The Rapid Visco Analyser as a rheological tool to determine the potential brewing quality of barley and malt

Bruno Godin¹, Corto De Smedt², Valentine Deneyer¹, Anne Pietercelie², Georges Sinnaeve¹

¹ Walloon Agricultural Research Center – CRA-W. Valorisation of Agricultural Products Department. Chaussée de Namur, 24. B-5030 Gembloux, Belgium

² Institut Meurice - HELDB. Avenue Emile Gryzon, 1. B-1070 Brussels, Belgium

Corresponding email : b.godin@cra.wallonie.be

Context

• To meet expectations of brewer and microbrewers promoting local and craft production of barley and malt, it is necessary to have a fast and efficient tool to easily determine their potential brewing quality. It was with this in mind that the application of the Rapid Visco Analyzer (RVA), a rheological tool which is commonly used to determine pre-harvest sprouting (alpha-amylase activity) and pasting properties of starch in cereals (mostly wheat) was evaluated.

Materiel and method

• 34 barleys were harvested in 2017 in Belgium. They were selected for their high degree of diversity: several varieties, various pedoclimates and different cropping methods. The barley samples and their corresponding malts were evaluated for

usual brewing parameters (EBC mash extract yield, viscosity, etc...).

• The RVA measurements were performed under both autolytic and enzymeinhibited (with AGNO₃) conditions on barley (Malting Barley Method from Perten; 4 g of sample ; 15 min run) and adapted for malt to have higher degree of viscosity and clearer viscograms (Adapted Kilned Malt Method from Perten; 11.2) g of sample ; 15 min run). The **whole viscogram profile** was taken into account to get more information of the RVA data. The second derivative of the viscograms was used to build prediction models with a **higher degree of accuracy**.

Time (mins) Usual RVA profile (Mason et al., 2012)

EBC friability	82.0	12.1	0.972	0.911	2.0	3.5
EBC mash extract yield	81.78	1.82	0.995	0.778	0.13	0.85
EBC mash viscosity	1.573	0.191	0.950	0.797	0.043	0.085
EBC mash α-amylase activity	201	49	0.818	0.479	21	35

 \rightarrow Prediction with a high degree of performance

→Robust except for a-amylase activity

Prediction of malt quality based on the barley enzyme inhibited RVA profile

Variable	Mean	SDy	R ² of calibration	R ² of cross- validation	Prediction error of calibration	Prediction error of cross- validation
EBC friability	82.0	12.3	0.957	0.526	2.5	8.3
EBC mash extract yield	81.77	1.85	0.977	0.589	0.28	1.17
EBC mash viscosity	1.576	0.193	0.960	0.560	0.040	0.126

 \rightarrow Prediction with a high degree of performance without having to malt the barley

\rightarrow Needs more samples to be robust

Conclusion.

• The RVA could be very helpful for maltsters, brewers and breeders to have rapid and reliable prediction of barley and/or malt quality. This would also be useful for craft malting plants and breweries.

• The prediction **models** should be **enhanced** by building them with **more samples**.

