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Abstract

A local‐based method for near‐infrared spectroscopy predictions, the local

partial least squares regression on global PLS scores (LPLS‐S), is proposed in

this work and compared with the usual local PLS (LPLS) regression approach.

LPLS‐S is based on the idea of replacing the original spectra with a global PLS

score matrix before using the usual LPLS. This is done with the aim of increas-

ing the speed of the calculations, which can be an important parameter for

online applications in particular, especially when implemented on large

databases. In this study, the performance of the two local approaches was

compared in terms of efficiency and speed. It could be concluded that the

root‐mean‐square error of prediction of LPLS and LPLS‐S were 1.1962 and

1.1602, respectively, but the calculation speed for LPLS‐S was more than 20

times faster than for the LPLS algorithm.
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1 | INTRODUCTION

Near‐infrared spectroscopy (NIRS), well known as a fast and nondestructive analytical method, is widely used in
combination with partial least squares (PLS) for quality control and shows great potential for application in many fields,
such as food (including fruits,1-3 dairy products,4 tea,5 meat,6 fish,7 and grain8,9), pharmaceuticals,10 biomass,11
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tobacco,12 and others. Generally speaking, conventional PLS (global PLS) calibration models can always provide satis-
factory results when the relationship between the spectral and reference values is linear and the data are sufficient to
cover all possible sources of variability. As Shenk et al suggested,13 the samples selected for model construction should
include all possible sources of variation in terms of measurement factors (room temperature, operator, and instrument
setup) but also in terms of sample population source (origin, process, varieties, storage conditions, and residual
moisture), which could increase the robustness of the calibration model. Based on these principles, extensive spectral
databases compiling thousands of NIRS absorbance spectra have been created in recent years. In the case of the agricul-
tural sector, the libraries relating to the monitoring of feed, grain, forage, and milk are the most extensive.

However, it is usually observed that the accuracy of the global calibration models (ie, a unique model fitted for all
the data set) decreases as complexity of the calibration set increases.13,14 To deal with this situation, multiple specific
calibrations for samples with a certain chemical composition or source can be developed to improve prediction
accuracy, but this can make the modeling process more complex when the categories within the database are very large.
In view of these disadvantages, several alternatives based on local regression methods have been proposed. Local
approaches can be used to develop individual calibration models for each unknown sample to be predicted by selecting
similar spectra from a large spectral library through distance or correlation.14,15

Of the existing local regression methods, comparison analyses using restructured near‐infrared and constituent
data,16 locally weighted regression (LWR),17 and the LOCAL algorithm patented by Shenk et al13 are the most widely
used when dealing with NIRS applications. Such methods try to deal with nonlinear or clustering problems occurring
during global model building. Comparison analyses using restructured near‐infrared and constituent, proposed by
Davies et al, is a simple and rapid method, which predicts the value of an unknown sample by calculating a weighted
average of the analytical reference values of the similar samples, selected based on r2 between the reduced and modified
unknown spectrum and each spectrum in the database, compressed by a Fourier transformation.16 LWR was introduced
by Cleveland and Devlin as a curve‐fitting method.17 It was then adapted for solving nonlinear problems in NIRS cal-
ibration models. In particular, Naes et al18 and Næs and Isaksson,19 implemented LWR to local principal component
regression (PCR) models: for each sample to predict, a neighborhood of calibration samples is selected from a spectral
library based on Mahalanobis distances and a different weight is assigned to each calibration sample depending on its
distance from the unknown sample. Later, Centner and Massart compared LWR using different regression methods
(PCR and PLS), different distance measures (Euclidean and Mahalanobis distance), and different weighting schemes
(uniform and cubic weighting) of calibration objects in local models to find an optimal combination.20 The LOCAL
algorithm patented by Shenk and Westerhaus is another local regression method, which has been implemented in
commercially available software.21 In the LOCAL algorithm, correlation coefficients between the spectrum of the
unknown sample and those of the available database are calculated instead of Euclidean or Mahalanobis distances.
The most similar samples used for the calibration models are selected with reference to a correlation threshold. After
the calibration data set has been defined, calibration models are performed by PLS regression.13

Besides the above‐mentioned methods, there are a few more recent local modeling approaches. Locally biased
regression, proposed by Fearn and Davies, uses two criteria to select the most similar spectra to an unknown spectrum
from a database: the similarity of predicted values obtained by a global PLSR calibration and the spectral similarity,
calculated by the score on the first orthogonal signal correction (OSC) factor in the same way as the PLSR prediction.
The samples whose OSC scores lie in an interval around the OSC score defined by the predicted sample will be regarded
as similar samples. Samples that pass both similarity tests are then selected as local samples for the new sample to be
predicted.22 Another method, the local central algorithm, uses principal component analysis (PCA) and the
Mahalanobis distance to select a training set and calculates the final prediction estimate using central tendency statistics
such as the mean of the local neighbors for the unknown samples.23 Local calibration by percentile selection and local
calibration by customized radii selection are two novel algorithms for performing local regression based on PLSR that
selects samples by establishing a standardized radio around the projection of the unknown sample in the PLS scores
space. The unknown sample is then predicted by weighting the regression coefficients and residuals obtained during
individual (factor by factor) PLSR models.24

In NIRS applications, all the local approaches, including the above methods, face the problem of long calculation
time, in particular when the calibration data set contains a large number of samples. This is a strong constraint for
the model calibration abilities (especially when repeated Monte Carlo or bootstrap cross validation has to be imple-
mented25) or for other applications such as online prediction platforms. The long calculation time is due first to the
search of the neighbors (“KNN” selection) for each new sample and second to the fact that after each neighborhood
selection, a latent variables regression model (eg, PLSR or PCR) is fitted on the original spectral matrix of the neighbors
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that is in general very wide. In this article, the approach that we propose for reducing the duration of the second step,
and therefore of the overall process, is to fit the local latent variables regression model not on the original spectra of the
neighbors but on already compressed data, containing a lower and limited number of columns. We implemented this
approach in a local PLSR algorithm, in which the original spectra of each neighborhood were replaced by a matrix of
global PLS scores (the compressed data). The method was assessed on a real data set aiming to predict the nutritive
quality of the cassava roots in Colombia. The study objectives were to estimate the effects of the preliminary data
compression (global PLS scores) in the local PLSR algorithm on the calculation time and the prediction efficiencies.
2 | MATERIAL AND METHODS
2.1 | Data set

Data used in this study for assessing the proposed local method come from a breeding program (Harvest Plus Challenge
Program) on cassava plants monitored by the International Center for Tropical Agriculture in Colombia.26 One objec-
tive of the program was to study and improve the nutritive quality of the cassava roots (see Davrieux et al26 for details).
In particular, NIR spectra of fresh cassava root samples between 2009 and 2013 were recorded in duplicate from 400 to
2498 nm at 2‐nm intervals using a FOSS 6500 monochromator with autocup sampling module (FOSS, Hillerod,
Denmark), and the carotenoid contents were quantified through HPLC.

The present study focused on the total β‐carotene content (TBC). Due to breeding improvements, the mean content
of TBC increased slowly from 2009 to 2012, but a significant increase appeared in 2013, by which time the mean was 3
points higher than in 2009,26 as shown in Table 1. Because of an increasing TBC content year after year, Davrieux et al
showed the limitation of the usual global PLSR approach and got better predictions using a local PLSR.26

As shown in Figure 1, three types of data sets were built from the original cassava data. Firstly, three calibration data
sets, of size n = 200, 1000, and 3000, respectively, were built by taking every fifteenth, fourth, and all samples from the
samples compiling years 2009 to 2012 ascending in TBC content. The aim of this was to check the influence of the data
library size when working with local methods. Secondly, three test sets sampled from the ordered data of year 2013
(each of size m = 100) were used for parameter optimization and to assess robustness of the algorithms. Thirdly, the
rest of the 2013 dataset (432 samples) were used as independent external set to compare the prediction efficiency of
the studied local algorithms.
2.2 | The local prediction algorithms

Two local prediction algorithms were compared (Figure 2): a usual local PLSR (LPLS) and a local PLSR with a prelim-
inary data compression (LPLS‐S). It should be noted that the usual local PLSR (LPLS) here was different from the
LOCAL algorithm that had been included in the WINISI software package (Infrasoft International, PortMatilda, PA,
USA). Let us denote Xr a spectral matrix of a given calibration data set, yr the corresponding univariate concentration
vector, and Xv and yv, a spectral matrix and a concentration vector, respectively, for a test set to predict. In the study,
no pretreatment was applied to the data, but matrices X may be preprocessed without affecting the principle of the
methods. The principles of the two algorithms are as follows.
TABLE 1 Descriptive statistics of TBC content (in μg/g) for of fresh samples collected from 2009 to 2013

Year N Minimum Maximum Mean SD

2009 572 0.70 13.40 5.10 2.30

2010 640 0.00 14.20 6.30 2.80

2011 611 0.00 15.00 5.70 3.80

2012 1270 0.20 16.60 6.50 2.90

2013 732 0.20 20.10 8.10 4.10

Abbreviation: TBC, total β‐carotene content.
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2.2.1 | LPLS

For each new spectrum xv,i (ie, row i of Xv) to be predicted, a number of k nearest neighbors of xv,i are selected in the
calibration set, defining the neighborhood Xr[i]. A PLSR model with a number of nc components is then fitted over
{Xr[i], yr[i]} that gives the local prediction for xv,i. The neighborhood Xr[i] is calculated from compressed data, as follows.
A global PLSR model is fitted over {Xr, yr} with a given ncompscor number of components. This gives the score matrix Tr

(with ncompscor columns) and, by projection of Xv in the Tr score space, the score matrix Tv. Euclidean distances are then
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calculated between tv,i (ie, row i of Tv) and all the tr (ie, rows of Tr) using ncompdiss number of scores. The samples
corresponding to the k lowest distances are finally selected and define Xr[i].

The implementation of this process for all rows of Xv returns the y‐prediction vector for the single combination
k × nc. A predictive error estimate, such as root‐mean‐square error of prediction (RMSEP), is then calculated by
comparison with the observed data yv. The parameters k and nc can be optimized by defining a discrete grid over k
and nc

20: the predictive error is calculated for each node of the grid, and the node with the lowest predictive error
corresponds to the combination finally selected for the predictions. In this study, the grid was set to {k = 50, 75, …
200} × {nc = 1, 2, …, 25}). The optimization was performed for each of the three test sets (of size m = 100) extracted from
the 2013 data.
2.2.2 | LPLS‐S

In this algorithm, matrices Xr and Xv are first transformed to global PLS score matrices Tr and Tv, with a given ncompscor

number of components. The above LPLS algorithm is then simply run on Tr and Tv.
2.3 | Model comparison

The calculation time and the predictive efficiency were compared between LPLS and LPLS‐S for various values of the
parameters ncompscor, ncompdiss, and n, the size of the data set (ie, number of samples) used for calibrating the algorithms,
following a complete experiment design shown in Table 2. Three levels of global PLS scores (ncompscor: 3, 10 ,and 25)
used for LPLS‐S, three different numbers of scores (ncompdiss: 3, 10, and 25) used for calculating distances, and three
different sizes for building the calibration data set (n = 200, 1000, and 3000) were combined. Predictions were done
for each test set (using models developed on the various calibration sets n = 200, 1000, and 3000) for the complete grid
as shown in Table 2, and a final combination was selected corresponding to the lowest RMSEP in the grid.
TABLE 2 Experimental design for comparing both LPLS and LPLS‐S algorithms

Scenarios ncompscor ncompdiss k nc n m

1 3 3 50, 75 … 200 1, 2, 3 200 100

2 10 3 50, 75 … 200 1, 2, … 10 200 100

3 10 10 50, 75 … 200 1, 2, … 10 200 100

4 25 3 50, 75 … 200 1, 2, … 25 200 100

5 25 10 50, 75 … 200 1, 2, … 25 200 100

6 25 25 50, 75 … 200 1, 2, … 25 200 100

7 3 3 50, 75 … 200 1, 2, 3 1000 100

8 10 3 50, 75 … 200 1, 2, … 10 1000 100

9 10 10 50, 75 … 200 1, 2, … 10 1000 100

10 25 3 50, 75 … 200 1, 2, … 25 1000 100

11 25 10 50, 75 … 200 1, 2, … 25 1000 100

12 25 25 50, 75 … 200 1, 2, … 25 1000 100

13 3 3 50, 75 … 200 1, 2, 3 3000 100

14 10 3 50, 75 … 200 1, 2, … 10 3000 100

15 10 10 50, 75 … 200 1, 2, … 10 3000 100

16 25 3 50, 75 … 200 1, 2, … 25 3000 100

17 25 10 50, 75 … 200 1, 2, … 25 3000 100

18 25 25 50, 75 … 200 1, 2, … 25 3000 100

ncompscor (only LPLS‐S): number of global scores used for local partial least squares (PLS) regression on global PLS scores (LPLS‐S); ncompdiss: number of scores
used for calculating the distances; k: number of nearest neighbors; nc: number of latent variable for PLS models; n: number of samples in the calibration set; m:
number of samples to be predicted.
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All the data were processed using Matlab version 7.14 (The Mathworks, Inc., Natick, MA, USA) with the
PLS_Toolbox version 8.0 (Eigenvector Research, Wenatchee, WA, USA). Computer configuration: Intel(R) Core (TM)
I5‐7300HQ, CPU at 2.50 GHz, 8 GB random access memory, and 64‐bit operating system.
3 | RESULTS AND DISCUSSION
3.1 | PCA of samples

PCA was first applied to all the raw spectra of cassava samples harvested from 2009 to 2013. As shown in Figure 3, the
PCA scores plot gave a cluster trend of different years' cassava samples. All the samples used in this study were clustered
into four groups, which was due to the fact that year after year, cassava genotypes with higher dry matter and caroten-
oid content were obtained by the breeding project, as reported by Davrieux et al.26
FIGURE 3 Principal component analysis scores plot for cassava samples collected from 2009 to 2013

FIGURE 4 Relationship between predicted and measured values of total β‐carotene content using a global partial least square method
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3.2 | Global PLS regression model

A global PLS regression model was built with samples harvested from 2009 to 2012 (total calibration set of 3000
samples) and used to predict the independent prediction set of 432 samples (samples harvested in 2013). No pretreat-
ment of data has been applied. The results are shown in Figure 4, where it can be seen that the root‐mean‐square error
of calibration and the root‐mean‐square error of cross validation were 1.084 and 1.089, respectively, meaning that the
calibration model was robust. However, a large RMSEP (1.7169) and a small relative percentage deviation (RPD = 2.39,
RPD = SD/RMSEP) value appeared when new samples harvested in 2013 (gray in Figure 4) were predicted by this
model. The RPD is usually used for testing the accuracy of NIRS calibration models, and RPD > 3 is considered
adequate for analytical purposes for agricultural products.27,28 RPD = 2.39 therefore indicated that a global PLSR model
FIGURE 5 Root‐mean‐square error of prediction (RMSEP) comparison between both local partial least square (LPLS) and local PLS

regression on global PLS score (LPLS‐S): A, test set 1, B, test set 2, and C, test set 3
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failed to properly predict new samples. Moreover, there was a clear nonlinear relationship between measured and
predicted values, especially for the higher TBC content, possibly because samples changed with the increasing content
of the constituent of interest year after year. In this case, the global PLSR model could not be used for the effective
prediction of new harvested samples in 2013.
3.3 | LPLS and LPLS‐S algorithms

To address the poor prediction performance as well as the nonlinearity problem when using a global PLSR model, the
two different locally based PLS regression algorithms (LPLS and LPLS‐S) were used and compared.
3.3.1 | Parameter optimization results for LPLS and LPLS‐S

The LPLS‐S algorithm was proposed for accelerating the prediction process based on global PLS scores. The running
times and efficiency of both LPLS and LPLS‐S algorithms were compared on the three test sets. The results are
displayed in Tables S1 and S2 and Figure 5. All the results were acquired under the optimum combination of k
and nc corresponding to the lowest RMSEP of the scenarios in Table 2 and for 25 global PLS scores when LPLS‐S
was used. As observed, the RMSEP values for LPLS show no distinct rule as the size of the calibration data (n) gets
larger, but the running time increases significantly from 3.57 to 6.42 seconds. Unlike with the LPLS algorithm, the
prediction precision for LPLS‐S increased with n, while the calculating time remained basically unchanged. On aver-
age, when using 200, 1000, and 3000 calibration samples, the LPLS‐S algorithm was 13.04, 14.43, and 21.66 times
faster than the LPLS method, respectively. This means that the more calibration samples there are in the calibration
data set, the more obvious the advantage in running time for the LPLS‐S algorithm, with similar prediction perfor-
mance. Besides, when the same calibration data set is used, the number of scores used for calculating distance
(ncompdiss) has a very low effect on the running time of both LPLS and LPLS‐S algorithms but has a great impact
on the prediction results.

Besides the size of the calibration data set and the number of scores used for distance calculation, the effect of
the scores extracted from global PLSR models (ncompscor) on the running time of the LPLS‐S algorithm was also
studied. As shown in Table 2, three ncompscor values (3, 10, and 25) were extracted and used for LPLS‐S models based
on different sizes of calibration data. The results are shown in Table 3 and Figure 6. It can be seen that if the
number of extracted scores is too few, the calculating speed is faster (Figure S1), but the prediction becomes ineffi-
cient (Table 3 and Figure 6A to 6c). However, when the same number of scores is used for the distance calculation
under the same data library, the prediction accuracy increases with the number of global PLS scores used for LPLS‐S
TABLE 3 RMSEP for LPLS‐S using different numbers of global PLS scores and different numbers of scores for distance calculation

n=200 n=200 n=200

Test set 3 10 25 3 10 25 3 10 25

Test set 1 3 2.4237 ‐ ‐ 2.4572 ‐ ‐ 2.5179 ‐ ‐

10 1.0948 1.0927 ‐ 1.0462 1.0330 ‐ 1.0113 0.9461 ‐

25 1.0700 1.0711 1.0717 1.0212 1.0006 0.9991 0.9853 0.9338 0.9278

Test set 2 3 2.3818 ‐ ‐ 2.4305 ‐ ‐ 2.5677 ‐ ‐

10 1.1904 1.1585 ‐ 1.1319 1.1390 ‐ 1.1353 1.0737 ‐

25 1.1721 1.1431 1.1432 1.1302 1.1364 1.1423 1.1165 1.0539 1.0556

Test set 3 3 2.3604 ‐ ‐ 2.3905 ‐ ‐ 2.4886 ‐ ‐

10 1.0435 1.0421 ‐ 0.9366 0.9226 ‐ 0.8642 0.7684 ‐

25 1.0142 1.0062 1.0062 0.9143 0.8928 0.8919 0.8438 0.7475 0.7478

ncompscor (only LPLS‐S): number of global scores used for local partial least squares (PLS) regression on global PLS scores (LPLS‐S); ncompdiss: number of scores
used for calculating the distances; n: number of samples in the calibration set; RMSEP: root‐mean‐square error of prediction.



FIGURE 6 The effects of the number of global partial least square scores on root‐mean‐square error of prediction (RMSEP) for A, test set

1, B, test set 2, and C, test set 3
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models. In summary, if a more precise prediction result is needed with the LPLS‐S algorithm, 25 global PLS
scores and 10 or 25 scores for distance calculation are the proper parameter selections; if a faster prediction speed
with satisfactory results is needed, 10 global PLS scores and 10 scores for distance calculation are the best
combination.

Three independent test sets were used for parameter optimization, which is an important step for both LPLS and
LPLS‐S algorithms. The optimum combination of the size of data library (n), the number of scores for distance cal-
culation (ncompdiss), the number of latent variables for PLSR models (nc), and the number of neighbors (k) corre-
sponds to the minimum RMSEP for each test set (Table 4). It can be seen that when working with LPLS, the
optimum parameters differ from one test set to another, which is not the case for LPLS‐S where the parameters
are rapidly stabilized and are the same whatever the test set. Moreover, the optimum latent variables obtained for
LPLS models are too many, which may involve too much noise and can result in overfitting. The number of latent



TABLE 4 The optimum parameters obtained by each test set for LPLS and LPLS‐S algorithms

Algorithm Parameters Test Set 1 Test Set 2 Test Set 3

LPLS n 3000 200 3000
ncompdiss 25 25 10
nc 15 14 16
k 150 50 175

LPLS‐S n 3000 3000 3000
ncompdiss 25 10 or 25 10 or 25
nc 5 5 5
k 50 or 75 75 75

n: number of reference samples in calibration set; ncompdiss: number of scores used for calculating the distances; nc: latent variable for partial least squares (PLS)
models; k: number of nearest neighbors; LPLS: local PLS; LPLS‐S: local PLS regression on global PLS score.
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variables used in LPLS‐S models decreased to 5 compared with LPLS, which indicates the robustness of the LPLS‐S
algorithm.
3.3.2 | Performance of LPLS and LPLS‐S

In order to obtain good prediction results, the parameters of LPLS and LPLS‐S should be defined according to the
conclusions in Section 3.3.1. For the LPLS algorithm, 150 nearest neighbors, 25 scores for distance calculation, 15 latent
variables, and 3000 reference samples were selected as the optimum combination for predicting new samples harvested
in 2013. The results are shown in Figure 7 in black. The prediction process took 26.95 seconds, and the RMSEP
decreased from 1.7169 to 1.1962 compared with the global PLSR method, while the RPD increased to 3.43. In the
LPLS‐S algorithm, 75 nearest neighbors, 25 global PLS scores, 25 scores for distance calculation, 5 latent variables,
and 3000 reference samples were used to build local models for predicting samples harvested in 2013. The results com-
pared with the LPLS method are shown in Figure 6 in gray. The RMSEP of the LPLS‐S algorithm decreased significantly
to 1.1602 compared with the global PLS (1.7169), and the RPD increased to 3.53 (instead of 2.39 for the global PLS),
which is similar to the results obtained by LPLS, but the calculation speed was more than 20 times faster than for
the LPLS algorithm. By contrast, it can be concluded that the LPLS‐S algorithm based on compressed data instead of
original spectra is a good method for greatly decreasing computation time and improving computation efficiency
without losing prediction accuracy compared with the LPLS algorithm. It can also be observed that the nonlinearity
problem was reduced.
FIGURE 7 Prediction results and scatter plots of measured values vs predicted values for both local partial least square (LPLS) and local

PLS regression on global PLS score (LPLS‐S) algorithms
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4 | CONCLUSION

During the past few decades, a large number of local strategies have been proposed and showed good performance when
dealing with nonlinearity problems encountered in global PLSR models. However, with the continuous accumulation of
data, the database keeps increasing. This makes local strategies less useful, as the local algorithms need to establish an
analysis model for each sample, which requires a long calculation time. In this study, a new local strategy, LPLS‐S,
based on compressed data (global PLS scores) instead of original spectra, was carefully investigated. The main conclu-
sions derived from this research are that the prediction precision of the LPLS‐S algorithm increases when the database
becomes larger and that between 10 and 25 global PLS scores are needed depending on the precision prediction/speed
ratio needed. Compared with the LPLS algorithm, LPLS‐S might lose prediction accuracy in some cases due to the
preliminary compression, but the calculation speed is greatly improved, and the more reference samples in the database,
the more obvious the running time advantage for LPLS‐S. Also, this becomes an important output when working
with online prediction systems. Moreover, in this study, the optimum parameters for the LPLS‐S algorithm are easier
and more repeatable to be obtained whatever the test set than the LPLS algorithm. However, this should be validated
on other data sets. It should be mentioned that the local strategies permitted to correct the nonlinearity present in
the data.

In summary, all the results indicate that LPLS‐S has great potential to deal with huge data. Furthermore, the use of
the global PLS scores to compress the original spectra was successfully applied to the local PLS method. The same
approach could also be used for any other prediction methods, including support vector machines and neural networks,
which have a reputation for being slow techniques.
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