strategy 1.
For both instruments, the r2 was 0.98, although the
RMSEP was higher with NIR-DS (0.16%) than with
NIR-Perstop (0.14%). For NIR-HSI, the r2 was 0.94,
the RMSEP 0.23, and the RPD fell by 35% compared
with Strategy 1. Although the mean RPD value was
higher than 3.0, denoting excellent prediction accuracy,
there was an important loss in prediction ability. The
results of Strategy 2 therefore indicated a decline in the
stability of the NIR-HSI instrument over time, which is
undesirable for routine analysis at industrial or labora-
tory level. This could be easily solved by calibrating the
instrument several times a day and before each analysis
of a set of samples.68

Figure 3 shows the prediction of the calibration and
validation sets for the total wavelength range using
Strategy 1 and the prediction of the validation set
for the reduced/common wavelength range using
Strategies 1 and 2.

In addition to the study on sealed cells, a tentative
HSI study was done on open cells (not shown in table).
The prediction performance for the total wavelength
range in open cells (r2 of 0.98 and RMSEP of 0.20%)
was almost identical to that obtained with the HSI

instrument in sealed cells (r2 of 0.99 and RMSEP of
0.17%). The RPD value fell by 17% for the sealed
cells, indicating excellent accuracy for protein content
prediction. Given that the time needed for analyzing
open cells fell by about 50% with the NIR-HSI instru-
ment compared to the other instruments (Table 1), this
is an interesting factor to take into account. The use of
open cells can therefore increase the speed of measure-
ment with NIR-HSI and could also be accelerated by
simultaneous measurement of two cells; hence the time
required would fall by up to about 14 s/measurement.

Conclusion

To date, the use of HSI has been based mainly on its
capacity for discrimination in qualitative studies, such
as those focusing on fraud or contaminant detection.
In our study, the comparison with classical NIR instru-
mentation demonstrated the potential of NIR-HSI for
quantifying the chemical composition of the samples.

In particular, the study showed that when a common
wavelength range is used for all the instruments and the
same sample sets, a hyperspectral line-scan system
worked as well as a classical NIR spectrometer and
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Figure 3. NIR predicted data versus reference data for protein content, for total wavelength range (strategy 1) and common wavelength

range (strategy 1 and 2).
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the time required for analyzing a sample decrease by at
least half. In addition, it showed that using open cells
increased the number of samples that could be analyzed
over time, paving the way to the development of a com-
plete methodology for on-line analysis.

The study demonstrated, then, the feasibility of
using NIR-HSI for predicting the protein content of
wheat flour and highlighted the potential of this tech-
nology for the cereal industry, given its already demon-
strated ability for sorting wheat into different classes
according to growing conditions, visible or internal
defects, and contaminants.

The main drawback of this type of system is (i) the
loss of stability over time, which affects the perform-
ance of hyperspectral systems in quantitative studies,
but this can be solved by carrying out the appropriate
calibration strategy; and (ii) its price, which is probably
the main limitation of using this technique for quanti-
fication. However, this could be solved as looking at
this technique as a multitool instrument, i.e. a system
that can be used as a classical NIR spectrometer for
quantitative quality estimations, as proved in this
study, and at the same time an instrument that gives
a fast and reliable solution for the qualitative detection
of abnormal ingredients or products, often demon-
strated in the scientific literature.
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