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What is Mid-infrared spectrum?

» Approximately 2,500-25,000nm (4,000-400 cm™2)
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Principle of MIR spectrometry
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How can we make a prediction ?

Standardization



Can we make a prediction for all spectra ?

/ Can we make a prediction from those spectra?

Milk MIR Spectrum : 3

PC1
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¥
Can we make a prediction for all spectra ?

Can | make a prediction from those spectra?
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Mahalanobis Distance:

D) = \/ (7 — )15 (& — /)
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Where: x is PC scores of one spectrum; h
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Mahalanobis Distance:
D) = \/ (7 — )15 (& — /)

© GH: Global Hwhichisthe

Standardized Mahalanobis
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What is the accuracy of prediction of .
L international spectrum?

Recording

MIR
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Standardization of milk mid-infrared spectra from a ‘
European dairy network
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What is the accuracy of prediction of, .

international spectrum?

Minimum Maximum

"eCOTOS \whoH 172,547 174062 159,651 159509 174,825 159,467

Percent % 13.03 12.26 19.53 19.60 11.88 19.62



Descriptive statistics

Table 1. Descriptive statistics of predicted value

Reference value Predicted value Predicted value

Traits (GH <= 3)
g/dL
Mean SD Mean SD Mean SD
Fat 3.97 0.95 3.99 0.95 3.90 0.86
Protein 3.43 0.40 3.53 0.46 3.52 0.39
MFA 0.86 0.27 1.15 0.36 - 0.31
PFA 0.07 0.04 0.15 0.05 0.15 0.04
SFA 2.62 0.67 2.64 0.68 2.59 0.62
UFA 0.93 0.31 1.29 0.39 1.25 0.34
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The correlation coefficient

. / Why?
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Squared residual and GH
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e
GH limitation decreased RMSE for most traits
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Conclusion:

» GH limitation helps to ensure the quality
of the MIR predictions

» It allows avoiding spectral extrapolation
» More work needed to be done to get
more accurate predictions...
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Thanks for your attention!

Email:


mailto:lei.zhang@doct.uliege.be
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Additional information:
Why do PCA?

» To decrease the dimensionality of
the raw data

» To make it easy for calculating the
inverse of the covariance matrix

»f Springer Nature, All rights reserved.

POINTS OF SIGNIFICANCE

Principal component
analysis

PCA helps you interpret your data, but it will not
always find the important patterns.

Principal component analysis (PCA) simplifies the complexity in
high-dimensional data while retaining trends and patterns. It does
this by transforming the data into fewer dimensions, which act as
of features. High-di  data are very common in
biologyand arise when multiple features, such as expression of many
genes, are d for each le. This type of dat:
eral challenges that PCA mitigates: computational expense and an
increased error rate due to multiple test correction when testing each
feature for association with an outcome. PCA is an unsupervised
learning method and is similar to clustering! —it finds patterns with-
‘out reference to prior knowledge about whether the samples come
from different treatment groups or have pl dil
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dimensions. (a) Expression profiles for nine ganes (A
(a-f). caded by calor on the basis of shape similarity. and the expression
variance of each sample. (b) PC1-PC6 of the profiles in . PC1 and PC2
reflect clearly visible trends, and the remaining capture only small
fluctuations. (¢) Transformed profiles, expressed as PC scares and o of each
component scare. (d) The profiles reconstructed using PC1-PC3. (e) The 2D
coordinates of each profile based on the scores of the first two PCs.

PCA reduces data by geometrically projecting them onto lower
dimensions called principal components (PCs), with the goal of
finding the best summary of the data using a limited number of
PCs. The first PC is chosen to mi ize the total distance between
the data and their projection onto the PC (Fig. 1a). By minimizing
‘this distance, we also maximize the variance of the projected points,
o (Fie. 1b). The second (and subseauent) PCs are selected similarlv.

+ y/V2 (Fig. 1c). These coefficients are stored in a ‘PCA loading
matrix, which can be interpreted as a rotation matrix that rotates
data such thar the projection with greatest variance goes along the
first axis. At first glance, PC1 closely resembles the linear regression
line® of y versus x or x versus y (Fig. Lc). However, PCA differs from
linear regression in that PCA minimizes the perpendicular distance

Lever et al., 2017 Nature Method 2017




Additional information:

Why GH < 3?
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