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A B S T R A C T

According to Italian regulation, 3% of common wheat - CW (Triticum aestivum) in durum wheat - DW (Triticum
durum) is the maximum permitted to produce pasta. Therefore, efficient methods for the detection of accidental
or intentional contamination of DW products with CW are required. Until now, all the studies dealing with the
detection of CW in DW have been mainly based on macroscopic, microscopic or molecular biology methods. In
this recent work, near infrared (NIR) hyperspectral imaging was evaluated as a tool for discriminating between
both species of wheat at the singulated kernel and bulk sample levels. This study involved the analysis of 77
samples of DW and 180 samples of CW. NIR images were acquired on a total of 4112 kernels at kernel level and
on a total of approximately 51.4 kg of kernels at bulk level. To discriminate DW from CW, four approaches were
studied based on morphological criteria, NIR spectral profile, protein content criteria and ratio of vitreous/non-
vitreous kernels. Partial least squares discriminant analysis was used as a classification method for the con-
struction of the discrimination models. Results showed that a combination of morphological and NIR spectral
approaches could detect fraud in sample classification with 99% accuracy.

1. Introduction

Common wheat flour (CW - Triticum aestivum) is commonly used to
produce bread and pastries while durum wheat semolina (DW - Triticum
durum) is traditionally used in the production of pasta in Italy. Some
Protected Designation of Origin (PDO) and Protected Geographical
Indication (PGI) breads from Southern Italy require the use of durum
wheat semolina in their preparation. Countries such as France, Italy and
Greece regard the addition of common wheat to durum wheat in pasta
production as adulteration. In some cases, mixtures of DW and CW can
be attributed to a supply problem or to a significant price difference
between the two species. According to current Italian regulation
“Presidente della Repubblica Decreto n. 187” of 9 February 2001,
possible cross-contamination with CW during the natural agricultural
process cannot exceed 3% while higher percentages are considered
fraudulent. Consequently, efficient methods for the detection of acci-
dental or intentional contamination of DW products with CW are re-
quired.

Many methods have been developed in the past to detect and
quantify CW adulteration in durum wheat semolina (Pasqualone,

2011). The official Italian method (Off Italian J, 1980) is based on the
separation of albumins by polyacrylamide gel electrophoresis. Other
discrimination methods are based on water soluble proteins using
acidic capillary electrophoresis (Piergiovanni, 2007); gamma/beta
gliadin detection using Reverse-phase High performance liquid chro-
matography (RP-HPLC) (Barnwell et al., 1994); gluten peptides using
LC/ESI-MS (Prandi et al., 2012); specific protein content using UPLC-
ESI-MS/MS (Russo et al., 2014); specific lipid content using HPLC
(Knödler et al., 2010); and DNA sequencing using a polymerase chain
reaction (PCR) (Pasqualone, 2011). All these methods are confirmatory
and generally applied to semolina or bakery end-products.

However, there have been very few studies concerning the detection
of CW kernels in DW kernels and until now these have been mainly
based on macroscopic, microscopic or molecular biology methods. The
macroscopic and microscopic morphological features of durum wheat
are important criteria to discriminate among wheat species. Jayas et al.
(2016), have shown the possibility of discriminating between DW and
CW kernels by analyzing morphological criteria from RGB images.
Molecular biology methods developed to be applied to semolina can
also be applied at the kernel level although kernels contain a high
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molecular weight DNA which is not fragmented by the constraints of
industrial processes.

This paper aims to explore the use of rapid screening methods at the
point of entry of a production chain to control raw material compliance.
As such, near infrared (NIR) spectroscopy could be considered a po-
tentially powerful tool for this purpose. The analysis is simple, fast and
non-destructive, and therefore suitable for on-line measurements. This
technique is often used for authentication and traceability of agri-
cultural and food products (Vermeulen et al., 2010, 2017; Cozzolino,
2016). Several studies have applied this technique to determine quality
parameters such as protein content from the durum wheat semolina or
directly from the kernels, making additional grinding or milling op-
erations unnecessary (Sinelli et al., 2011), despite the fact that the
protein content of durum wheat is generally higher than that of
common wheat (INRA et al., 2017). Another important quality para-
meter, vitreousness, is used by the wheat industry as an indicator of
milling and cooking quality. Vitreous kernels appear translucent,
whereas the non-vitreous varieties (also known as starchy or mealy
kernels) are opaque. Grain vitreousness/mealiness determines both its
nutritional value (protein content and composition, grain pigments)
and some physical features (endosperm hardness, kernel density and
colour). It is generally accepted that vitreous kernels are harder and
exhibit higher protein content. According to several studies, NIR in-
frared spectroscopy has a great potential to assess vitreousness (Wesley
et al., 2005).

NIR hyperspectral imaging has also been used to determine protein
content, moisture content, oil content, vitreousness and hardness, as
well as to detect sprouted, insect-damaged, and fungal-infected kernels
in wheat (Baeten et al., 2009; Caporaso et al., 2018). Additionally, this
technology has also been used to classify wheat kernels according to
their health (sound and damaged classes) (Baeten et al., 2009), the
variety or class of varieties (Vermeulen et al., 2010), their vitreousness
(vitreous and not fully vitreous class) (Gorretta et al., 2006) and
hardness (durum, hard and soft class) (Caporaso et al., 2018). In this
paper, NIR hyperspectral imaging has been defined as a fast method for
the at-line and on-line discrimination between both species of wheat at
the singulated kernel and bulk sample levels according to their mor-
phological profile, NIR spectral profile, protein content and vitreous-
ness criteria.

2. Material and methods

2.1. Samples

To assess the possible mixture of cereals in whole kernel, 3 sets of
DW samples (DW1-2014: 20 samples; DW2-2015: 32 samples; DW3-
2016: 25 samples) were collected in Italy in 2014, 2015 and 2016 re-
spectively. These samples of DW covered the variability of a typical
yearly harvesting campaign in terms of quality. The trials for wheat
registration in the Belgium catalog enabled the collection of four sets of
CW samples (CW1-2014: 30 samples; CW2-2015: 35 samples; CW4-
2016: 48 samples; CW5-2016: 42 samples) representing a large varia-
bility in terms of varieties for CW (Meza et al., 2016). A single set of CW
samples (CW3-2016: 25 samples) was also collected in Italy. From each
of these 257 samples, a subsample of 16 kernels was selected for kernel
by kernel analysis and a subsample of 200 g was extracted for bulk
analysis.

2.2. NIR hyperspectral imaging

The instrument used for this study is an NIR Hyperspectral Imaging
System (NIR-HIS) provided with a conveyor belt (BurgerMetrics SIA,
Riga, Latvia). This instrument is described in detail by Vermeulen et al.
(2012). All images consist of lines (320 pixels each) acquired at 209
wavelength channels: 1100–2400 nm at 6.3 nm intervals with 32 scans
by image. One NIR image and ± 30 NIR images were acquired at

kernel level (subsample of 16 kernels) and at bulk level (200 g sub-
sample) respectively for each sample. For each image of 16 kernels,
eight vitreous and eight non-vitreous kernels were analyzed. In each
subgroup of vitreousness, four kernels were placed on the groove side
and four on the opposite side for analysis.

2.3. Sample characterisation

To facilitate the construction of discriminations models between the
DW and CW samples described in 2.1, kernels were classified according
to several morphological criteria as well as to vitreousness and samples
were classified according to their protein content.

Kernels of a single specie/crop can be classified according to eight
morphological criteria (Eigenvector, 2018):

Area: A = π*r2; area of kernel (pixels2)

Perimeter: P = 2π*r; length of kernel perimeter (pixel)

Circularity: C = 4π*A/P2; perfect circle: C= 1

MaxFeret= Feret's diameter of kernel (length in pixels) = the longest
distance between any two points along the particle boundary

MinFeret=Minimum Feret's diameter of particle (length in pixels)

AR (aspect ratio)=major_axis/minor_axis

Round (roundness) = 4*area/(π*major_axisˆ2)

Solidity= area/convex area

These parameters were calculated on each cluster, corresponding to
a single kernel, obtained from the masks applied on the NIR-HIS images
of 16 kernels per sample (see section 2.4.1).

Regarding vitreousness, eight vitreous kernels and eight non-vitr-
eous kernels were selected within each sample based on visual ob-
servation.

In order to study the composition and variability of the samples set,
all of them were initially analyzed using a FOSS XDS NIR spectrometer
active in the 400–2500-nm range. Protein content was estimated using
an equation constructed with historical NIR databases on unground
wheat (Fernández et al., 2010). This equation was developed based on
3262 wheat samples and characterised by a coefficient of determination
(R2) of 0.95 and a standard error of cross validation (SECV) of 0.3. The
range of predicted protein content for the 5 sets (CW1 e CW5) was
10.3–12.3%, 9.3–10.7%, 10.7–15.6%, 10.9–12.8%, 10.8–12.8%, re-
spectively. For durum wheat, the protein content was higher with a
range of 12.1–15.1%, 10.3–13.8%, 13.2–17.4% for the three sets DW1,
DW2 and DW3, respectively. The predicted values for the protein
content were used to build PLS-DA models to discriminate samples with
high protein content for milling wheat (HP:> 12%) and low protein
content for feed wheat (LP:< 12%) (Meza et al., 2016).

2.4. Data treatment

Data treatment consisted of extracting the spectra relevant to ker-
nels using a mask, to build spectral libraries of DW and CW, and de-
velop classification models according to morphological criteria, NIR
spectral profile, protein content and level of vitreousness. The entire
treatment was conducted using the Matlab R2007b (The Mathworks
Inc., Natick, MA, USA) and the PLS toolbox 7.0.2. (Eigenvector
Research Inc., Wenatchee, WA, USA).

2.4.1. Preliminary data treatment: mask, libraries
Data treatment involved building spectral libraries from images of

16 kernels for each species, i.e., DW and CW. To extract data from the
image, a mask was built to isolate the kernels by applying a Partial
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Least Squares Discriminant Analysis (PLS-DA) model (Barker and
Rayens, 2003) combined with the density-based spatial clustering of
applications with noise method (DBSCAN) (Daszykowski et al., 2001)
procedure on each image. The PLS-DA model discriminates between the
pixels detected as background (conveyor belt) and the pixels detected
as kernels (DW or CW) based on their spectral profile. The DBSCAN is
applied to account for the density of the pixels detected as kernel by the
PLS-DA model. From the pre-treated images (image after applying a
mask on the NIR-HIS images of 16 kernels per sample), spectral li-
braries for DW and CW were compiled by selecting spectra at pixel level
or by calculating mean spectra on 1or 16 kernels. The spectral libraries
of pixels were used for the vitreousness criteria approach, the spectral
libraries of kernels (mean of ± 200 pixels) were used for the NIR
profile criterion approach, while the spectral libraries of kernel sub-
samples (mean of ± 200 pixels of 16 kernels) were used for the protein
content criterion approach. From these pre-treated images, spatial in-
formation of each kernel was also collected to calculate the geometric
features of each kernel used on the morphological criterion approach.

2.4.2. Building of classification models for DW and CW
PLS-DA was selected as the method of classification. Data treatment

was performed according to four approaches: morphological criteria
(C1), NIR spectral profile (C2), protein content criteria (< 12%
or>12%) (C3), and vitreousness criteria (C4). The discrimination
models between DW and CW were developed based on the 82 samples
included in the DW1, DW2 and CW1 sample sets. Table 1 summarises
the parameters (preprocessing, number of latent variables (LV), cross-
validation method, calibration and internal validation sets) used to
build the models as well as the performance of these models for cali-
bration, cross-validation and internal validation according to the four
approaches. This performance is expressed in terms of sensitivity, spe-
cificity and classification error, where sensitivity refers to the percen-
tage of samples drawn from the class studied that were correctly clas-
sified by the corresponding model, and specificity refers to the
percentage of samples not drawn from the class studied that were
correctly classified by the corresponding model. Classification error is
calculated on the basis of the sum of false positive results (100 - sen-
sitivity) and false negative results (100 - specificity), divided by two.

The morphological approach is based on the possibility of dis-
criminating between DW and CW by analyzing morphological criteria

from RGB images (Jayas et al., 2016). The idea is to analyze these
criteria on NIR-HIS images. Eight geometric features were estimated
applying the matlab procedure from each cluster (kernel) obtained by
applying a mask on the images. Eight kernels of each sample were se-
lected for the calibration set and the other eight for the internal vali-
dation set. Univariate analysis was performed on each criterion in-
dividually by calculating mean and standard deviation by sample. The
Eq-1 2015 model was also developed based on the eight morphological
criteria of 416 kernels of DW and 240 kernels of CW. The sensitivity and
the specificity of the model in internal validation were 93.3% and
92.1%, respectively.

The NIR spectral profile approach is based on the possibility of
discriminating between DW and CW by classical NIR analysis on bulk
samples (Williams and Sobering, 1993). The idea is to test the NIR
profile combined with spatial information to be able to discriminate
between DW and CW at kernel level. The mean NIR spectra for each
kernel were used to develop the discrimination model. Eight kernels of
each sample were selected for the calibration set and the other eight for
the internal validation set. The Eq-2 2015 model was developed based
on the NIR spectral profile of 416 kernels of DW and 240 kernels of CW.
The sensitivity and the specificity of the model in internal validation
were 97.1% and 86.3%, respectively.

The protein content criteria approach is based on the observations
that protein content is often higher in DW than in CW (France Agrimer
– Arvalis, 2016). This difference was confirmed by the samples of this
study showing an average protein content of 13.3% for DW, and 11.4%
and 12.5% for CW from Belgium and Italy respectively. The idea was to
use the mean NIR spectra calculated from the NIR-HIS images to assess
protein content and thus make discrimination between DW and CW
possible. First, a PLS regression model was built using the protein
content predicted by a FOSS XDS instrument as reference value, and the
mean NIR spectra of 16 kernels for each of the 82 samples. Nineteen
samples were rejected as outliers and 63 samples were selected to be
used as calibration set of the discrimination model. The Eq-3 2015
model was developed based on 23 samples with high protein content
(> 12%) and 40 samples with low protein content (< 12%). The sen-
sitivity and the specificity of the model in cross-validation were 87.0%
and 87.5%, respectively.

Finally, the vitreousness criterion was used. This approach is based
on the possibility of discriminating between vitreous and non-vitreous

Table 1
Performance of the PLS-DA models built for the four approaches.

Morphological criteria
Kernel level (K)
Durum Wheat (DW) vs Common
Wheat (CW)

NIR spectral profile
Kernel level (K)
Durum Wheat (DW) vs Common
Wheat (CW)

Protein content criteria
Subsample 16 K level (Ss)
High protein (HP: > 12%) vs Low
protein (LP: < 12%)

Vitreousness criteria
Pixel level (px)
Vitreous (Vit) vs not vitreous (nVit)

Eq-1 2015 Eq-2 2015 Eq-3 2015 Eq-4 2015
Preprocessing Autoscale SNV, Der 1 2 5 SNV, Der 1 2 5 Autoscale
Latent variables number 4 12 7 6
Cross-validation Leave on out Leave on out Leave on out Venetian blinds/10 splits
Calibration set Kernels 1–4 and 9–12 of each sample

in DW1-2, CW1
Kernels 1–4 and 9–12 of each
sample in DW1-2, CW1

Mean of 16 Kernels 1–16 of each
sample in DW1-2, CW1

Pixels of 4 1st kernels of each sample
in DW1-2, CW1

Internal validation set Kernels 5–8 and 13–16 of each sample
in DW1-2, CW1

Kernels 5–8 and 13–16 of each
sample in DW1-2, CW1

Calibration 416 K DW, 240 K CW 416 K DW, 240 K CW 23 Ss HP, 40 Ss LP 30408 px Vit, 33203 px nVit
Sensitivity 90.1 98.8 95.7 82.6
Specificity 93.8 99.2 90.0 82.2
Classification error 8.1 1.0 7.2 17.6
Cross-validation 416 K DW, 240 K CW 416 K DW, 240 K CW 23 Ss HP, 40 Ss LP 30408 px Vit, 33203 px nVit
Sensitivity 89.9 97.6 87.0 82.5
Specificity 93.8 98.8 87.5 82.2
Classification error 8.2 1.8 16.2 17.6
Internal validation set 416 K DW, 240 K CW 416 K DW, 240 K CW
Sensitivity 93.3 97.1
Specificity 92.1 86.3
Classification error 7.3 8.3
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kernels by classical NIR analysis and on the observations that the
vitreous/non-vitreous kernel ratio is often higher in DW than in CW
(Dowell, 2000; Konopka et al., 2015). The idea is to use NIR spectra
from the NIR-HIS images to assess the vitreousness of the kernels
making it possible to discriminate between DW and CW. Given that
kernels can be partially vitreous and non-vitreous, NIR spectra were
used to develop, pixel by pixel, a discrimination model for each kernel.
Four kernels of each sample corresponding to two vitreous kernels and
two non-vitreous kernels were selected for the calibration set. The Eq-4
2015 model was developed based on the NIR spectral profile of 30408
pixels of vitreous kernels and 33203 pixels of non-vitreous kernels. The
sensitivity and the specificity of the model in cross-validation were
82.5% and 82.2%, respectively.

2.4.3. Validation of PLS-DA models and expression of results
The Eq-1 2015 to Eq-4 2015 models were applied to the fully in-

dependent external validation sample sets: the 2015 CW2 set and all the
2016 sets.

For the C1 and C2 approaches, results were expressed at kernel and
sample level. In the case of the morphological criteria, the Eq-1 2015
model was applied at kernel level to the images of 16 kernels sub-
samples and a decision rule to determine the species was defined at this
level, based on the circularity (univariate analysis) and on the prob-
ability of being classified as DW (multivariate analysis) on the eight
geometric criteria. For the spectral profile, the Eq-2 2015 model was
applied at pixel level to the images of 16 kernels subsamples and a
decision rule to determine the species was defined at kernel level, based
on the % of pixels predicted as DW. Figs. 1 and 2 show the results
expressed at sample level as the mean of 16 kernels ± 2SD for the
morphological criteria and the spectral profile respectively. Decision
rules were defined by calculating half of the difference between the
mean values of the predicted values on DW and CW kernels subsamples
comprising the calibration set for the criterion under study.

The results yielded by the C3 and C4 approaches, were only ex-
pressed at the sample level. The Eq-3 2015 and Eq-4 2015 models were
applied at pixel level to the images of the 200 g subsamples and deci-
sion rules to determine the high/low protein content and vitreousness
criteria were defined at bulk level. Figs. 3 and 4 show the results ex-
pressed at sample level as a mean of 30 images ± 2SD for protein
content and vitreousness criteria respectively. The decision rules were
defined by calculating half of the difference between the mean values of
the predicted values on DW and CW for the 200 g subsamples

comprising the calibration set for the criterion under study.
Table 2 summarises for each approach, the decision rules and the

classification results in calibration and validation at kernel and sample
levels.

2.4.4. Data fusion
Data fusion consists of combining the predicted value obtained by

each approach individually developed in 2.4.2, and calculating a new
indicator (Di Anibal et al., 2011).

For images acquired on the 16 kernels subsamples, morphological
and NIR spectral approaches were combined and an indicator was
calculated as the average of the predicted values obtained by each
approach. Results were expressed at kernel and sample levels. Decision
rules were defined by calculating half of the difference between the
mean values of the new indicator on DW and CW kernels subsamples
comprising the calibration set for the criterion under study.

For images acquired on the 200 g subsamples, protein and vitreous
criteria approaches were combined and an indicator was calculated as
the average of the predicted values obtained by each approach. Results
were expressed only at the sample level. The decision rules were de-
fined by calculating half of the difference between the mean values of
the new indicator on DW and CW 200 g subsamples comprising the
calibration set for the criterion under study.

Finally, the four approaches were combined, and an indicator was
calculated as the average of the predicted values obtained by each
approach. Again, results were only expressed at the sample level. The
decision rules were defined by calculating half of the difference be-
tween the mean values of the new indicator on DW and CW samples
comprising the calibration set for the criterion under study.

3. Results and discussion

3.1. Based on the morphological criteria (C1)

The loadings plot of the PLS-DA Eq1-2015 model on geometric
features shows that the first latent variable explains 57% of the varia-
bility, which is mainly linked to the circularity, the roundness, the as-
pect ratio (major axis/minor axis), the maxFeret and the perimeter.
Indeed, the DW kernels are more elongated and the CW kernels, more
circular, and rounder. In the full sample set of this study, the features
calculated for DW and CW were 0.727 and 0.829 respectively, for cir-
cularity, 0.44 and 0.56 for roundness, 25.8 mm and 21.7mm for the

Fig. 1. Results of the morphological criteria approach applied at kernel level (C1): probability of being classified as DW (♦: mean by kernel ± 2SD) after applying
the Eq-1 2015 model to the 257 images of 16 kernels.
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maxFeret, 2.27 and 1.80 for the aspect ratio and, 61.9mm and 54.7 mm
for the perimeter. In Table 2, univariate analysis results for circularity
at kernel and sample levels are presented in comparison to a multi-
variate analysis performed on the eight geometric features.

Regarding univariate analysis of the circularity criterion, a kernel or
a subsample of 16 kernels is considered as belonging to the DW class if
its circularity is lower than 0.767. In terms of validation, at kernel level,
71.5% of DW kernels are sorted in the cereal batch and 95.6% of CW
kernels are sorted out of the cereal batch. At sample level, 76.0% of DW
samples are classified as DW class and 100% of CW samples are clas-
sified as CW class and can be sorted out of the cereal batch.

For multivariate analysis, the PLS-DA Eq-1 2015 model and the
threshold calculated at 0.512 were used for discriminating DW and CW.
In terms of validation, at kernel level, 65.5% of DW kernels are sorted in
the cereal batch and 97.4% of CW kernels are sorted out of the cereal
batch. At sample level, 64.0% of DW samples are classified in the DW
class and 100% of CW samples are classified in the CW class and can be

sorted out of the cereal batch. This low sorting performance for the
validation set of durum wheat samples can be explained by the different
varieties and pedoclimatic conditions prevailing in Italy between 2014/
2015 and 2016. As the DW samples collected in 2016 were char-
acterised by a higher circularity (0.741mm), the equation and decision
rule should be updated to account for this variability. For each image of
16 kernels per sample, Fig. 1 shows the statistic values (mean±2 SD)
of the probability of being classified as DW after applying the PLS-DA
Eq-1 2015 model. Table 2 summarises the number and percentage of
CW and DW kernels/samples respectively correctly classified as com-
pared to the other approaches.

3.2. Based on the NIR spectral profile (C2)

The loadings plot of the PLS-DA Eq2-2015 model on NIR spectra
shows that the first latent variable explains 92% of the variability,
which is mainly linked to water (1420 and 1910 nm), fat (1700 and

Fig. 2. Results of the NIR spectral profile approach applied at kernel level (C2): Percentage of pixels predicted as DW (♦: mean by kernel ± 2 SD) after applying the
Eq-2 2015 model to the 257 images of 16 kernels.

Fig. 3. Results of protein content approach applied at sample level (C3): Percentage of pixels predicted as high protein (♦: mean by image ± 2 SD) after applying the
Eq-3 2015 model on the 257 samples of ± 30 images (4000 kernels).
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2270 nm) and protein (2148 and 2200 nm) content. Indeed, the values
predicted by NIR spectroscopy show lower water content and higher
protein content in DW samples. The mean DW and CW values calcu-
lated for the whole sample set were 12.4% and 13.6% for moisture and,
13.3% and 11.6% for protein content, respectively.

The PLS-DA Eq-2 2015 model and the threshold calculated at 51.2%
of pixels were used for discriminating between DW and CW. In vali-
dation, at kernel level, 97.8% of DW kernels are sorted in the cereal
batch and 71.5% of CW kernels are sorted out of the cereal batch. At
sample level, 100% of DW samples are classified in the DW class and
80.7% of CW samples are classified in the CW class and can be sorted
out of the cereal batch. For each image of 16 kernels per sample, Fig. 2
shows the statistic values (mean± 2 SD) of the percentage of pixels
predicted as DW after applying the PLS-DA Eq-2 2015 model. Table 2
summarises the number and percentage of CW and DW kernels/samples
correctly classified versus other approaches.

3.3. Based on protein content (C3)

The loadings plot of the PLS-DA Eq3-2015 model on protein content
shows that the first latent variable explains 99% of the variability,
which is mainly linked to water (1420 and 1910 nm), fat (1702 and
2274 nm), protein and gluten (1979, 2054 and 2199 nm) content. This
confirms what has been already observed when using NIR spectra (2nd
approach).

The PLS-DA Eq-3 2015 model and the threshold calculated at 45.5%
of pixels were used for discriminating samples with low (LP:< 12%)
and high (HP:> 12%) protein content. In validation, at sample level,
100% of the DW samples were classified in the HP class and 80.7% of
the CW samples in the LP class and could be sorted out of the cereal
batch. Amongst the CW, 97.4% and 0% of the samples from Belgium
and Italy respectively can be sorted out of the cereal batch according to
low/high protein content. This low sorting performance for Italian
common wheat samples can be explained by the different varieties and
pedoclimatic conditions prevalent in each country. The equation and
the decision rule should be updated to account for this variability. For
each sample of ± 30 images per sample, Fig. 3 shows the statistic
values (mean± 2 SD) of the percentage of pixels predicted as HP after
applying the PLS-DA Eq-3 2015 model. A very small SD calculated on
the 30 images of each sample can be observed which means that the
analysis of one image corresponding to ± 7 g or ± 150 kernels could
lead to the same classification. Table 2 summarises the number and

percentage of CW and DW samples correctly classified versus other
approaches.

3.4. Based on the vitreous/non-vitreous kernel ratio (C4)

The loadings plot of the PLS-DA Eq4-2015 model on vitreousness
shows that the first latent variable explains 86% of the variability,
which is mainly linked to water (1420 and 1947 nm), fat (1677 and
2330 nm), protein and gluten (1476, 2023 and 2230 nm) and starch
(2117 nm) content. This confirms what has been already observed using
NIR spectra (2nd approach). Indeed, several studies show that protein
content in vitreous kernels is higher than in non-vitreous kernels
(Konopka et al., 2015).

The PLS-DA Eq-4 2015 model and the threshold calculated at 40.9%
of pixels were used for discriminating between vitreous (Vit) and non-
vitreous (nVit) kernels. In terms of validation, at sample level, 100% of
DW samples were classified in the Vit class and 88.0% of CW samples in
the nVit class and could be sorted out of the cereal batch. Amongst the
CW, 92.9% and 48.0% of samples originating from Belgium and Italy
respectively could be sorted out of the cereal batch according to their
vitreousness. This low sorting performance for Italian common wheat
samples can also be explained by the different varieties and pedocli-
matic conditions of these countries. The equation and the decision rule
should be updated to account for this variability. For each sample
of ± 30 images per sample, Fig. 4 shows the statistic values (mean±2
SD) of the percentage of pixels predicted as Vit after applying the PLS-
DA Eq-4 2015 model. We can also observe a very small SD calculated on
the 30 images of each sample, which means that the analysis of one
image could lead to the same classification, as it was the case for the
approach based on protein content. Table 2 summarises the number and
percentage of CW and DW samples correctly classified versus other
approaches.

3.5. Data fusion

Data fusion techniques at kernel and sample level have been applied
to all previous results (see section 3.1 to 3.4) to improve DW/CW dis-
crimination performance by combining two or four approaches.

The left part of Table 2 shows the percentage of CW and DW kernels
correctly classified according to the number of criteria used. Based on
kernel by kernel discrimination, the morphological criteria and the NIR
spectral profile approaches (C1 and C2) show a sensitivity of 65.5% and

Fig. 4. Results of the vitreousness approach applied at sample level (C4): Percentage of pixels predicted as vitreous (♦: mean by image ± 2 SD) after applying the Eq-
4 2015 model on the 257 samples of ± 30 images (4000 kernels).
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97.8% respectively, and a specificity of 97.4% and 71.5% respectively
in terms of validation. By combining these two criteria, sensitivity rises
74.3% and specificity 97.9%. At kernel level, the lower classification
error is obtained by combining the two criteria: 4.3% in calibration and
13.9% in validation.

The right part of Table 2 shows the percentage of CW and DW
samples correctly classified according to the number of criteria used.
Based on discrimination at sample level in calibration, the best criteria
to discriminate between DW and CW samples are morphological in
nature, followed closely by NIR spectral profiles (C1 and C2). In terms
of validation, by combining these two criteria, a correct classification of
88.0% is obtained for DW samples and of 100% for CW samples in
validation. The combination of protein content and vitreousness criteria
shows a sensitivity of 100% and a specificity of 83.0%. By combining
the four criteria, a correct classification of 76% was obtained for DW
samples and 100% for CW samples. The lower error classification at
sample level is also obtained by combining the morphological and
spectral criteria: 0% in calibration and 6% in validation.

4. Conclusions

This study shows the potential of NIR hyperspectral imaging com-
bined with chemometrics to sort kernels at the point of entry of the
production chain according to the following criteria, namely: mor-
phological, NIR spectra, protein content and vitreousness.

Models were developed based on samples collected in 2014–2015
and validated on samples collected in 2015–2016. In total, 4112 kernels
were analyzed at kernel level and 257 samples of ± 4000 kernels at
sample level. The models were applied either to the morphological
criteria or to all the individual pixels in the images of individual kernels
and bulk samples.

At kernel level, on the full set of 4112 kernels, 92.7% and 81.8% of
kernels were accurately classified based on the morphological criteria
and the NIR spectral profile respectively. As well, through the exclusive
use of the circularity criterion, 91.5% of kernels were correctly classi-
fied. By combining these two criteria, the correct classification rate
reached 94.8% of kernels.

At sample level, on the full set of 257 samples, 96.5% and 88.3% of
the samples are correctly classified based on the morphological cri-
terion and the NIR spectral profile respectively. By using either the
circularity criterion or a combination of the four approaches, 97.7% of
samples are accurately classified. The best classification rate of the
samples (98.8%) was obtained by combining morphological criterion
and NIR spectral profile. From the results on the full set of samples, it
can be concluded that the performance of the models based on NIR
(between 81.8% and 88.3%) is lower than the multivariate and uni-
variate models based on a morphological criterion (between 92.7 and
97.7%) to discriminate between DW and CW. One way to improve the
performance of the NIR equations could consist of updating the models
and decision rules based on the variability of the 2016 wheat samples.

These results showed that the method combining the morphological
criteria and the NIR spectral profile allows fraud to be detected with
98.8% accuracy permitting the correct classification of subsamples as
small as 16 kernels. Models based on protein content and vitreousness
are less efficient at discriminating between DW and CW but can be used
to sort out low protein and low vitreousness batches inside the DW class
by adjusting the thresholds.

Today, low cost RGB cameras could be used to discriminate DW and
CW kernels. Classical NIR spectroscopy could be also used to assess
protein and vitreousness on bulk samples. This study showed the po-
tential of the NIR hyperspectral imaging system to combine, in one
measurement, spatial information to discriminate between DW and CW
and, spectral information to assess the quality (moisture, protein and
vitreousness) of wheat on small samples up to kernel size. It also
showed the potential of data fusion to improve the classification results.
The next step should consist of taking the pilot online NIR hyperspectral

imaging system done at the laboratory level to an industrial level. A
previous study performed on the identification and quantification of
ergot contamination in wheat showed the transferability of the protocol
between two NIR hyperspectral imaging systems instruments
(Vermeulen et al., 2013).
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