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Abstract 

Analysis of milk by Fourier transform mid-infrared (FT-MIR) spectrometry 
provides a large amount of information on the physico-chemical composition of 
individual milk samples. Hence, it has been used for decades to predict fat, protein 
and lactose contents, and more recently fine milk composition, milk processing 
qualities and status of cows. This fast and cost-effective technology is a perfect 
candidate to provide new information for the management of individual cows. 
However, its concrete use by field organizations is still suboptimal given the difficulty 
of sharing data and models among spectrometers. The aim of this research was to 
optimize the use of FT-MIR analysis of milk with the final purpose of enabling the 
development of new management tools for dairy farmers. 

In order to harmonize spectral responses among instruments and allow sharing of 
data and models, the first objective was to test a standardization method, well known 
from the NIR sector, in the frame of FT-MIR spectrometers dedicated to milk analysis. 
The possibility of standardizing such instruments was assessed by using the Piece-
wise Direct Standardization (PDS) method and common raw milk samples constituted 
from the IDF norm (ISO 9622:2013 | IDF 141:2013). The performances of spectral 
harmonization were assessed by the transfer of a robust fat model from a master 
instrument into 21 slave instruments. Regressions were performed between master 
and each slave fat predictions, before and after PDS. The biases and the root mean 
square errors between the predictions decreased after PDS from 0.378 to 0.000 and 
from 0.461 to 0.016 (g of fat/100 mL of milk), respectively. These preliminary results 
showed that the PDS method permits a reduction of the inherent spectral variability 
between instruments and the use of common robust models by all the spectrometers 
included in the constituted network.  

The second objective was to ensure that models of interest with low precision could 
also be transferred from instrument to instrument. The effect of standardization on 
network spectral reproducibility was assessed on 66 instruments from 3 different 
brands by comparing the spectral variability of the slave instruments with and without 
standardization. With standardization, the standardized Mahalanobis distance (GH) 
between the slaves and master spectra was reduced on average from 2,656 to 14. The 
transfer of models from instrument to instrument was then tested using 3 FT-MIR 
models predicting the quantity of daily methane emitted by dairy cows, the 
concentration of polyunsaturated fatty acids in milk, and the fresh cheese yield. The 
differences, in terms of root mean squared error, between master and slaves 
predictions were reduced after standardization on average from 103 to 17 g/d for 
methane, from 0.032 to 0.005 g/100 mL of milk for polyunsaturated fatty acids, and 
from 2.55 to 0.49 g of curd/100 g of milk for fresh cheese yield. For all models, an 
improvement of prediction reproducibility within the network has also been observed. 
Concretely, the spectral standardization allows the transfer and use of multiple models 
on all instruments as well as the improvement of spectral and prediction 
reproducibility within the network. The method offers opportunities for data exchange 



 

 

as well as the creation and use of common database and models, at an international 
level, to provide more information for the management of dairy herds. 

After ensuring the possibility of using spectral data under optimal conditions, the 
third objective was to concretize the development of models providing information on 
cow status to be used as management tools by dairy farmers. This work aimed to 
develop models to predict milk citrate, reflecting early energy imbalance, and milk 
acetone and β-hydroxybutyrate (BHB) as indicators of (sub)clinical ketosis. Milk 
samples were collected in commercial and experimental farms in Luxembourg, 
France, and Germany. Milk mid-infrared spectra were recorded locally and 
standardized. Prediction equations were developed using partial least square 
regression. The coefficient of determination (R²) of cross-validation was 0.73 for 
acetone, 0.71 for BHB, and 0.90 for citrate with root mean square error of 0.248, 
0.109, and 0.70 mmol/L, respectively. Finally, an external validation was performed 
and R² obtained were 0.67 for acetone, 0.63 for BHB, and 0.86 for citrate, with a root 
mean square error of validation of 0.196, 0.083, and 0.76 mmol/L, respectively. The 
results demonstrated the potential of FT-MIR spectrometry to predict citrate content 
with good accuracy and to supply indicative contents of BHB and acetone in milk, 
thereby providing rapid and cost-effective tools to manage ketosis and negative 
energy balance in dairy farms. 

This research highlights new knowledge and possibilities regarding the 
harmonization of spectral format from different instruments in order to create, share 
and use FT-MIR models providing information for the management of dairy cows. 
More concretely, it contributes outputs as procedures to standardize instruments in 
routine and models to predict indicators of negative energy balance and ketosis to help 
farmers in the management of early lactation period. 

 

 

  



 

Résumé 

L’analyse du lait par spectroscopie moyen infrarouge à transformée de Fourrier (FT-
MIR) est une source d’information importante sur la composition physico-chimique 
des échantillons de lait. Pour cette raison, elle est utilisée depuis des dizaines d’années 
afin de prédire les teneurs en matières grasses, protéines et lactose du lait, et plus 
récemment la composition fine du lait, les propriétés technologiques ou encore l’état 
de la vache. Cette technologie rapide et économique a donc un potentiel élevé dans le 
but de générer de nouvelles informations permettant d’améliorer la gestion 
individuelle des vaches laitières au sein des exploitations. Cependant, son utilisation 
concrète pour le conseil en élevage reste sous-optimal en raison de la difficulté de 
partager les données et modèles entre spectromètres. Le but de cette recherche a donc 
été d’optimiser l’utilisation de l’analyse FT-MIR du lait afin de permettre le 
développement d’outils de gestion pour les éleveurs laitiers. 

Afin d’harmoniser les réponses spectrales entre les instruments et de permettre le 
partage des données et des modèles, le premier objectif a été de tester une méthode de 
standardisation, utilisée dans le secteur du proche infrarouge, dans le cadre de 
spectromètres dédiés à l’analyse moyen infrarouge du lait. La méthode Piece-wise 
Direct Standardization (PDS) a été testée en combinaison avec des échantillons de lait 
cru générés selon la norme IDF (ISO 9622:2013 | IDF 141:2013). Les performances 
de cette harmonisation spectrale ont été évaluées en transférant un modèle robuste de 
prédiction de la matière grasse d’un instrument de référence vers 21 instruments 
secondaires. Le biais et l’erreur standard ont été réduits après PDS, respectivement de 
0.378 à 0.000 et de 0.461 à 0.016 g/100 mL de lait. Ces résultats préliminaires ont 
montré que l’utilisation de la PDS permet de réduire la variabilité spectrale entre les 
instruments et d’utiliser des modèles communs sur toutes les machines intégrant le 
réseau de standardisation. 

Le deuxième objectif visait à tester la possibilité de transférer sur différents 
instruments des modèles d’intérêt ayant une faible précision. L’effet de la 
standardisation sur la reproductibilité spectrale du réseau a été évalué sur 66 machines 
provenant de 3 constructeurs, en comparant la variabilité spectrale des instruments 
secondaires avec ou sans standardisation. Après standardisation, la distance 
standardisée de Mahalanobis (GH) entre les spectres des appareils référence et 
secondaires a été réduite de 2 656 à 14. Le transfert de modèles sur différents 
instruments a été testé en utilisant 3 modèles prédisant la quantité de méthane émis 
par les vaches laitières, la teneur en acides gras polyinsaturés et le rendement fromager 
frais du lait. Les différences, en terme d’erreur standard, entre les prédictions des 
instruments secondaires et de la référence ont été réduites en moyenne après 
standardisation de 103 à 17 g/j pour le méthane, de 0.032 à 0.005 g/100mL de lait 
pour les acides gras polyinsaturés et de 2.55 à 0.49 g de caillé/100 g de lait pour le 
rendement fromager frais. Pour les 3 modèles, une amélioration de la reproductibilité 
des prédictions au sein du réseau a aussi été observée. Concrètement, la 
standardisation spectrale permet le transfert et l’utilisation de modèles multiples sur 
différents instruments, ainsi que l’amélioration de la reproductibilité des spectres et 



 

 

des prédictions au sein du réseau. Cette méthode ouvre donc des perspectives en terme 
d’échange de données, de création et d’utilisation de modèles à un niveau international 
afin de générer plus d’informations pour la gestion des troupeaux laitiers.  

Après avoir permis l’utilisation de données spectrales dans des conditions 
optimalisées, le troisième objectif de ce travail a été de concrétiser le développement 
de modèles générant des informations sur le statut des vaches laitières afin d’être 
utilisés comme des outils de gestion de troupeaux. Le but concret de ce travail a été 
de développer des modèles de prédiction du citrate dans le lait, comme indicateur 
précoce de balance énergétique négative, ainsi que du BHB et de l’acétone dans le 
lait, comme indicateurs d’acétonémie (sub)clinique. Pour cela, des échantillons 
individuels de lait ont été collectés dans des fermes expérimentales et commerciales 
en France, Allemagne et Luxembourg. Les spectres FT-MIR de lait ont été collectés 
localement et standardisés dans un format commun. Les équations de prédictions ont 
été développées en utilisant la Partial Least Square (PLS) régression. Les coefficients 
de régression obtenus en cross-validation (R²cv) sont de 0.73 pour l’acétone, 0.71 
pour le BHB et 0.90 pour le citrate avec une erreur standard (RMSE) respective de 
0.248, 0.109 et 0.70 mmol/L. En validation externe, les R² obtenus sont de 0.67 pour 
l’acétone, 0.63 pour le BHB et 0.86 pour le citrate, avec des erreurs respectives de 
0.196, 0.083 et 0.76 mmol/L. Ces résultats montrent le potentiel de la spectroscopie 
FT-MIR afin de prédire la teneur en citrate avec une bonne précision et de générer des 
teneurs indicatives en BHB et acétone dans le lait, fournissant ainsi des outils rapides 
et économiques de gestion de l’acétonémie et de la balance énergétique des vaches en 
ferme laitière. 

Cette recherche apporte de nouvelles connaissances et possibilités en ce qui 
concerne l’harmonisation du format des spectres provenant de différents instruments, 
afin de créer, diffuser et utiliser des outils d’aide à la décision pour la gestion des 
vaches laitières. Plus concrètement, ce travail aura permis de mettre au point une 
méthode et des procédures afin de standardiser des instruments en routine et de créer 
des modèles de prédiction de la balance énergétique et de l’acétonémie afin d’aider 
les éleveurs à mieux gérer le début de lactation des vaches laitières.   
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Chapter 1 : General introduction 

Current context involving the need for new phenotypes 

This study has been conducted with the objective of optimizing the use of FT-MIR 
analysis of cow milk under routine conditions, within a network of labs in order to 
enable the development of new indicators for the dairy sector, and particularly for 
dairy farmers. It takes place in a context where the dairy production has been facing 
profound changes in recent decades prompting the need for new herd management 
tools. 

Firstly, a reduction in the number of dairy farm as well as an increase of herd size 
and milk production per cow have been reported in the main dairy regions across the 
world (Gargiulo et al., 2018). Monitoring and management of cows are becoming 
more challenging and complex, requiring enhanced management ability from dairy 
farmers (Bewley, 2016). At the same time administrative tasks have also increased, 
with the combined result of making the adequate monitoring of individual animals 
extremely difficult for farmers (Berckmans, 2006). Additionally, due to demographic 
evolution, today’s farmer families have fewer children and lower involvement of adult 
children in the family farm. Consequently, more farms in developed countries depend 
on nonfamily labour (Barkema et al., 2015). However, the necessary skills and 
competences to monitor and manage dairy herds differ considerably among farm 
workers, and availability of competent laborers is often problematic (Winsten et al., 
2010). Insufficient training of farm workers could lead to failure in the detection of 
health problems (Barkema et al., 2015). The limited availability of trained workers, 
or the cost linked to hiring labor with the necessary management skills, combined with 
the increase in herd size, are changes that make the management of herds more 
complex and time consuming, potentially affecting the profitability of dairy farms 
(Gargiulo et al., 2018).  

Secondly, the European Union has abandoned the quota system, and due to market 
pressures farmers have often found fluctuating, typically declining, milk price to be 
aligned with global price (Barkema et al., 2015). The profitability of dairy farms is 
also endangered by this volatile (and often too low) price. In this context, optimal 
management of cows to prevent or detect diseases, improve animal health and welfare, 
reproduction and production, is considered a viable strategy for increasing economic 
outcome (Moyes et al., 2013). 

Thirdly, society is becoming increasingly concerned with animal welfare, healthy 

animals and the environmental impact of livestock productions (Berckmans, 2006). 

For Belgian consumers, animal welfare comes second, after food safety, when 

deciding what food to purchase (Vanhonacker et al., 2007). To preserve their ‘social 

license to operate’, farmers need to provide objective evidence of the welfare and 

health of their animals (Barkema et al., 2015).  

Consequently, there is a growing need for monitoring and management tools to 

satisfy these different necessities. In modern agriculture, digitalized monitoring 

techniques are becoming more and more important to support farmers in managing 

their production processes (Berckmans, D., 2006). In an animal production context, 
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these techniques have been grouped under the term Precision Livestock Farming 

(PLF). For Wathes et al. (2008), the background for the development of PLF is an 

environment where profits are marginal and the availability of labor unit with the 

necessary management skills is limited or too expensive. First PLF applications were 

devoted to monitoring the growth of housed pigs and poultry, but PLF can be applied 

to any species, including animals grown in extensive systems (Frost, 2001). In dairy 

production, potential field of applications are the detection of diseases and sub-

optimal health status, improvement of health and welfare, reproduction, feed 

efficiency and environmental impact, among others. The objectives of PLF are to 

provide information on these topics, offer time saving opportunities to farmers, 

objectify the measures in favour of less emotional decisions, obtain more precise 

information or information previously unavailable, and benefit from additional 

phenotypes of interest without inducing animal stress due to invasive techniques. To 

cope with these objectives and farmers’ needs, the technology being used must be 

available under routine condition, economically affordable, applicable on a large scale 

and provide quick results to farmers. 

FT-MIR analysis of milk 

Among all the potential technologies, analysis of milk by Fourier-Transform Mid 
Infrared (FT-MIR) spectrometry is already being used in main dairy areas of the 
world for the purposes of quantifying fat, protein and lactose contents, milk payment 
and milk recording (Soyeurt et al., 2006; Dehareng et al., 2012). FT-MIR allows a 
fast, cost-effective and non-destructive quantification of milk chemical properties in 
order to avoid reference methods, which are usually tedious, expensive and time 
consuming.  

Spectroscopy is defined as the study of a matrix through the electromagnetic 
radiation with which it interacts or that it produces. The history of spectroscopy is 
linked to the analysis of scattered light through a prism as experienced by Isaac 
Newton. The discovery of infrared radiation is attributed to Herschel who analysed 
the temperature of the diffracted sunlight just beyond the red end of visible spectrum 
(Herschel, 1800). Spectrometry is the measurement of electromagnetic radiation as a 
means of obtaining information about the systems and their components (IUPAC, 
2007).  

In a spectrometer, milk samples are crossed by infrared radiations at different 
wavelengths (nm). In mid infrared (MIR), these infrared radiations are more often 
characterized by a frequency, expressed in wavenumbers (cm-1), which are an inverted 
function of wavelengths. The analysis is based on the interactions between light and 
chemical bonds within the molecules constituting milk. Two atoms constituting a 
molecule vibrate at a precise frequency and can interact with infrared rays having the 
same frequency and absorb energy of the light (Rouessac et al., 2016). Covalent bonds 
can absorb light at different wavenumbers because different vibrations as stretching 
and bending take place. Consequently, matter absorbs light at precise frequencies 
according to its chemical composition. This is physically expressed by the Beer-
Lambert law stating that absorbance is linearly linked to the coefficient of molar 
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absorption, which is dependent of the wavenumber, pathlength and concentration of 
the analyte of interest. 

Spectrometers usually contain a light emitting source, a system designed to select 
wavenumbers of interest, a cell containing the sample, and a light intensity measuring 
detector. Interactions between light and chemical bonds within milk molecules are 
measured on the basis of their transmittance (T) which is the ratio of light emitted by 
the source (I0) to the light received by the detector after passing through the sample 
(I), or considering the absorbance (A) of the sample which is a logarithmic function 
of the transmittance. 

𝑇 =   𝐼/𝐼0    𝐴 = − log( 𝑇) 

Milk is analysed in the near-IR region, from 800 to 2,500 nm (or 4,000 to 12,500 
cm−1) but more often in the MIR region, from 2,500 to 25,000 nm (or 400 to 4,000 
cm−1) as the MIR region contains the fundamental vibrations and thus provides better 
results.  

The first MIR instruments dedicated to milk analysis measured the absorption of 
infrared energy at specific frequencies using a monochromator. Fat, protein and 
lactose contents were estimated by measuring absorbance of carbonyl groups in the 
ester linkages, the peptide linkages between amino acids and the O-H bonds, 
respectively. A second generation of infrared instrumentation used optical filters for 
wavenumber selection (Grappin and Jenet, 1976). 

With the combined use of interferometers and Fourier transform algorithms, it has 
been possible to analyse milk samples in a large range of the infrared region. 
Measurements in the MIR region are taken at thousands of different wavenumbers. 
These thousands of absorbance (or transmittance) values obtained within this range of 
wavenumbers constitute a MIR spectrum (Figure 1-1).  

  

Absorbance values at these different wavenumbers are used in equations to predict 
the content of milk components of interest (Williams and Norris, 1987). This is an 

Figure 1-1. Spectrum of a milk sample 
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extension of the Beer–Lambert law linking absorbance to concentration. The use of 
the entire spectra, and consequently a higher amount of information, has increased the 
potential of this technology to provide accurate predictions while in most milk labs 
FT-MIR spectrometers have replaced filter instruments.  

As previous technologies, FT-MIR instruments have been mainly used to produce 
fat, protein, and lactose predictions. Fat and protein contents are currently used for 
milk payment in many countries and have been therefore used as phenotypes for 
genetic improvement. FT-MIR analysis of milk has also been used in herd 
management. The ratio fat/protein is still used as the main indicator for ketosis and 
acidosis detection (Koeck et al., 2014). In milk processing, protein composition is a 
good indicator of milk ability to be processed into cheese (Amenu & Deeth, 2007). 
Models predicting urea in milk and free fatty acids are also implemented on 
manufacturer’s instruments. Urea in milk is useful for diet management and especially 
to estimate nitrogen efficiency in rumen fermentation (Hof et al., 1997). Free fatty 
acids are considered as an indicator of lipolysis in milk and associated organoleptic 
issues (Deeth H.C., 2006).  

More recently, the use of the entire spectra in combination with advance of 
informatics and multivariate statistics have allowed the development of models that 
delve deeper into the composition of fine milk. Models have been built for the 
determination of fatty acids profiles (Soyeurt et al., 2006), lactoferrin (Soyeurt et al., 
2007), minerals (Soyeurt et al., 2009), protein composition (Bonfatti et al., 2011), 
ketone bodies (Van Knegsel et al., 2010). Other studies have used FT-MIR spectra to 
build calibrations predicting technological properties of milk such as milk acidity (De 
Marchi et al., 2009), ability to coagulate, and firmness of curd or cheese yield (Dal 
Zotto et al., 2008; Colinet et al., 2015). Recent researches also focused on the 
prediction of blood composition through milk spectra, particularly for β-
hydroxybutyrate (BHB) (Broutin, 2014). FT-MIR spectrum of milk has even been 
considered as a reflection of cows’ ‘status', and models were developed to predict 
methane emissions of dairy cows (Dehareng et al., 2012), likelihood of conception 
(Hempstalk et al., 2015), body energy status (McParland et al., 2011) or energy intake 
and efficiency (McParland et al., 2014). 

All these FT-MIR models aim to provide more information for the dairy sector, in 
order to optimize and rationalize the management of herds by providing valuable 
indications on the status of individual lactating cows. Additionally, these models are 
of great interest for genetic studies, because large amount of phenotypes of interest 
are needed. Finally, in the framework of milk processing, models predicting the 
technological properties of milk before the beginning of the process would be 
beneficial to production management. 

Standardization 

Most of these models have been developed by scientific institutions in the 
framework of research projects, and very few of them have been really used by field 
and commercial organizations devoted to providing management tools to farmers. 
Actually, there is a suboptimal use of technology designed to provide useful 
information to farmers due to the weak transfer mechanism between research and field 



Chapter 1: General introduction 

5 

 

organizations (De Marchi et al., 2014). The main reasons for this are the difficulty to 
obtain robust models providing correct predictions on real field conditions (Gengler 
et al., 2016), and the difficulty to share and transfer models between instruments 
(Wang et al., 1991). 

The development of robust models is indeed very expensive, time consuming and 
practically difficult as it implies to constitute calibration datasets based on a large 
number of samples, that require high variability in terms of breeds, diets, management 
systems, geographic origins, reference and spectral data.  When applying the models, 
the potential variability that could be met under field conditions must be covered. 
Combinations of different datasets containing complementary information is therefore 
essential (De Marchi et al., 2014). In order to save resources and obtain reliable tools 
there is an urgent need to merge datasets and develop and share common models.   

However, this is not directly possible due to the specific instrumental response 
produced by each instrument (Feudale et al., 2002). These differences originate from 
the specific physical characteristic of each brand and models, using different 
technologies, materials, and optical paths… The main manufacturers of FT-MIR 
spectrometers dedicated to milk analysis are Foss (Hillerød, Denmark), Bentley 
(Chaska, MN, USA) and Delta Instruments (Drachten, the Netherlands). These three 
brands  provide spectra with different ranges, from 925.66 to 5,010.15 cm−1 for Foss 
instruments, from 649.03 to 3,998.59 cm−1 for Bentley instruments and from 397.31 
to 4,000 cm−1 for Delta instruments. Additionally, instruments originating from the 
same models are also individually characterized by specific spectral responses due to 
different uses, deterioration of pieces, environmental factors, maintenance operations 
or piece replacements. Finally, these factors added to electronic drifts and detector 
instability lead to the instability of each individual spectrometer response over time 
(Bonfatti et al., 2017).   

This heterogeneity prevents merging datasets from different instruments: a model 
developed on instrument A provides biased predictions if transferred to instrument B 
(Rodriguez et al., 2011). This is a practical limiting factor to the development and use 
of FT-MIR models to provide management tools for farmers under routine conditions. 

In terms of fat, protein and lactose content delivery, this spectral heterogeneity has 
traditionally been handled by the dairy sector by performing slope and bias 
adjustments on the predictions after analysing standard milks with reference values 
obtained from wet chemistry (ISO 9622:2013 | IDF 141:2013). In the context of 
providing new phenotypes for the management of dairy herds, as energy or health 
status, it is too expensive or even impossible to constitute standard samples with 
known values of the variable of interest (Bonfatti et al., 2017). Given that predictions 
of developed models cannot be corrected through slope and bias adjustment, the 
creation of robust models predicting new phenotypes of interest is suboptimal and the 
transfer of such models among different spectrometers often leads to incorrect 
predictions.  

Standardization of the FT-MIR spectra in order to harmonize directly the spectral 
responses of instruments appears as a potential solution (Rodriguez et al., 2011). This 
could allow the merging of datasets and the transfer of models through the dairy 
sector. Harmonization of spectral responses would serve to optimize and enhance 
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practically the use of FT-MIR spectrometry as an efficient technology designed to 
provide management information for dairy farms. 

Such standardization methods have been historically developed in the context of 
near infrared (NIR) analysis of agricultural products (Wang et al., 1991). These 
methods aimed to solve two situations where the models were rendered invalid due  
to the ‘format’ of spectral responses (Feudale et al., 2002). First, as mentioned earlier, 
the transfer of a model developed on a specific instrument and then transferred to a 
second instrument was problematic given the differences in spectral responses. The 
second issue was caused  by the change in time of the spectral responses of individual 
instruments, resulting in models not adapted to this changed spectral response. 
Although standardization methods have mostly been developed for NIR data, it has 
also been applied to transfer UV-Visible, fluorescence and Raman spectral data 
(Feudale et al., 2002). However, these methods have not been tested for the 
harmonization of FT-MIR spectra of milk in order to transfer models predicting new 
phenotypes of interest for management of dairy herds. 

Research objectives 

In this context, this study aims as a first step to evaluate the performance of 
harmonizing milk FT-MIR spectral data, using Piece-wise Direct Standardization 
method, in order to transfer a robust model predicting fat content in milk, from 
instrument to instrument (Chapter 2). In a second step, the effect of this method on 
data harmonization is evaluated further, to assess the possibilities of using in practice 
innovative models of interest for the dairy sector in a network of instruments 
(Chapter 3). This is done by analysing, on 66 spectrometers, the impact on spectral 
reproducibility, the transfer of models with low robustness and the accuracy and 
reproducibility of predictions within the network. After insuring the possibility of 
using spectral data in optimal conditions, the final step aims to concretize the 
development of models that provide information on cow status so they may be used 
by dairy farmers as management tools (Chapter 4). Emphasis is placed on the 
biomarkers of energy status and ketosis associated risks. Indeed, in early lactation 
negative energy balance has been identified as one of the major factors influencing 
fertility and health of dairy cows (Collard et al., 2000; Butler, 2003). This is done with 
the objective of detecting suboptimal status before becoming clinical cases. 
Concretely, this third part aims to develop models to predict citrate, reflecting early 
energy imbalance, and acetone and BHB as indicators of (sub)clinical ketosis. 
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 Introduction to chapter 2 

Numerous standardization methods have been reported in scientific literature. The 
common points of all these methods are the analysis of common samples performed 
through various instruments, to be used as a basis for the transfer procedure, followed 
by the adjustment of the responses of interest into a response considered as the 
reference. 

A first type of standardization requires considering the adjustment of the final 
predictions provided by each model for a given instrument. In this scheme, the values 
predicted by secondary instruments are corrected to fit the reference values, which 
could be chemical values from wet chemistry or the prediction provided by an 
instrument considered as a reference. Predictions of the models are adjusted a 
posteriori using a univariate slope and bias correction obtained from a linear 
regression. This is the method classically used in the dairy sector to ensure the quality 
of fat, protein and lactose predictions (ISO 9622:2013 | IDF 141:2013). However, this 
method involves the use of samples with known reference values, which is difficult, 
expensive or even impossible to obtain in the case of some phenotypes predicting cow 
status (Bonfatti et al., 2017).    

A second type of method is based on the standardization of the calibration datasets, 
and consequently of the models, in order to transfer them to a secondary instrument. 
Some methods, such as the classical or inverse model standardization, have been 
described by Wang et al. (1991). However, both methods also need the use of samples 
with known reference values (Feudale et al., 2002).  

A third type of method focuses on standardizing the spectral response of 
instruments. Thus, models remain unique and unchanged, and each spectral response 
is corrected to match the spectral response of a reference instrument on which the 
models are developed. A first method called univariate standardization performs a 
regression at each wavelength between absorbance values of master and secondary 
instruments (Shenk and Westerhaus, 1993). Univariate standardization only allows 
correcting for intensity differences and not wavenumber axes. Hence, there is a need 
to combine with a wavenumber adjustment (Feudale et al., 2002). Another method 
called direct standardization uses the entire spectrum of the secondary instrument to 
match the spectral response of the reference instrument at each wavenumber (Wang 
et al., 1991). The main problem with this method is that a significant amount of 
chemical information can be modelled, and if variation happens within the sample 
analysed by different instruments it can be integrated into the transfer model and 
disrupt the standardization performances (Feudale et al., 2002). To cope with this, the 
Piece-wise Direct Standardization method (PDS), presented by Wang et al. (1991) 
takes into account that in real spectroscopic data the spectral response at one 
wavenumber is more likely to be related to the response at nearby spectral points. The 
response of the reference instrument at a given wavenumber is reconstructed based on 
the measurement on a small window around this wavenumber on the secondary 
instrument. Among all the tested methods, PDS provides the best results, and can 
reduce the differences between instruments even when a small number of samples 
were used for the transfer (Wang et al., 1991). The better results obtained through 
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PDS can be attributed to its local and multivariate nature, allowing to correct for 
wavenumber shifts, intensity differences and peak broadening (Feudale et al., 2002). 

Consequently, the PDS seems the more appropriate method in this context to 
standardize mid-infrared spectrometers dedicated to milk analysis. This technique has 
been mostly evaluated with NIR data based on standard samples constituted of cereals, 
forages or oil. Accordingly, there is a need to validate the use of this method when 
applied on milk spectra acquired in mid-infrared range. Moreover, the nature and the 
number of common standard samples used for transfer procedures has a high impact 
on the performance of the method (Wang et al., 1991). There is also a need to test 
whether the samples classically used to perform slope and bias correction and 
produced following the IDF (International Dairy Federation) norm 141, ISO/DIS 
9622, can be used as a physical common reference to apply the method. To achieve 
this practically, the following chapter aims to evaluate the performance of 
harmonizing milk FT-MIR spectral data, using Piece-wise Direct Standardization 
method and a set of standard raw milk samples, with the objective of transferring a 
robust fat model from instruments to instruments. 
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Abstract  

The goal of this study was to find a procedure to standardize dairy milk mid-infrared 
spectra from different Fourier transform mid-infrared spectrophotometers (different 
brands or models) inside a European dairy network to create new farm-management 
indicators (e.g., fertility, health, feed, environmental impact) based on milk infrared 
spectra. This step is necessary to create common spectral databases, allowing the 
building of statistical tools, to be used by all instruments of the network. The method 
used was piecewise direct standardization (PDS), which matches slave instrument 
spectra on master-instrument spectra. To evaluate the possibility of using common 
equations on different instruments, the PDS method was tested on a set of milk 
samples measured on each machine, and an equation predicting fat content of milk is 
applied on all. Regressions were performed between master and slaves fat predictions, 
before and after PDS. Bias and root mean square error between predictions were 
decreased after PDS, respectively, from 0.3781 to 0.0000 and from 0.4609 to 0.0156 
(g of fat/100 mL of milk). The stability over time of these results was confirmed by 
an application of the coefficients created by PDS 1 mo later on the slave spectra. These 
preliminary results showed that the PDS method permits a reduction of the inherent 
spectral variability between instruments, allowing the merging of Fourier transform 
mid-infrared milk spectra from different instruments into a common database, the 
creation of new types of dairy farm management indicators, and the use of these 
common calibrations for all Fourier transform mid-infrared instruments of the 
European dairy network.    

Key words: Fourier transform mid-infrared spectrometry,  standardization, dairy 
milk,  piecewise direct standardization  

Introduction  

This work is the first step of a project aiming to develop innovative farm-
management web applications based on the use of Fourier transform mid-infrared 
(FT-MIR) spectrometry analysis of milk to enable a sustainable and profitable 
management of the milk production. Fourier transform mid-infrared spectrometry is 
the worldwide method of choice for composition and quality controls during routine 
liquid milk testing. It allows a fast, nondestructive quantification of milk chemical 
properties to avoid reference methods, which are usually tedious, expensive, and time 
consuming. In 1961, a patent application for a FT-MIR method determining fat, 
protein, and lactose in milk was introduced (Goulden, 1964). The first apparatus, an 
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IRMA (Infrared Milk Analyzer, Grubb Parsons, Newcastle upon Tyne, UK) using a 
monochromator, was based on the principle of measuring direct absorption of the 
infrared energy at specific frequencies by carbonyl groups in the ester linkages of the 
fat molecules, by peptide linkages between amino acids of protein molecules, and by 
the O-H groups in lactose molecules. A second generation of infrared instrumentation 
has adopted the change from wavenumber selection by diffraction grating to optical 
filters (Grappin and Jeunet, 1976) and was largely used by Central milk laboratory 
testing, where both tank milk and individual-cow samples were tested. Fourier 
transform mid-infrared supplies complementary chemical information and allows a 
high throughput with high sensitivity in a short response time from a very small 
quantity of sample (Ghosh and Jayas, 2009). In 1993, the first purpose-built FT-MIR 
instrument based on the Fourier transform infrared (FT-MIR) technology was 
marketed (Anadis MI-200; Asselain et al., 1996). With the introduction of the FT-
MIR, new applications have been developed because of the use of the full spectrum 
of the sample. In this way, FT-MIR has been applied for the determination of more 
and more milk components such as proteins composition (Bonfatti et al., 2011), 
minerals (Soyeurt et al., 2009), ketone bodies (van Knegsel et al., 2010), lactoferrin 
(Soyeurt et al., 2007), and fatty acid profile (Rutten et al., 2009; Soyeurt et al., 2011). 
Then recent studies were performed using these milk components predicted by FT-
MIR to predict physiological indicators of the animal (Friggens et al., 2007; 
Mohammed et al., 2011). In the context of this research project the FT-MIR spectrum 
is directly considered as a reflection of the state of the cows, avoiding the step of milk 
composition, to obtain indicators concerning fertility, health, environment, and 
feeding among others. Until now, only a few studies have been performed to show the 
potential of the entire FT-MIR spectra as an indicator of those parameters. Only recent 
studies have shown that predictions based on direct spectra are much more global, 
sensitive, and accurate than those based on milk components when they are predicted 
from FTMIR. Dehareng et al. (2012) have shown that enteric methane was better 
predicted when directly working with FT-MIR spectra than the results based on fatty 
acid predictions. Also recently, the FT-MIR spectrum of milk was shown to be a good 
indicator of body energy status (McParland et al., 2011), energy intake and efficiency 
(McParland et al., 2014), and fertility diagnosis (Laine et al., 2013) in dairy cattle. 
This innovative approach of using FT-MIR spectroscopy needs the support of 
important spectral databases associated with reference values for each of the 
properties to be studied. For this reason, the OptiMIR project was built; it is a 
European Interreg project involving 6 countries and focuses on the development of 
prediction tools directly based on FT-MIR spectra. In this work, a large number of 
commercially available mid-infrared spectrometers (21) from different manufacturers 
(3) installed in different laboratories (10) located in different countries (3) were used. 
Because of differences of the instrumental responses between different FT-MIR 
spectrometers, spectra obtained on one instrument cannot readily be compared with a 
library acquired on a different instrument. Moreover, the use of calibration models 
developed on an instrument with FT-MIR spectra obtained on another instrument will 
usually lead to an increased uncertainty of the prediction model. This is a drawback 
when recalibrating an instrument or using a historical database. Therefore, spectral 
corrections adapted to each instrument (standardization procedures) are needed 
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(Rodriguez et al., 2011). One of the most common techniques for instrument 
standardization is the piecewise direct standardization (PDS) proposed by Wang et al. 
(1991). However, in previous studies it was mainly used with near-infrared spectra 
(Bouveresse and Massart, 1996) and was not tested for milk spectra. Then, the 
objective of this work was to demonstrate and validate the use of the PDS to 
standardize spectra from different models and manufacturers of instruments, by 
reducing the inherent instrument-to-instrument variability, within the dairy network, 
such that the milk spectra from all spectrometers (the slaves) can be compared with 
the milk spectra of a standard instrument (the master). In such a way, it should be 
possible to create and maintain international databases containing data collected by 
all the FT-MIR instruments and to relate them to chemical characteristics of the milk 
(e.g., protein, fat, fatty acids content among others) and to animal physiology (fertility, 
nutrition, health, and environment). 

Materials and methods  

Standardization  

Standardization samples are measured on a master instrument and on a slave 
instrument, leading to response matrices M and S. The PDS method is based on the 
fact that the variation of spectroscopic data is limited to small spectral regions. In 
PDS, the response mj measured at wavenumber j on the master instrument is related 
to the wavenumbers located in a small window (sj) of size n around j (neighboring) 
measured on the slave instrument (Figure 1-1). The window (sj) was composed of 5 
wavenumbers and was the same for all instruments: 

sj = [S(j−n),…, S(j),…, S(j+n)]. 

A regression using the principal component regression method is calculated 
between each spectral response on the master at wavenumber j and the corresponding 
window sj on the slave. Vector bj is the vector of transformation coefficients for the 
jth wavenumber, and b0j is the offset term: 

mj  = sjbj + b0j. 

The F matrix contains the bj coefficient transformation vectors for all wavenumbers. 
This way of calculating the bj parameter using a moving spectral window leads to a 
banded diagonal matrix. The b0 vector contains the offset terms for all wavenumbers. 
Each time a new sample is measured on the slave instrument, the obtained spectra 
Snew can be standardize into (Snew)std using F and b0: 

(Snew)std = SnewF + b0. 

The standardization model for every master–slave combination needs to be 
designed, describing the shift between each slave instrument and the master 
instrument. 
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Instrumentation  

Table 2-1 shows a summary of the 21 different instruments, located in 10 
laboratories, and their characteristics used in this study. The different machine types 
are FT 6000 and FT+ (Foss, Hillerød, Denmark), FTS (Bentley, Chaska, MN) and 
Standard Lactoscope FT-MIR automatic (Delta Instruments, Drachten, the 
Netherlands). All the instruments of this study are located in Germany (11), France 
(7), and Belgium (3). The wavenumber ranges of the different brand are 925.66 to 
5,010.15 cm−1 for Foss FT 6000 and FT+ instruments, 649.03 to 3,998.59 cm−1 for 
Bentley instruments and 397.31 to 4,000 cm−1 for Delta instruments. The resolution 
used was 8 cm−1 for Delta and Bentley Instruments and unknown for Foss instruments. 

Milk Samples 

Analysis of identical samples is needed to standardize each machine. To achieve 
this, several interlaboratory studies were organized; 21 sets of identical samples were 
distributed to the different laboratories to standardize the spectra. These sets of 
samples were produced according to the IDF (International Dairy Federation) norm 
141, ISO/DIS 9622 IDF 141 (IDF, 2012). All the sets created consisted of 10 samples 
of raw milk with large variations in fat (between 1 and 5% mass/ vol) and protein 

Figure 2-1. Graphical view of the piecewise direct standardization technique. mj = the 
response measured at wavenumber j on the master instrument; sj = the response measured in 
a small window of size n around j (neighboring) on the slave instrument; T = transmittance 
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(between 2.9 and 5% mass/vol). In all cases, once received, milk samples were 
homogenized and analyzed at 40 ± 2°C in triplicate in each laboratory following a 
predefined protocol. 

Table 2-1. Description of the Fourier transform mid-infrared instruments included in the 
study 

Brand Type 
Number of 

instruments 

Frequency 

reported by 

constructors 

(cm-1) 

Number of 

Wavenumbers 

Foss Electric A/S 

(Hillerød/Denmark) 
FT 6000 8 926 - 5010 1060 

Foss Electric A/S  FT+ 5 926 - 5010 1060 

Bentley (Chaska, MN) FTS 7 649 - 3999 899 

Delta Instruments 

(Drachten, the Netherlands) 
Lactoscope 1 397 - 4000 935 

 

Methodology  

An FT 6000 instrument (Foss) was defined as the master instrument. Figure 2-2 
shows a typical milk spectrum measured using the master; as for all milk spectra, the 
water spectrum was subtracted. Different characteristic peaks can be clearly 
characterized, as well as a noisy area induced by H2O absorption.  

Figure 2-3 shows the same master spectrum after removing the noisy areas; that is, 
1,600 to 1,689 cm−1 and 3,008 to 5,010 cm−1.  

Figure 2-2. Raw milk spectrum from the master instrument. T = transmittance 



Chapter 2: Standardization of milk MIR spectra 

19 

 

The main components of dairy milk can be linked with characteristic bands on milk 
FT-MIR spectra because of their chemical composition and chemical bonds absorbing 
light at specific wavenumbers. Lactose induces a response around 1,045 cm−1 with 
C–O stretching vibration of alcohols functions, 1,076 cm−1 with C–O, C–C, and C–H 
stretching vibration, and 1,157 and 1,250 cm−1 with C–O–C ether stretching. Proteins 
appear around 1,550 cm−1 with peaks of C–N and N–N stretching. Fat chains appear 
around 1,390 and 1,454 cm−1 with C–H bending of −CH3 and −CH2, and around 2,862 
and 2,927 cm−1 with C–H stretching of −CH3 and −CH2. Fat also appears around 1,743 
cm−1 because of the C=O ester stretching (Socrates, 1980). In a first step, an 
interlaboratory study was organized with all the laboratories and apparatus, and the 
standardization coefficients F and b0 were created as previously explained, using the 
milk set measured in all the instruments. To validate the standardization method, a 
fat-prediction model developed on the master instrument was applied on all slave 
instruments before and after the standardization procedure. The fat model was 
developed by partial least squares method and based on the whole milk spectrum. 
Then all the slave predictions were compared with the prediction obtained by the 
master instrument. In a second step and to really validate the method, the coefficients 
obtained during the first interlaboratory study were applied to spectra obtained during 
a second interlaboratory study, realized 1 mo later. All the results were expressed in 
terms of R² (determination coefficient), root mean square error (RMSE), slope 
(deviation from 1), and bias between the slave and the master predictions. Effects of 
instrument brands, PDS, and interlaboratory studies on these results were assessed by 
an ANOVA. All computations, chemometric analysis, and graphics were carried out 
with programs developed in Matlab v7.5.0 (The Mathworks Inc., Natick, MA) and the 

Figure 2-3. Master milk spectrum with assignment of the main spectral bands, after removal 
of noise areas from water absorption. T = transmittance. 
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PLS toolbox v. 4.11 (Eigenvector Research Inc., Wenatchee, WA). For ANOVA the 
Minitab Statistical Software (Minitab Inc., State College, PA) was used.  

Results and discussion  

Standardization  

To be able to perform the standardization, a first step to harmonize the number of 
wavenumbers was applied. A linear interpolation was performed on all slave spectra. 
In the case of the Bentley instruments, spectra were interpolated from 649 to 3,999 
cm−1 to 926 to 3,999 cm−1 and in the case of Delta from 397 to 4,000 cm−1 to 926 to 
4,000 cm−1. Spectra in transmittance values are transformed into absorbance by a 
log10. Then the PDS procedure was applied to each of the slave instruments. Figures 
2-4, 2-5, and 2-6 illustrate the effect of standardization on spectra from instruments 
of the 3 brands, on the differences between the absorbance values of master and these 
slave spectra, and on fat predictions from an equation created on the master. For the 
3 brands, slave spectra perfectly matched master spectra after PDS, and differences 
were strongly reduced after standardization of the slaves except in noisy areas that 
had to be discarded because they were induced by water response. The fat predictions 
from the slaves were compared with fat predictions from the master before and after 
standardization. For the 3 brands, the PDS method allowed reduction in the 
differences between the slaves and the master predictions. Bias for Delta, Bentley, 
and Foss instruments, respectively, decreased from −0.5287 to 0.0000, from −0.8654 
to 0.0000, and from 0.1557 to 0.0000. The RMSE also decreased for the 3 instruments, 
respectively, from 0.6114 to 0.0271, from 0.9979 to 0.0127, and from 0.1693 to 
0.0056 g of fat/100 mL of milk, showing that the fat prediction developed on the 
master can be used on instruments from these 3 brands with limited error. Figure 2-7 
illustrates the RMSE between fat predictions of the master and each slave instrument, 
before and after standardization.  
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Figure 2-4. Root mean square error (RMSE) between predictions of each slave instruments 
and the master, before and after standardization (n = 20). Before STD = before 

standardization; After STD = after standardization; Lab = laboratory. Bentley (Chaska, MN), 
Delta (Drachten, the Netherlands), and Foss (Hillerød, Denmark). 

As expected, when comparing fat predictions before standardization of the slaves 
with the master, larger differences were found with Delta and Bentley slave 
instruments than with Foss slaves. For all instruments before standardization, RMSE 
ranged between 0.0083 and 1.2074. However, after PDS, these values decreased and 
ranged between 0.0066 and 0.0466 for all slave instruments, allowing a clear use of 
the fat prediction developed on the master in all the slave instruments included in the 
interlaboratory study. The R², slope, bias, and RMSE between master and slave fat 
predictions before and after PDS were calculated for each instrument and averaged 
(Table 2-2) to get an overview of the PDS effect.  

Table 2-2. Means of statistical results from regressions between fat predictions by the 
Master and the slaves, before and after standardization of interlaboratory study 1 (n=20)1 

 Global means 

 Before PDS After PDS p value 

R² 0.9999 0.9999 0.512 

Slope 0.1379 0.0035 0.000 

Bias 0.3781 0.0000 0.000 

RMSE 0.4609 0.0156 0.000 
1PDS: Piece-wise direct standardization; Slope: deviation according to 1; RMSE: Root 

mean square error 
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The R² between master and slaves predictions did not change after standardization 
(P = 0.512) and were higher than 0.999. Slope deviation between predictions was 
greatly reduced, on average from 0.1379 to 0.0035 (P = 0.000). Bias and RMSE 
between predictions decreased after standardization, from 0.3781 to 0.0000 for bias 
(P = 0.000) and from 0.4609 to 0.0156 on average for RMSE (P = 0.000). Table 2-3 
shows the average of RMSE by brands, before and after PDS. Before standardization 
the RMSE mean values were different for each brand (P = 0.001), i.e., 0.0404, 0.6114, 
and 1.1001 for Foss, Delta, and Bentley, respectively.  

Table 2-3. Root mean square error (RMSE) between fat predictions of master and slaves, 
averaged by brand, before and after PDS (n = 20)1 

 Averaged RMSE2 
 

 

Bentley 

(n=7) 

Delta 

(n=1) 

Foss 

(n=12) P-value 

Before PDS 1.1001 0.6114 0.0404 0.001 

After PDS 0.0179 0.0271 0.0133 0.279 
1PDS = piecewise direct standardization. 2Bentley (Chaska, MN), Delta 

(Drachten, the Netherlands), and Foss (Hillerød, Denmark). 

 

After PDS, the averaged RMSE decreased to 0.0133 for Foss, 0.0271 for Delta, and 
0.0179 for Bentley. Analysis of variance indicated that these values were not 
significantly different regarding the 3 brands (P = 0.279). For all brands, the PDS 
method allowed great reduction in the predictions errors with the master predictions. 
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 Before standardization After standardization 
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C 

  

Figure 2-5.  Effect of standardization of a Delta (Drachten, the Netherlands) slave 
spectra on differences with master spectra and on fat predictions. (A) Spectra of the master 

and a Delta slave instrument before (left) and after standardization (right), from 926 to 3,008 
cm−1. (B) Differences between spectra of the master and a Delta slave instrument before 

(left) and after standardization (right), from 926 to 3,008 cm−1. (C) Comparison of fat 
predictions by the master and a Delta slave before (left) and after (right) standardization. 

RMSE = root mean square error. T = transmittance.   
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Figure 2-6. Effect of standardization of a Bentley (Chaska, MN) slave spectra on differences 
with master spectra and on fat predictions. (A) Spectra of the master and a Bentley slave 

instrument before (left) and after standardization (right), from 926 to 3,008 cm−1. (B) 
Differences between spectra of the master and a Bentley slave instrument before (left) and 
after standardization (right), from 926 to 3,008 cm−1. (C) Comparison of fat predictions by 
the master and a Bentley slave before (left) and after (right) standardization. RMSE = root 

mean square error. T = transmittance.   
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Figure 2-7. Effect of standardization of a Foss (Hillerød, Denmark) slave spectra on 
differences with master spectra and on fat predictions. (A) Spectra of the master and a Foss 
slave instrument before (left) and after standardization (right), from 926 to 3,008 cm−1. (B) 

Differences between spectra of the master and a Foss slave instrument before (left) and after 
standardization (right), from 926 to 3,008 cm−1. (C) Comparison of fat predictions by the 

master and by a Foss slave before (left) and after (right) standardization. RMSE = root mean 
square error. T = transmittance.  
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Validation of the Standardization Coefficients  

The coefficients obtained from the first interlaboratory study were applied to the 
spectra of a second interlaboratory study 1 mo later. Table 2-4 shows the results of 
these standardizations with the first interlaboratory study coefficients. The R² was still 
higher than 0.999, and no significant differences were observed (P = 0.283) with or 
without PDS. Slope, bias, and RMSE still decreased greatly after applications of first 
interlaboratory study coefficients on spectra from the second interlaboratory study. 
This clearly indicates the stability of the model as well as the PDS procedure between 
instruments along time. In average, slope, bias, and RMSE were, respectively, reduced 
from 0.1304 to 0.0093 (P = 0.000), from 0.4118 to 0.0350 (P = 0.000), and from 
0.4458 to 0.0393 (P = 0.000). Slope deviation to one, bias, and RMSE were all 
significantly higher in the second interlaboratory study than in the first interlaboratory 
study, respectively, 0.0093 versus 0.0035 (P = 0.010), 0.035 versus 0.000 (P = 0.000), 
and 0.0393 versus 0.0156 (P = 0.000). These results show that standardization 
coefficients seem to be less adapted to reduce differences between master and slaves 
spectra 1 mo later after their creation. This study, through several interlaboratory 
studies, has also shown that the standardization coefficients can be used during time, 
even if the error is slightly increasing, which can be explained by physical wear and 
perturbation on apparatus resulting in spectral deviations in time. Further monthly 
interlaboratory study should bring more robustness to the standardization coefficients, 
making the standardization step stable for a long time and allowing a harmonization 
of the predictions of the network for important farm management indicators (health, 
fertility, feeding, environmental impact). The methodology proposed here will allow 
a complete correction of physical variation within and between different instruments 
and brands, allowing the construction of a FT-MIR international database and models. 
In this work this database has been successfully related to an important chemical 
characteristic of the milk (fat content). Further work is needed to validate the 
extension of these results to common calibrations related to animal characteristics 
such as fertility, nutrition, health, and environment. 

 

Table 2-4. Mean statistic results of comparison of fat prediction by the master and the slaves, 
before and after standardization of the second interlaboratory study spectra with coefficients 

from the first interlaboratory study (n = 20)1 

 Global means 

 Before PDS After PDS p value 

R² 0.9998 0.9991 0.283 

Slope 0.1304 0.0093 0.000 

Bias 0.4118 0.0350 0.000 

RMSE 0.4458 0.0393 0.000 
1PDS: Piece-wise direct standardization; Slope: deviation according to 1; RMSE: 

Root mean square error 
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Conclusions  

The study described here illustrates that a network of FT-MIR instruments can be 
standardized; this is illustrated by the reduction of differences between fat predictions 
of different instruments and brands. The methodology used consisted of a simple 
interpolation followed by the chemometric PDS tool as a standardization technique. 
This is an important first step to build a common transnational database with spectra 
coming from different FT-MIR instruments, including different brands, which should 
allow the creation of new common indicators for farm management. Robust models 
built on historical data sets collected by a single instrument or master over several 
years can then be applied or transferred to other instruments from the same or different 
brands that are working in the same or different wavenumber ranges. 
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Introduction to chapter 3 

The following chapter aims to go deeper into the analysis of the standardization 
performances, especially to validate the possibility of using models to predict 
phenotypes of interest for the dairy sector under practical conditions. Indeed, some 
aspects seem very important to take in consideration in connection with the routine 
use of such tools, since they have not been studied in previous chapters and no 
information can be found in the literature with reference to these points.  

The first aspect to be considered is the possibility of using models with low 
robustness and accuracy under realistic conditions. In current literature, studies have 
mainly focused on evaluating the ability of methods to transfer models for quality 
control of products in chemistry laboratories (Bouveresse et al., 1994; Bouveresse & 
Massart, 1996; Rodriguez et al., 2011). These are well-used and robust models 
predicting major analytes of interest, such as protein, cellulose or fat in forage and 
cereals (Bouveresse et al., 1994). In the dairy sector, models predicting main 
components such as fat, protein and lactose are already well controlled for decades. 
However, recent research has focused mostly on developing models predicting fine 
milk composition or cow status but these models are characterized by a relatively low 
accuracy when compared to main components. Such new models are nonetheless 
considered very useful in a context of animal management or genetic studies (cf 
Chapter 3, General discussion). An objective of the following chapter is to validate 
the performance of the standardization method to transfer, from instrument to 
instrument, such low accuracy models.  

A second aspect is dealing with the homogeneity of the spectral responses among 
instruments, especially because it constitutes a prerequisite for the use of qualitative 
methods. Qualitative approaches are often used to explore the variability of a dataset. 
Some studies have attempted to classify spectra of milk samples in classes following 
feeding systems (Valenti et al., 2013), metabolic status of cows (Grelet et al., 2018) 
or lameness status of cows (Mineur et al., 2017). Others aim to detect outliers and 
abnormal samples (Fernandez Pierna et al., 2016). Although the qualitative models 
based on milk FT-MIR spectra is a great opportunity for the dairy sector, most of the 
previous studies on standardization have focused on the transfer of quantitative 
models. In these studies, standardization performances have been evaluated through 
standard errors (e.g., RMSE) between quantitative predictions of master and slave 
instruments. The homogeneity of spectral responses was not directly considered, 
although it is a necessary requirement for qualitative analysis. Indeed, the most 
common techniques such as Principal Component Analysis (PCA), Partial Least 
Square Discriminant Analysis (PLS-DA) or Support Vector Machine (SVM) are 
based principally on differences or distances between spectra. The spectra generated 
by different instruments must be in the same format to avoid individual instrument 
specificities interfering with the information of interest. Therefore, a second objective 
of the following chapter is to evaluate the impact of standardization on spectral 
homogeneity among instruments.   

The last aspect to be considered is the accuracy and reproducibility of predictions 
among all apparatus. Testing the impact of standardization on accuracy, in order to 
ensure that all instruments will provide a true response, especially when results are 
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passed on to farmers, is particularly important.  It is also essential to assess the 
reproducibility of predictions, to prevent heterogeneous predictions among the 
instruments, particularly within the different spectrometers of the same lab.  
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Abstract  

An increasing number of models are being developed to provide information from 
milk Fourier transform mid-infrared (FT-MIR) spectra on fine milk composition, 
technological properties of milk, or even cows’ physiological status. In this context, 
and to take advantage of these existing models, the purpose of this work was to 
evaluate whether a spectral standardization method can enable the use of multiple 
equations within a network of different FT-MIR spectrometers. The piecewise direct 
standardization method was used, matching “slave” instruments to a common 
reference, the “master.” The effect of standardization on network reproducibility was 
assessed on 66 instruments from 3 different brands by comparing the spectral 
variability of the slaves and the master with and without standardization. With 
standardization, the global Mahalanobis distance from the slave spectra to the master 
spectra was reduced on average from 2,655.9 to 14.3, representing a significant 
reduction of noninformative spectral variability. The transfer of models from 
instrument to instrument was tested using 3 FT-MIR models predicting (1) the 
quantity of daily methane emitted by dairy cows, (2) the concentration of 
polyunsaturated fatty acids in milk, and (3) the fresh cheese yield. The differences, in 
terms of root mean squared error, between master predictions and slave predictions 
were reduced after standardization on average from 103 to 17 g/d, from 0.0315 to 
0.0045 g/100 mL of milk, and from 2.55 to 0.49 g of curd/100 g of milk, respectively. 
For all the models, standard deviations of predictions among all the instruments were 
also reduced by 5.11 times for methane, 5.01 times for polyunsaturated fatty acids, 
and 7.05 times for fresh cheese yield, showing an improvement of prediction 
reproducibility within the network. Regarding the results obtained, spectral 
standardization allows the transfer and use of multiple models on all instruments as 
well as the improvement of spectral and prediction reproducibility within the network. 
The method makes the models universal, thereby offering opportunities for data 
exchange and the creation and use of common robust models at an international level 
to provide more information to the dairy sector from direct analysis of milk.  

Key words: Fourier transform mid-infrared spectra, standardization, milk, model 
transfer 
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Introduction  

Over the past decade, the number of research studies seeking to extract more 
quantitative information from the Fourier transform mid-infrared (FT-MIR) spectra 
has increased constantly (De Marchi et al., 2014). Equations based on the full 
spectrum have been developed for the determination of fine milk components such as 
fatty acid profiles (Soyeurt et al., 2006; Rutten et al., 2009), protein composition 
(Bonfatti et al., 2011), minerals (Soyeurt et al., 2009), ketone bodies (van Knegsel et 
al., 2010), citrate (Grelet et al., 2016), and lactoferrin (Soyeurt et al., 2007). Other 
studies have focused on FT-MIR spectra to build equations predicting technological 
properties of milk such as milk acidity (De Marchi et al., 2009), ability to coagulate, 
firmness of curd, or cheese yield (Dal Zotto et al., 2008; Colinet et al., 2015). Recent 
work has directly considered the FT-MIR spectrum of milk as a reflection of cows’ 
status, with FT-MIR equations being developed to predict methane emissions of dairy 
cows (Dehareng et al., 2012; Vanlierde et al., 2016), likelihood of conception 
(Hempstalk et al., 2015), body energy status (McParland et al., 2011), energy intake 
and efficiency (McParland et al., 2014). In the work of Lainé et al. (2017), the 
spectrum is even considered as a response for which the effect of pregnancy is 
evaluated. Hence, the FT-MIR analysis of milk allows the measurement of multiple 
variables to be used for fine milk quality control in industry, management of herds, or 
the generation of new phenotypes for genetic studies. Even if some models could be 
statistically considered as low quality, they are of major interest for the dairy sector 
because they provide the opportunity to predict key variables that were not available 
before on a large scale and in a cost-effective way. However, developing such models 
is time consuming and expensive given that they require the analysis of a large number 
of samples to cover the whole distribution of the studied trait as well as a large spectral 
variability. Therefore, there is a clear interest in sharing predictive models among milk 
laboratories and milk recording organizations. However, a major issue with FT-MIR 
data is related to the specific instrumental response produced by each spectrometer. 
These differences between spectral responses of instruments originate from the 
physical characteristics and acquisition modes specific to each model of machine and 
from the different uses, piece replacements, and maintenance operations specific to 
each spectrometer. Differences in spectral response cause difficulties in combining 
spectra as well as bias in predictions when transferring a calibration model built on 
one instrument to another instrument. Consequently, exchanges of data and models 
are limited. To cope with this issue, classical models predicting the main milk 
components by FT-MIR (e.g., fat and proteins) are monitored and adjusted over 
instruments and over time using slope and intercept correction. The method is based 
on the adjustment of the models according to interlaboratory study samples, in which 
the content of the relevant components is known. However, for most of the new 
predicted variables (e.g., cows’ physiological status or hard-to-measure fine milk 
components), it is expensive or almost impossible to produce interlaboratory study 
samples with a known content of the variable of interest. This makes it difficult or 
impossible to adjust a model after transfer to another spectrometer. Consequently, a 
model developed on one instrument theoretically can be used only by that instrument 
because of its specific format. In the context of increasing interest in using new 
models, the impossibility of transferring them leads to a suboptimal situation, as the 
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creation of robust models is difficult and expensive. For this reason, it is necessary to 
implement a preliminary step of spectral standardization permitting the sharing of 
models. In the context of projects involving international networking, since December 
2011 a large instrument standardization network has been developed to harmonize the 
format of FT-MIR milk spectral response. The objective is to clear the way for 
potential collaborations between organizations using FT-MIR spectrometers for milk 
analysis. The possibility of creating common data sets and common models that can 
be transferred from laboratory to laboratory and used by all instruments allows 
financial and technical resources to be pooled. Moreover, the possibility of merging 
spectral data, as far as the reference methods are comparable, allows the inclusion of 
different feeding systems, breeds, and management, thus increasing the robustness of 
the developed common models. Over the years the network size has increased, and as 
many as 127 instruments of 3 different brands coming from 14 countries on 4 
continents (North America, Asia, Europe, and Oceania) have been standardized. 
Recently, it has been shown that using the piecewise direct standardization (PDS) 
method it is possible to transfer a high-quality fat model from one instrument to more 
than 20 different instruments in the network (Grelet et al., 2015). However, there is 
no information about the possibility of transferring models with lower accuracy or 
predicting fine milk composition or indirect variables, which are not milk components 
and consequently are predicted indirectly, despite the fact that these models are of 
great interest to the dairy sector. Furthermore, the effects of standardization on 
spectral and prediction reproducibility over the network have never been assessed 
even though it is essential for management or breeding purposes. Therefore, the 
objectives of this study were to evaluate the effect of the PDS standardization method 
(1) on spectral reproducibility over spectrometers in a network, (2) on transferring 
multiple and varied FT-MIR models from one instrument to another, and (3) on the 
accuracy and reproducibility of predictions among all apparatus. The global 
perspective is to make all spectrometers speak the same language, thereby allowing 
the transfer and exchange of developed models predicting classical and new 
parameters throughout the network. 

Materials and methods  

Instrumentation  

The different instruments available through the network are FT 6000, FT+, FT2, 
and FT120 (Foss, Hillerød, Denmark); FTS (Bentley, Chaska, MN); and Standard 
Lactoscope FT-MIR automatic (Delta Instruments, Drachten, the Netherlands). The 
wave number ranges of the different brands were 925.66 to 5,010.15 cm−1 for Foss 
instruments, 649.03 to 3,998.59 cm−1 for Bentley instruments, and 397.31 to 4,000 
cm−1 for Delta instruments. The resolution used was 8 cm−1 for Delta and Bentley 
instruments and unknown for Foss instruments. As the goal of this work was to 
validate the standardization method rather than to compare the results of the different 
brands, the brands were anonymized as brand A, brand B, and brand C. In  this study 
we used data coming from a December 2015 interlaboratory study involving 66 
instruments of the 3 brands located in 26 laboratories in Austria, Belgium, Canada, 
France, Germany, Luxembourg, Switzerland, and the United Kingdom. 
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Standardization  

The standardization procedure, based on the PDS method, is described in Grelet et 
al. (2015). A set of standardization samples were measured on a reference instrument 
(the “master” instrument) and on each instrument that needs to be aligned (the “slave” 
instruments), leading to different response matrices. As reported by Grelet et al. 
(2015) and Wang et al. (2016), individual FT-MIR spectrometers suffer from 
instability over time. To cope with this instability, the master cannot be a single 
instrument. To bring stability to the reference, the master was therefore a fictitious 
machine that is an average of 18 instruments selected for their stability over time. In 
this configuration, the reference was linked to and dependent on the network but had 
a proper and stable spectral response to which all the slaves were matched. The 
response measured at a precise wave number on the master instrument was related to 
the response located in a small window around the same wave number measured on 
each slave instrument. A linear regression was then performed between the spectral 
response of the master at each wave number and the corresponding windows on the 
slaves. The coefficients generated for all wave numbers are called standardization 
coefficients. Whenever a new sample was measured on the slave instrument, the 
obtained spectra could be standardized to the master response format using these 
standardization coefficients. A standardization model needed to be designed for every 
master–slave combination, correcting the shift between each slave instrument and the 
master instrument. To match each slave to the master, a set of standardization samples 
needed to be analyzed by all instruments following the same procedure. To achieve 
this, interlaboratory studies have been organized in the network every month since 
December 2011, distributing sets of identical samples to the different participating 
laboratories. The various partial least squares (PLS) models can make use of different 
spectral areas, so all the spectral regions containing information need to be 
standardized independently to the model used. The samples were created to cover 
sufficient variability in the absorbance values at each wave number to allow a 
regression between slave and master absorbance values at each region of the spectra. 
All the sets generated consisted of 5 samples of raw milk with large and orthogonal 
variations in fat (between 2 and 6% wt/vol) and protein (between 2 and 5% wt/vol). 
The samples were created by blending skim milk, cream, ultrafiltration retentate, and 
permeate. These sets of samples were produced according to the method described in 
ISO (1999). Samples were preserved with bronopol (0.02%) and sent at 4°C in 
isothermal packages containing ice packs and using express delivery (within 24 h). 
The day of receipt, the milk samples were homogenized and analyzed at 40 ± 2°C in 
triplicate by each laboratory following a common protocol. The creation of samples 
and the generation of standardization coefficients were done centrally at Walloon 
Agricultural Research Center (Gembloux, Belgium). The instrument-specific 
standardization coefficients were transferred to the respective labs to be applied on 
the raw spectra of the corresponding slave spectrometers to obtain standardized 
spectra. 

Spectral Reproducibility Within the Network  

The spectral variability between instruments of the network was assessed by 
performing a principal component analysis (PCA) with the spectra of the master and 
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all 66 instruments before standardization based on the analysis of the 5 common 
interlaboratory study samples in triplicate. The effect of standardization on the 
spectral reproducibility of the network was assessed by performing a second PCA 
with spectra of the master and all 66 instruments before and after standardization 
based on the same samples. All the spectra were transformed in absorbance and 
interpolated to match the wave number range of the master to observe differences 
from spectral response only. A PCA was performed on spectra after a first derivative 
with a gap of 5 and using 212 selected wave numbers, from 968.1 to 1,577.5 cm−1, 
1,731.8 to 1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, and 2,831.0 to 2,966.0 cm−1 (Grelet 
et al., 2016). Based on the second PCA, the improvement of spectral reproducibility 
was quantitatively assessed by comparing the global Mahalanobis distances (GH) of 
the slaves from the master before and after standardization. 

Transfer of Individual Calibration Models  

To cover the wide diversity of predicted variables that can be found in the milk 
sector, the effect of standardization on the transfer of models from instrument to 
instrument was tested for 3 varied models relating to (1) cows’ status (daily CH4 
emitted by dairy cows), (2) fine milk composition (PUFA), and (3) technological 
properties of milk (fresh individual laboratory cheese yield of milk; FCY). The CH4 
model was developed by Vanlierde et al. (2016) and contains samples from Belgium 
and Ireland. In this study the Legendre polynomial transformation was removed 
because the interlaboratory study samples, which are not natural samples, cannot be 
associated with DIM information. The PUFA model comes from the work performed 
by Soyeurt et al. (2011) and contains samples from 7 different countries in the 
European Union. The FCY equation was built within the framework of research by 
Colinet et al. (2015) based on Belgian samples. All the models were developed using 
PLS regression with a first derivative and a gap of 5 and using the 212 wave numbers 
mentioned previously. Calibration and cross-validation statistics of the calibrations 
are shown in Table 3-1.  

Table 3-1. Calibration and cross-validation statistics of equations used 

Predicted variable Terms Samples Mean SD SEC R²c 
CV 

groups 
SECV R²cv RPDcv 

Methane emitted 

(g/d) 
 

12 532 430 129 66 0.74 5 72 0.69 1.79 

Total of PUFA 

(g/100mL of milk) 
 

11 1799 0.159 0.045 0.021 0.78 4 0.021 0.77 2.10 

Fresh cheese yield 

(g of curd/100g of 

milk) 

8 337 26.51 7.11 3.44 0.77 4 3.62 0.74 1.96 

1Terms = number of terms used in the regressions; Samples = number of samples in the calibration 

data sets; SEC = SE of calibration; R2c = coefficient of determination of calibration; CV groups = 

number of subsets used in cross-validation; SECV = SE of cross-validation; R2cv = coefficient of 

determination of cross-validation; RPDcv = ratio of SD to SECV. 



Chapter 3: Standardization of milk MIR spectra for use and transfer of multiple models 

37 

 

Based on the analysis of the standardization samples, the calibration models were 
applied to the master and slave instruments before and after the standardization 
procedure. All the slave predictions were then compared with the predictions obtained 
by the master instrument. The results of the comparison between slave predictions and 
master predictions, before and after standardization, are expressed by the root mean 
squared error (RMSE). This reflects the differences between predictions of the master 
and predictions of the slaves due to specific spectral responses, highlighted by model 
transfer. However, as RMSE is related to the level and the unit of the variable 
predicted, a relative error was also calculated. The relative error due to model transfer 
was calculated by looking at the ratio of RMSE between slaves and master predictions 
divided by the average of the reference values from the calibration data sets. 

Accuracy and Reproducibility of Predictions Over the Network  

For the 3 models, the accuracy of the predictions within the network was assessed 
by comparing the global averages of the master predictions and of the predictions of 
all slave instruments before and after standardization. Comparisons were done using 
the Tukey test. The reproducibility of the predictions within the network was 
approached by calculating the standard deviation of the predictions of all instruments 
before and after standardization for the 5 samples and with the 3 models. 
Reproducibility within the network was also compared with the 10-d repeatability of 
predictions of individual instruments calculated, for each model, with the analysis of 
a common UHT milk set during 10 d. All computations, chemometric analyses, and 
graphics were carried out with programs developed in Matlab version 7.5.0. (The 
MathWorks Inc., Natick, MA) and PLS toolbox version 4.11 (Eigenvector Research 
Inc., Wenatchee, WA). 

Results and discussion  

Spectral Reproducibility Within the Network  

From the first PCA done with spectra of all instruments before standardization, the 
principal components from 1 to 4 discriminate the 5 samples of the interlaboratory 
study. Therefore, these principal components comprise spectral information on milk 
composition. Principal components 5 and 6 allow discriminating the instruments and 
thus report information on the spectral variability among instruments (Figure 3-1). On 
this PCA figure, the spectra of the 66 instruments are represented by a color–symbol 
association. The heterogeneous distribution of the instruments highlights the 
considerable variability of spectral response between the different spectrometers 
within the network. Principal components 5 and 6 of the second PCA performed on 
spectra of the master (red stars) and all 66 instruments before (blue triangles) and after 
(green squares) standardization are reported in Figure 3-2. On this PCA figure, the 
master showed reduced variability, with spectra concentrated into a small space 
showing good homogeneity of the reference spectral response. By contrast with the 
considerable spectral heterogeneity observed without standardization, the spectral 
variability of the slaves was relatively limited after PDS. Spectral reproducibility was 
considerably improved after standardization, and standardized slaves’ spectra were 
concentrated around the master spectra. This indicates that slaves’ spectral responses 
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were much closer to the master’s spectral response than before and that the spectral 
homogeneity within the network increased. 

The GH from the slaves to the master were calculated to evaluate quantitatively the 
spectral homogeneity within the network before and after standardization. Before 
PDS, the GH ranged from 6.17 to 86,759.36, with an average value of 2,655.92. These 
very high GH can be explained by the fact that GH is the ratio of the Mahalanobis 
distance of a spectrum to the average of Mahalanobis distances of a reference data set. 
Classically, the GH is used to compare a sample with a database in a calibration step 
or as quality control when using an equation to predict new samples. These databases 
are built to contain as much variability as possible, which makes the denominator -the 
global Mahalanobis distance of the database- high. The threshold of 3 is then 
frequently used to define samples as outliers. In this study the GH was used in a 
different way, by comparing spectra with a reference containing very low variability, 
making the denominator really low. This reflects the fact that slaves’ spectra contain 
an important variability compared with the master spectra, which constitute a 
homogeneous reference with limited spectral variations. Therefore, the threshold of 3 
is not adapted in this case because the GH is used to compare another type of data, 
with another variability. After standardization the GH ranged from 0.50 to 350.24, 
with an average of 14.26. These quantitative results, with an average GH from the 
slaves to the master that is 186 times smaller, confirm the first conclusions obtained 
by visual observation of the PCA. The standardization process strongly reduces the 
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Figure 3-1. Principal component analysis (PCA) of the spectra of all instruments before 
standardization (n = 66). The PCA is based on the common analysis of 5 standardization samples in 

triplicate after selection of 212 informative wave numbers and a first derivative. Plot of principal 
components (PC) 5 and 6 summarizes the spectral variability between instruments. Each color–

symbol association represents an individual instrument 
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spectral variability within the network and makes the spectra closer to the master 
response, which is expected to have a positive effect on the transfer of models. 

Transfer of Individual Calibration Models  

Figure 3-3 shows the transfer of the CH4 model to an instrument of each brand 
before and after standardization. It illustrates the bias potentially generated in 
predictions by the transfer of a model without a preliminary step of spectral 
standardization. The figure also shows the reduction of the differences between slave 
and master predictions induced by the standardization. For all instruments, the 
differences between master and slave predictions before standardization were 
substantial, with RMSE ranging from 6 to 422 g/d for CH4, from 0.0017 to 0.1333 
g/100 mL for the PUFA model, and from 0.1110 to 39.57 g of curd/100 g of milk for 
FCY. Average RMSE for the 66 instruments without standardization was 103 g/d, 
0.0315 g/100 mL, and 2.55 g of curd/100 g of milk, respectively (Table 3-2).  
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'Not Standardized Spectra'

'Standardized Spectra'

'Master Spectra'

Figure 3-2. Principal component analysis (PCA) of the spectra of all instruments, including the master, 
before and after standardization (n = 66). The PCA is based on the common analysis of 5 

standardization samples in triplicate after selection of 212 informative wave numbers and a first 
derivative. Plot of principal components (PC) 5 and 6 summarizes the spectral variability between 

instruments. 
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 Before standardization After standardization 

Brand A 

  

Brand B 

  

Brand C 

  

Figure 3-3. Comparison of methane predictions (g/d) by the master and by 3 slaves from the 
3 brands before (left) and after (right) standardization. Dashed line is y = x; continuous line 

is the regression line between slave and master predictions. RMSE = root mean squared 
error. 
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Table 3-2. Root mean squared error (RMSE) between master and slaves predictions, 
averaged by brand, before and after piecewise direct standardization (PDS; n = 66 

instruments) 

 Methane emitted 

(g/d) 
 PUFA (g/100mL of 

milk) 
 Cheese fresh yield (g 

of curd/100g of milk) 

 Before 

PDS 

After 

PDS 
 Before 

PDS 

After 

PDS 
 Before 

PDS 

After 

PDS 

Brand A  231 33  0.0733 0.0089  6.73 1.47 

Brand B  348 25  0.1281 0.0027  23.94 1.15 

Brand C  73 14  0.0211 0.0039  1.09 0.31 

Global 

average 
103 17  0.0315 0.0045  2.55 0.49 

  

These errors due to model transfer were not negligible, with relative RMSE of 23.9, 
19.8, and 9.6%. Without standardization, RMSE fluctuated among brands, with 
different levels of average (Table 3-2) and maximum (Table 3-3) RMSE. However, 
these levels are relatively high compared with the standard error of cross-validation 
of the respective equations (Table 3-1), meaning that the transfer of models will add 
a fairly considerable error to the predictions compared with the inherent error of the 
models. For the CH4 and PUFA models, for all brands the transfer from the master to 
other instruments led in the majority of cases to strong bias in the predictions, making 
the transfer of models inconceivable. In the case of the FCY model, for brands A and 
B the transfer from the master to other instruments also led to important bias in the 
predictions. Concerning brand C, the average difference from the master prediction 
before PDS was limited, suggesting that the model could be transferred without the 
standardization step. However, some instruments show elevated RMSE (up to 3.95 g 
of curd/100 g of milk), inducing substantial errors in predictions when transferring the 
model without standardization. After standardization, the RMSE between slave and 
master predictions was considerably decreased and ranged from 2 to 61 g/d for CH4, 
0.0013 to 0.0152 g/100 mL for PUFA, and 0.09 to 2.10 g of curd/100 g of milk for 
FCY. The average RMSE for the 66 instruments was reduced to 17 g/d, 0.0045 g/100 
mL, and 0.49 g of curd/100 g of milk, respectively (Table 3-2).  

Table 3-3. Maximum root mean squared error (RMSE) between master and slaves 
predictions, sorted by brand, before and after piecewise direct standardization (PDS; n = 66 

instruments) 

 
Methane emitted (g/d)  PUFA (g/100mL of 

milk) 
 Cheese fresh yield (g of 

curd/100g of milk) 

 

Before 

PDS 
After PDS 

 

Before 

PDS 
After PDS 

 

Before 

PDS 
After PDS 

Brand A  420 61  0.1009 0.0152  12.14 2.10 

Brand B  422 26  0.1333 0.0041  39.58 1.35 

Brand C  247 27  0.0529 0.0112  3.95 1.07 
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Consequently, the relative RMSE decreased after standardization from 23.9 to 4.0% 
for CH4, from 19.8 to 2.8% for PUFA, and from 9.6 to 1.8% for FCY, meaning that 
the relative error induced by model transfer was reduced to a more acceptable level 
for the routine use of the predictions. Indeed, after PDS, the average RMSE was 
relatively limited compared with the inherent standard error of cross-validation of 
each model, meaning that the transfer did not add a significant error to the final 
predictions. The averaged and maximum RMSE still varied among the 3 brands but 
were considerably decreased for all of them after PDS (Tables 3-2 and 3-3). The 
average differences between master and slave predictions were 6.8, 8.7, and 4.5 times 
less, respectively. For the 3 models and the 3 brands, the effect of the standardization 
was a considerable reduction of the differences from master predictions, allowing the 
transfer of the models to all slave instruments. 

Accuracy, Reproducibility, and Use of Predictions Over the Network  

Figure 3-4 illustrates, for one sample of the interlaboratory study, the improvement 
of the reproducibility of PUFA predictions after standardization compared with 
predictions from raw spectra. After standardization the distribution of the PUFA 
predictions was much tighter, meaning that the predictions were more precise. The 
mean was also closer than the master prediction mean, showing an increase in the 
accuracy of the predictions.  

To evaluate the effect of standardization on network accuracy for the 66 
instruments, the slave prediction means were compared with the master prediction 
means (Table 3-4). For CH4 and PUFA, the prediction means for all instruments 
without standardization were significantly different from the master prediction means, 
with 431 versus 496 g/d for CH4 and 0.093 versus 0.117 g/100 mL for PUFA. After 
standardization, the prediction means were 495 g/d and 0.117 g/100 mL, respectively, 
and could not be significantly differentiated from the master prediction mean. For 
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Figure 3-4. Box plot representation of PUFA predictions for a sample of the interlaboratory 
study analyzed on 66 instruments for master spectra, nonstandardized spectra, and spectra 

after standardization after removing aberrant values. 
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FCY, the prediction means without (25.92 g of curd/100 g of milk) and with (24.46 g 
of curd/100 g of milk) standardization could not be significantly differentiated from 
the master prediction mean (24.47 g of curd/100 g of milk), although the prediction 
mean after PDS seemed closer. Network accuracy was significantly improved after 
standardization for CH4 and PUFA models. This also seemed to be the case for FCY, 
although this could not be demonstrated statistically.  

Table  3-4. Accuracy and reproducibility of predictions within the network; comparison of 
predictions from master, nonstandardized, and standardized spectra, from samples of the 

interlaboratory study analyzed on 66 instruments using 3 different Fourier transform mid-
infrared calibrations 

  Mean   SD 

Item Master 
Slaves 

before PDS1 

Slaves 

after PDS 
 

Before 

PDS 

After 

PDS 

Methane emitted (g/d) 496 a 431 b 495 a  126 25 

PUFA  (g/100mL of milk) 0.117 a 0.093 b 0.117 a  0.0346 0.0069 

Fresh cheese yield (g of 

curd/100g of milk) 
24.47 ab 25.92 b 24.46 a  4.893 0.694 

a,b Means within a row with different superscripts are significantly different by the Tukey test (P < 0.05). 
1PDS = piecewise direct standardization. 

 

After PDS, for the 3 brands taken separately and for each model, there was no 
difference between the predictions of the master and of the slaves of each brand of 
instrument (Table 3-5). Network reproducibility was improved, with SD between 
instruments’ predictions reduced after standardization from 126 to 25 g/d for CH4, 
from 0.0346 to 0.0069 g/100 mL for PUFA, and from 4.89 to 0.69 g of curd/100 g of 
milk for FCY (Table 3-4). For the 3 models and for brands A, B, and C, the average 
10-d repeatability of the instruments was 45, 22, and 50 g/d per cow; 0.0108, 0.0095, 
and 0.0063 g/100 mL of milk; and 1.06, 0.72, and 0.57 g of curd/100 g of milk, 
respectively. The reproducibility levels obtained were therefore in the same order of 
magnitude as the inherent repeatability of individual spectrometers, meaning that 
predictions throughout the network were as precise as for an individual instrument. 
These results show that at the network level the method improved the accuracy and 
reproducibility of predictions by matching all spectrometers to a common reference 
response format. As shown in Figure 3-3, improved network reproducibility 
harmonized the regression lines between spectrometers. In breeding studies this 
increases the usefulness of prediction. Indeed, if intra-herd differences can be adjusted 
through the herd means, heterogeneity of variances due to instruments would be a 
major challenge in genetic evaluations and could only be approximately adjusted post 
prediction with very complex methods (e.g., Gengler et al., 2004) if sources of 
variation, which are numerous and unforeseeable, are correctly identified for each 
instrument, which is not realistic on a network-wide scale. 
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Table 3-5. Reproducibility of predictions among the different brands after standardization; 
comparison of predictions from master and standardized spectra, from samples of the 

interlaboratory study analyzed on 66 instruments using 3 different Fourier transform mid-
infrared calibrations 

 Master Brand A Brand B Brand C P-value 

Methane emitted (g/d) 496.1 a 496.0 a 487.5 a 494.93 a 0.967 

PUFA  (g/100mL of milk) 0.117 a 0.117 a 0.118 a 0.117 a 0.999 

Fresh cheese yield (g of 

curd/100g of milk) 
24.47 a 24.50 a 24.35 a 24.45 a 1.000 

aMeans within a row with different superscripts are significantly different by the Tukey test (P < 0.05) 

General Discussion  

The goal of this work was to evaluate the effect of a standardization method on the 
transfer of multiple models with low accuracy from instrument to instrument. A 
previous study (Grelet et al., 2015) demonstrated that until now it was possible to 
transfer only high-quality models (fat). The results confirm the first conclusions 
obtained with the fat model: without the use of a standardization step, the transfer of 
models leads to considerable errors in the predictions, reducing the value of 
information from FT-MIR milk spectra for the dairy sector. This study shows that 
standardization greatly reduced the spectral variability between spectrometers of the 
network by bringing the spectra closer to a common reference response. Moreover, 
the use of PDS strongly increased the reproducibility and accuracy of predictions 
across all instruments. With the 3 models used (CH4 emitted by dairy cows, PUFA in 
milk, and FCY), the developed method substantially reduced the relative error due to 
transfer of equations. The differences between master and slave predictions were 6.8, 
8.7, and 4.5 times less, respectively. This demonstrates the possibility of transferring 
different models relating to cow status, fine milk composition, or technological 
properties of milk within the network. However, the levels of reduction obtained were 
less impressive than those obtained for the fat model, where the differences between 
slave and master predictions were reduced on average by a factor of 29.5, whereas the 
spectral correction was the same. Furthermore, the relative RMSE after 
standardization were 4.0, 2.8, and 1.8% for CH4, PUFA, and FCY, respectively, 
whereas it was only 0.4% for the fat model. Compared with the models used in the 
study, the main characteristics of the fat model were greater accuracy and a direct and 
strong signature of fat molecules in the spectra. Figure 3-5 illustrates the link between 
the coefficient of determination of cross-validation (R²cv) of the models and the 
performances of the transfer.  
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Figure 3-5. Plots representing the link between the quality of the model (coefficient of 
determination of cross-validation; R²cv) and the performance of the transfer by piecewise 
direct standardization [relative root mean squared error (RMSE) between slaves and master 
predictions after standardization] from the 5 interlaboratory study samples analyzed on 66 
instruments. CH4 = methane emitted by dairy cows; PUFA = PUFA in milk; FCY = fresh 
cheese yield; Fat = fat model used in Grelet et al. (2015). 

This clearly shows that the error does not depend only on the standardization 
method, which does not increase the error in the final predictions, but mainly on the 
quality of models used. As the standardization did not interfere with the error of the 
final results, the decision to put effort into developing and sharing a model relies only 
on the quality of the model regarding the accuracy needed. Williams (2014) proposed 
a scale regarding the quality of models using the ratio of performance to deviation 
(RPD), which is the standard deviation of the reference values divided by the standard 
error of prediction. From this scale, the models with an RPD of <2.3 are very poor 
and not recommended. Hence, one can think that developing and transferring such 
models is useless. However, in Williams (2014), the aim was related to quality control 
of products, and the scaling of the RPD was done in line with this objective, which is 
quite demanding. Furthermore, the paper also mentioned that due to some 
complications (e.g., difficulties obtaining high variance in the sample set) high RPD 
can be difficult to obtain, whereas the models can still be of interest for industry or 
research. In the present study, the models used were not dedicated to quality control, 
and in another context (e.g., animal management advisory and especially breeding) 
they can be of interest despite their low accuracy. There are several reasons for this. 
First, even if these models are phenotypically imprecise, they provide useful 
information that was not available before (e.g., predictors for direct traits that were 
very difficult to obtain). Second, if prediction errors are random, having multiple 
records reduces the predictive noise globally. Third, in genetic studies, they are 
repeated throughout a family, and a common genetic background (being heritable) can 
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be genetically correlated with other traits of interest (e.g., direct health traits). 
Usefulness of models with lower phenotypic predictive power is linked to their genetic 
correlation to other traits of interest. Concretely, there are various examples of how 
such models with low statistics (RPD < 2.3, which is equivalent to R² < 0.81) can be 
of interest for the dairy sector. For example, Leclercq et al. (2013) studied the genetic 
variability of lactoferrin based on a model with R²cv = 0.71, Cecchinato et al. (2009) 
used coagulation property models with R²cv between 0.46 and 0.69 to estimate 
heritabilities and genetic correlations, and the models developed by de Roos et al. 
(2007) with R² of 0.72 for acetone and 0.64 for BHB are currently routinely used for 
ketosis screening. In a genetic study, Bonfatti et al. (2017b) concluded that genetic 
progress will be faster with good models and that less accurate equations might be 
successfully used for breeding purposes. Finally, McParland et al. (2015) showed that 
the ultimate issue for the use of such models for breeding is the existence of genetic 
correlations. Based on models predicting energy intake and energy balance with R²cv 
of 0.56 and 0.53, respectively, they reported genetic correlations between measured 
and MIR-predicted traits of 0.84 for energy intake and 0.54 for energy balance, 
indicating that selection based on MIR-predicted variables would improve true energy 
intake and energy balance. Consequently, the RPD needed should be defined by the 
users, and this level will be different following their own purposes and applications. 
Furthermore, the presented standardization method will improve the usefulness of 
models with low predictive power. These models provide useful information that was 
not available before; however, this type of data has to be accumulated across large 
populations, therefore involving many instruments. Having multiple records reduces 
the predictive noise globally, but only if these records are comparable across time and 
instruments. For breeding studies, usefulness of models is linked to their genetic 
correlation to other traits of interest. However, these studies have to rely on many 
comparable records. Nonstandardized data would inflate residual -not modeled-
variance and therefore reduce heritability and genetic progress. It would also affect 
genetic correlations between FT-MIR models and direct traits. McParland et al. (2015) 
reported good genetic correlations between measured and MIR-predicted traits, but 
this study was based on a single spectrometer. One can hypothesize that genetic 
correlation would have been lower with nonstandardized FT-MIR data from several 
instruments. In addition to the standardization methods, some important parameters 
need to be considered to ensure reproducible and accurate predictions for routine use. 
First, complementary to the homogeneity of spectral response, the robustness of 
models is an essential element. This capacity of the models to be all terrain is affected 
not only by the statistical performances of the models (e.g., the RPD), which are well 
known, but mainly by others factors not frequently mentioned. Models can be 
transferred into the network, but it is necessary to ensure that calibration data sets 
cover the spectral variability of the different geographical regions, breeds, and diets 
to obtain valid predictions. Robustness is also affected by the number of latent 
variables used in the PLS models (which should be reasonable) as well as the precision 
of the reference method, the use of a repeatability file, the integration of several brands 
of FT-MIR spectrometers into the data set, and the reproducibility of wave number 
areas selected within the models. Second, the models have to be developed with 
standardized spectra to be compatible with the reference spectral response and to be 
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used by all the spectrometers. Third, there is a need for a thorough investigation of the 
spectral stability of individual instruments over time, as this could potentially affect 
the predictions within 2 interlaboratory studies. The developed method makes it 
possible to harmonize a network precisely and hence to constitute a standardized 
historical database usable for multiple purposes. A new model predicting an 
interesting phenotype can be applied to past standardized spectra to take advantage of 
a depth of data (e.g., to realize a genetic study). However, the developed method is 
valid only once a slave instrument has been integrated in the network and has analyzed 
the standardization samples. Recently, a study aimed to standardize spectra over 
instruments and over time using historical data sets as a basis (Bonfatti et al., 2017a). 
This method allows the harmonizing of historical databases and the use a posteriori 
of models when instruments have not been standardized. However, it is concluded in 
this work that to guarantee the correct application of the calibration models on a 
running spectrometer the instrument should be standardized using the traditional 
standardization methods, which make use of spectra acquired on common reference 
samples. The potential risk induced by using historical data sets is that it may correct 
not only differences attributable to instruments but also those attributable to other 
factors that may affect the different data sets, such as feed diets, breeds, or seasons. 
The methods are therefore complementary to retroactively standardize an instrument 
and to precisely harmonize a running network. 

Conclusions  

The results obtained in this work show that spectral standardization allows the 
transfer and use of multiple models on all instruments and the improvement of the 
spectral and prediction reproducibility within the network. The transfer does not add 
significant error to the final predictions, which are largely affected by the quality of 
the models used. The method makes the equations universal, thereby offering 
opportunities for data exchange and the creation and use of common robust models at 
an international level to provide more information to the dairy sector from milk 
analysis. 
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Introduction to chapter 4 

While the two previous chapter focused on the practical conditions to use in routine 
models developed from milk MIR spectra, the following chapter aims to concretize 
this work by describing the development of models predicting phenotypes of interest 
for the dairy sector.  

Among all the phenotypes of interest, difficulties arising in early lactation due to 
negative energy balance (NEB) are among the most important issues. Collard et al. 
(2000) and Butler (2003) identified the length and intensity of postpartum NEB as 
major parameters influencing health and fertility in dairy cows. Following Suthar et 
al. (2013), 75% of dairy cows’ diseases occur during the first month of lactation. The 
NEB is a consequence of an increased milk production per cow, partly due to a genetic 
selection for milk production, while dry matter intake failed to increase enough to 
compensate for the higher energy expenditure (Barkema et al., 2015). Physiologically, 
altered metabolism due to NEB in early lactation causes liver damage and 
dysfunctions (Turk et al., 2004), inflammation (Wathes et al., 2009), alteration of 
hormone regulation (Esposito et al., 2014) and immune response (Hammon et al., 
2006; Moyes et al., 2010). Consequently, this increases the risk of ketosis, lameness, 
displaced abomasum, milk fever, metritis, retained placenta and mastitis (Collard et 
al., 2000; LeBlanc, 2010; Esposito et al., 2014). Among these disorders, subclinical 
ketosis is the metabolic disease with the highest prevalence and represents a gateway 
condition for other metabolic and infectious diseases (Suthar et al., 2013). In the US 
dairy herds, it has been the most important metabolic disease, surpassing ruminal 
acidosis and milk fever in clinical significance since 1990 (Oetzel, 2007). Ketosis is 
characterized by increased levels of circulating ketone bodies and occurs when 
physiologic mechanisms for the adaptation to NEB fail (Herdt, 2000). In addition to 
metabolic and infectious diseases, NEB can also reduce reproductive performances 
(Esposito et al., 2014). Issues in dairy farms associated with NEB can represent an 
important source of economic losses. As an example, total cost per case of 
hyperketonemia are estimated at 289$ in average (McArt et al., 2015). Considering 
the associated costs, as well as the high incidence of problems linked to NEB and 
ketosis, there is a clear interest to have information on these phenotypes in the early 
lactation period. 

Among the biomarkers of these statuses, blood Non-Esterified Fatty acids (NEFA) 
and β-hydroxybutyrate (BHB) have been identified as gold standards to reflect body 
reserve mobilization and ketosis, respectively (Leblanc, 2010; Suthar et al., 2013). 
Alternatively, some metabolites measured in milk are also known to be good 
indicators for NEB and ketosis and readily accessible at large scale in dairy herds via 
milk recording organizations (MROs). The high frequency of milk sampling by the 
MROs could allow detecting an animal in suboptimal condition before turning into 
observable clinical cases. In the study by BjerreHarpøth et al. (2012), it was concluded 
that citrate content had the greatest response during NEB between various metabolites 
measured in milk. Baticz et al. (2002) stated that in order to evaluate the energy status 
of cows, content of citrate should be measured by simple and automated methods such 
as FT-MIR technology. In addition, ketone bodies in milk, such as BHB and acetone, 
have been identified as the most common indicators of (sub)clinical ketosis in milk 
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(Enjalbert et al., 2001). Consequently, the objective of the following chapter is to build 
calibration models to predict milk BHB and acetone using the milk MIR spectra, and 
assess the possibility of predicting milk citrate through this technology. This work 
could be the basis for the creation of useful tools for dairy herd management based on 
a cost-effective technology easily accessible through the classical milk recording 
system. The following chapter is based on the results described in Chapters 2 & 3, 
considering  that datasets from several instruments have been combined into a 
common calibration database using the standardization method. Finally, due to the 
universal standardized spectral format, such tools could be used routinely on all 
network instruments.  

References 

Baticz O., Tömösközi S., Vida L., Gaál T., 2002. Relationship between 
concentration of citrate and ketone bodies in cow’s milk. Acta Vet. Hung. 50:253–61.  

Bjerre-Harpøth V., Friggens N.C., Thorup V.M., Larsen T., Damgaard B.M., 
Ingvartsen K.L., Moyes K.M., 2012. Metabolic and production profiles of dairy cows 
in response to decreased nutrient density to increase physiological imbalance at 
different stages of lactation. J. Dairy Sci. 95:2362–80. 

Butler WR., 2000. Nutritional interactions with reproductive performance in dairy 
cattle. Anim. Reprod. Sci. 60, 449-457. 

Collard B.L., Boettcher P.J., Dekkers J.C., Petitclerc D., Schaeffer L.R., 2000. 
Relationships between energy balance and health traits of dairy cattle in early 
lactation. J. Dairy Sci.  83,2683–2690.  

Enjalbert F., Nicot M.C., Bayourthe C., Moncoulon R., 2001. Ketone bodies in milk 
and blood of dairy cows: relationship between concentrations and utilization for 
detection of subclinical ketosis. J. Dairy Sci. 84:583–9.  

Esposito G., Irons P.C., Webb E.C., Chapwanya A., 2014. Interactions between 
negative energy balance, metabolic diseases, uterine health and immune response in 
transition dairy cows. Anim. Reprod. Sci. 144:3,60-71. 

Hammon D.S., Evjen I.M., Dhiman T.R., Goff J.P., Walters J.L., 2006. Neutrophil 
function and energy status in Holstein cows with uterine health disorders. Vet. 
Immunol. Immunop. 113:1,21-29. 

Herdt H., 2000, Ruminant Adaptation to Negative Energy Balance. Vet Clin. N. 
AM: Food animal Practice. 16:2,215-230. 

Koeck A., Jamrozik J., Schenkel F. S., Moore R. K., Lefebvre D. M., Kelton D. F., 
Miglior F., 2014. Genetic analysis of milk β-hydroxybutyrate and its association with 
fat-to-protein ratio, body condition score, clinical ketosis, and displaced abomasum in 
early first lactation of Canadian Holsteins. J. Dairy Sci. 97:11,7286-7292. 

LeBlanc S., 2010. Monitoring metabolic health of dairy cattle in the transition 
period. J Reprod. Develop. 56:S29-S35. 

McArt J.A.A., Nydam D.V., Overton M.W., 2015. Hyperketonemia in early 
lactation dairy cattle: A deterministic estimate of component and total cost per case. J. 
Dairy Sci, 98:3, 2043-2054. 



Promoting international prediction models through standardization of milk MIR spectra 

54 

 

Moyes K.M., Drackley J.K., Morin D.E., Rodriguez-Zas S.L., Everts R.E., Lewin 
H.A., Loor J.J., 2010. Mammary gene expression profiles during an intramammary 
challenge reveal potential mechanisms linking negative energy balance with impaired 
immune response. Physiol. Genomics, 41:2, 161-170. 

Oetzel G.R., 2007, September. Herd-level ketosis–diagnosis and risk factors. In 
Proceedings of the 40th annual conference of bovine practitioners, Vancouver, 
Canada. 

Suthar V.S., Canelas-Raposo J., Deniz A., Heuwieser W., 2013. Prevalence of 
subclinical ketosis and relationships with postpartum diseases in European dairy 
cows. J. Dairy Sci, 96:5,2925-2938. 

Turk R., Juretic D., Geres D., Turk N., Rekic B., Simeon-Rudolf V., Svetina A., 
2004. Serum paraoxonase activity and lipid parameters in the early postpartum period 
of dairy cows. Res. Vet. Sci., 76:1, 57-61. 

Wathes D.C., Cheng Z., Chowdhury W., Fenwick M.A., Fitzpatrick R., Morris 
D.G., Patton J., Murphy J.J., 2009. Negative energy balance alters global gene 
expression and immune responses in the uterus of postpartum dairy cows. Physiol. 
Genomics., 39:1,1-13. 

  



Chapter 4: MIR prediction of milk BHB, acetone and citrate 

55 

 

Chapter 4 : Development of Fourier transform mid-
infrared calibrations to predict acetone, β-
hydroxybutyrate, and citrate contents in bovine milk 
through a European dairy network 

C. Grelet,*1 C. Bastin,†1 M. Gelé, J.B. Davière,‡ M. Johan,‡ A.Werner,# R.Reding, 
J.A. Fernandez Pierna,* F. G. Colinet,† P. Dardenne,* N. Gengler,† H. Soyeurt,† and 
F. Dehareng*2  

*Walloon Agricultural Research Center (CRA-W), Valorization of Agricultural Products 

Department, 24 Chaussée de Namur, 5030 Gembloux, Belgium  

†University of Liège, Gembloux Agro-Bio Tech, Agriculture, Bio-engineering and 

Chemistry Department, 2 Passage des Déportés,  5030 Gembloux, Belgium  

‡French Livestock Institute (IDELE), 9 rue André Brouard, CS 70510, 49105 Angers cedex 

02, France §Clasel, 141 Boulevard des Loges, 53942 Saint Berthevin, France  

#Landeskontrollverband (LKV) Baden Württemberg, Heinrich-Baumann Str. 1-3, 70190 

Stuttgart, Germany 

ǁConvis S.C., 4 Zone Artisanale et Commerciale, 9085 Ettelbruck, Luxembourg  
1 These authors contributed equally 

J. Dairy Sci. 99:4816–4825 http://dx.doi.org/10.3168/jds.2015-10477  

© American Dairy Science Association®, 2016 

Abstract 

To manage negative energy balance and ketosis in dairy farms, rapid and cost-
effective detection is needed. Among the milk biomarkers that could be useful for this 
purpose, acetone and β-hydroxybutyrate (BHB) have been proved as molecules of 
interest regarding ketosis and citrate was recently identified as an early indicator of 
negative energy balance. Because Fourier transform mid-infrared spectrometry can 
provide rapid and costeffective predictions of milk composition, the objective of this 
study was to evaluate the ability of this technology to predict these biomarkers in milk. 
Milk samples were collected in commercial and experimental farms in Luxembourg, 
France, and Germany. Acetone, BHB, and citrate contents were determined by flow 
injection analysis. Milk mid-infrared spectra were recorded and standardized for all 
samples. After edits, a total of 548 samples were used in the calibration and validation 
data sets for acetone, 558 for BHB, and 506 for citrate. Acetone content ranged from 
0.020 to 3.355 mmol/L with an average of 0.103 mmol/L; BHB content ranged from 
0.045 to 1.596 mmol/L with an average of 0.215 mmol/L; and citrate content ranged 
from 3.88 to 16.12 mmol/L with an average of 9.04 mmol/L. Acetone and BHB 
contents were log-transformed and a part of the samples with low values was 
randomly excluded to approach a normal distribution. The 3 edited data sets were then 
randomly divided into a calibration data set (3/4 of the samples) and a validation data 
set (1/4 of the samples). Prediction equations were developed using partial least square 
regression. The coefficient of determination (R²) of cross-validation was 0.73 for 
acetone, 0.71 for BHB, and 0.90 for citrate with root mean square error of 0.248, 
0.109, and 0.70 mmol/L, respectively. Finally, the external validation was performed 
and R² obtained were 0.67 for acetone, 0.63 for BHB, and 0.86 for citrate, with 
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respective root mean square error of validation of 0.196, 0.083, and 0.76 mmol/L. 
Although the practical usefulness of the equations developed should be further 
verified with other field data, results from this study demonstrated the potential of 
Fourier transform mid-infrared spectrometry to predict citrate content with good 
accuracy and to supply indicative contents of BHB and acetone in milk, thereby 
providing rapid and cost-effective tools to manage ketosis and negative energy 
balance in dairy farms. 

Key words: Fourier transform mid-infrared spectrometry, milk, acetone, β-
hydroxybutyrate, citrate 

Introduction  

Fourier transform mid-infrared (FT-MIR) spectrometry is a method of choice to 
perform composition and quality controls during routine liquid milk testing. It allows 
a fast and nondestructive quantification of milk chemical properties to avoid reference 
methods, which are usually tedious, expensive, and time consuming. Today, FT-MIR 
spectrometry is used worldwide to predict contents of fat, protein, urea, and lactose in 
official milk-recording schemes and milk payment systems. In addition, several 
studies undertaken over the last decade demonstrated the potential of FT-MIR to 
predict detailed milk composition (De Marchi et al., 2014), for example, fatty acid 
profile (Rutten et al., 2009; Soyeurt et al., 2011), protein composition (Bonfatti et al., 
2011), lactoferrin (Soyeurt et al., 2012), minerals (Soyeurt et al., 2009), technological 
properties of milk (e.g., coagulation properties, curd firmness, and cheese yield; De 
Marchi et al., 2014), and the physiological state of the cow (e.g., methane emissions; 
Vanlierde et al., 2015), pregnancy status (Lainé et al., 2014), body energy status 
(McParland et al., 2011), energy intake, and efficiency (McParland et al., 2014). 
Hence the analysis of milk by FT-MIR spectrometry offers the opportunity to record 
a whole range of new phenotypes to develop tools enabling profitability and 
sustainability of the dairy sector (Gengler et al., 2015) as well as genetic and genomic 
evaluations (Gengler et al., 2016). Over the range of traits potentially predictable by 
FT-MIR spectrometry, biomarkers of negative energy balance state and ketosis are of 
primary importance for optimized fertility, health, and welfare of high-yielding dairy 
cows. The extent and the duration of the postpartum negative energy balance have 
been identified as one of the major factor influencing fertility and health of dairy cows 
(Collard et al., 2000; Butler, 2003). BjerreHarpøth et al. (2012) mentioned that citrate 
content, among various metabolites measured in milk, had the greatest response 
during a period of negative energy balance. Baticz et al. (2002) concluded that content 
of citrate should be measured by easy and automated method such as FT-MIR 
technology to evaluate the energy status of cows. Furthermore, (sub)clinical ketosis, 
caused by excessive body fat mobilization due to severe negative energy balance, is 
one of the most frequent production diseases, with a prevalence ranging from 7 to 
43% in the first 2 mo of lactation (Suthar et al., 2013). Ketosis negatively affects milk 
yield and reproductive performances; it also increases the risk of subsequent diseases 
such as displaced abomasum (Duffield, 2000). The major ketone bodies in milk (i.e., 
BHB, acetone, and acetoacetate) are the most common indicators of ketosis in milk 
(Enjalbert et al., 2001). 
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Previous studies attempted to predict acetone content in milk by using FT-MIR 
spectrometry. As shown in Table 4-1, these studies differ in the reference method used 
to quantify acetone content but also in the number of samples used. Coefficients of 
determination of calibration and of cross-validation ranged from 0.39 to 0.80 (Table 
4-1). Except Hansen (1999), these authors did not perform external validation. de 
Roos et al. (2007) investigated the prediction of BHB by FT-MIR spectrometry. Using 
1,069 samples, they obtained a R² of cross-validation of 0.63 and a standard error of 
crossvalidation of 0.065 mmol/L. Using FT-MIR predictions of acetone and BHB 
contents in milk, van Knegsel et al. (2010) and van der Drift et al. (2012) investigated 
the opportunity of such predictions for the detection of ketosis in dairy cows. To our 
knowledge, no study had reported calibration statistics for the prediction of citrate 
contents in milk by FT-MIR spectrometry although FT-MIR predictions of citrate 
have been used in the work of Bjerre-Harpøth et al. (2012). The objectives of this 
study were (1) to build calibrations predicting acetone and BHB contents in milk and 
to evaluate their usefulness for use on field with an external validation data set and (2) 
to assess the potential of FT-MIR spectrometry to predict citrate content in milk. The 
first novelty of this work lies in the combination of data from cows of different breeds 
collected in different countries and production systems as well as in the combination 
of spectral data from several apparatus of different brands. The merging of spectral 
data relies on the FT-MIR standardization procedure developed by Grelet et al. (2015). 
This method brings possible the collation of the data set, thereby increasing the 
robustness of calibrations and the use of the developed calibrations by all standardized 
instruments. The second novelty of this work is to provide a detailed external 
validation procedure to assess the robustness of the calibrations developed. 

Table 4-1. Overview of calibration and validation statistics from various studies aiming at 
predicting acetone content in milk by Fourier transform mid-infrared spectrometry; reference 

method for quantifying acetone, number of samples used, root mean square error (RMSE), 
standard error of cross-validation (SECV), and R² are presented1 

  Calibration Cross validation External validation 

Reference 

Reference 

method N RMSE R² SECV RMSE R² N RMSE R² 

Hansen et al., 

1999 

Vanilin test 302 - - - 0.240 0.80 58 0.270 0.81 

Heuer et al., 

2001 

Gas 

chromatography 

180 - - 0.210 - - - - - 

De Roos et al., 

2007 

Continuous flow 

analyser 

1063 - - 0.184 - 0.72 - - - 

Hanus et al., 

2011 

Microdiffusion 

photometric 

14 - 0.65 - - - - - - 

Hanus et al., 

2014 

Microdiffusion 

photometric 

89 - 0.39 - - - - - - 

1RMSE and SECV are expressed in mmol/L. 
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Materials and methods 

Sampling  

The sampling was undertaken from August 2013 to June 2014. Milk samples were 
collected by 4 organizations from 3 countries in both research and commercial farms 
(Table 4-2). After removing subsets of samples thawed during transport or poorly 
preserved and subsets of samples showing issues during spectra acquisition or during 
reference analysis, the initial data set included 566 samples. A total of 256 milk 
samples originated from 2 experimental farms from cows at 7 to 56 d postcalving to 
focus on the postpartum period when cows are at the greatest risk of metabolic 
disorders due to negative energy balance. Eighty-two samples were collected in 
Neumühle experimental farm (Germany) from Holstein cows fed mainly with maize 
silage. A total of 174 samples were recorded in the Poisy experimental farm (France) 
from Abondance and Montbéliarde cows fed with fresh grass during summer or with 
hay and maize during winter season. In addition, 310 samples were collected in 
commercial farms by Milk Recording Organizations. Several 200 samples were 
collected by Clasel in the west of France, from Holstein and Normande cows fed 
mainly with maize silage during winter and grass during summer. Samples were 
selected at the laboratory based on milk parameters known to be related to ketosis 
status such as fat to protein ratio. In Luxembourg, 110 samples were collected by 
Convis s.c. from Holstein cows fed mainly with maize silage supplemented by grazing 
during summer. For all cows, milk samples were collected by using sampling systems 
approved by ICAR. Morning and evening samples were pooled to obtain daily milk 
and 2 identical samples were generated to be analyzed by FT-MIR and reference 
analysis. 

Table 4-2. Characteristics of the 4 sample source 

 N Region Breed Feed DIM 

Neumühle 82 Western Germany Holstein Maize silage 7-56 

Poisy 174 Eastern France 
Abondance and 

Montbéliarde 

Fresh grass or hay and 

maize silage 
7-56 

Clasel 200 Western France 
Holstein and 

Normande 
Maize silage or fresh grass 7-305 

Convis 110 Luxembourg Holstein 
Maize silage supplemented 

by grazing during summer 
5-60 

 

Fourier Transform Mid-Infrared Analysis 

All samples were analyzed fresh by local milk recording organizations. A total of 
10 different instruments, located in 5 laboratories, were used in the study. The 
instruments were located in Germany (6), France (2), and Belgium (2). Table 4-3 
provides the technical information related to the instruments used in this study. To 
combine them into a common database, the spectra recorded from all these 
instruments were standardized into a common format using the piece-wise direct 
standardization method and the protocol developed within the OptiMIR project 
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(Grelet et al., 2015). For each spectrum, the standardized Mahalanobis distance (GH) 
was calculated and no spectrum was considered as an outlier. 

Table 4-3. Characteristics of the Fourier transform mid-infrared instruments used in the 
study1 

Brand Type 
Number of 

instruments 

Frequency 

reported by 

constructors 

(cm-1) 

Number of 

Wavenumbers 
Resolution 

Foss Electric A/S 

(Denmark) 

FT 

6000 
3 926 – 5,010 1060 Unknown 

Foss Electric A/S 

(Denmark) 
FT+ 2 926 – 5,010 1060 Unknown 

Bentley (United 

States) 
FTS 5 649 – 3,999 899 8cm-1 

1Number of wavenumbers is the total data points numbers of the raw spectra before interpolation and 

area selection. 

Reference Analysis 

The samples dedicated to the reference analysis were sent to the Walloon 
Agricultural Research Center (CRAW, Gembloux, Belgium) to be analyzed. Samples 
from Germany and France were frozen before being sent, and the samples from 
Luxembourg were preserved with bronopol at 0.01% and analyzed fresh. The BHB 
and acetone content in milk were analyzed by a continuous flow analyzer (Scan ++, 
Skalar, Breda, the Netherlands) using the procedure described by de Roos et al. 
(2007). Citrate was also analyzed with continuous flow analyzer, based on enzyme-
catalyzed reaction. Citrate is converted into oxaloacetate and acetate, catalyzed by 
citrate lyase, and oxaloacetate decarboxylases into pyruvate. Oxaloacetate and 
pyruvate are then reduced by nicotinamide dinucleotide (NADH) into malate and 
lactate, which are catalyzed by malate and lactase dehydrogenase. Decrease of NADH 
is stoichiometric with citrate content, and the remaining NADH is measured by optical 
density at 340 nm. Ranges of analysis of the continuous flow analyzer provided by 
the supplier are 0.02 to 1 mmol/L for acetone, 0.04 to 2 mmol/L for BHB, and 0.03 to 
24 mmol/L for citrate; otherwise values are estimated by extrapolation. All samples 
were analyzed twice, and samples with variation higher than 5% were re-analyzed. 
Standard error of laboratory, which is the repeatability of the reference method, was 
calculated. From the 566 samples, for each component the samples with missing value 
or with value under the lower limit of detection of the respective analysis were 
removed, leading to 558, 548, and 506 samples, respectively, for BHB, acetone, and 
citrate data set. 

Calibration and Validation  

Preliminary statistics indicated that acetone and BHB values were not normally 
distributed, with a higher proportion of low values. When performing calibration, this 
type of distribution gives too much weight to the low values, leading to a low accuracy 
in predicting high values. Therefore, editing of data was needed to use a more 



Promoting international prediction models through standardization of milk MIR spectra 

60 

 

balanced data set between low and high values. Several samples in the cloud of low 
values were randomly removed to obtain a reduced data set covering the same range 
of values, but giving less weight on low values. Visual inspection of the data indicated 
that this large number of low values was situated between 0.025 and 0.085 mmol/L 
for acetone. Hence, 66% of these data was randomly removed. After this edit, the 
number of samples for acetone was 224. The same process was used for BHB values 
for which the large number of samples with low values was situated between 0.100 
and 0.250 mmol/L, thereby bringing the number of data to 434. A logarithmic (10) 
transformation was then applied on both acetone and BHB reference values to 
approach a normal distribution. Figure 4-1 shows the distribution of the acetone data 
set before and after the logarithmic transformation and after removing randomly a part 
of the low values.  
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Figure 4-1. Effect of editing the acetone data set on the distribution of values: (A) Original 
data set after preliminary editing (n = 548), (B) data set after logarithmic transformation and 

removing randomly low values (n = 224). 

The citrate reference data set was normally distributed, and it was therefore not 
further edited. For all data sets, a quarter of the data was randomly excluded in the 
calibration process to be used as an external validation. As pretreatment of FT-MIR 
spectra, a first derivative was used with a gap of 5 wavenumbers, associated with an 
autoscale preprocess only for acetone and BHB. The spectral area selected were 968.1 
to 1,577.5 cm−1, 1,731.8 to 1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, and 2,831.0 to 
2,966.0 cm−1. Detailed evaluation of the spectra based on previous knowledge has 
permitted the selection of those wavenumber bands. Noisy areas induced by water 
were removed. And to bring the models as robust as possible, only the wavenumbers 
with a spectral response highly correlated between different instruments when 
analyzing common samples were used. Calibrations were done using partial least 
square (PLS) regression. Cross-validations were performed on the calibration data sets 
using 10 subsets randomly constituted, and samples with residuals higher than 2.5 
times the SD of the global residuals were considered as outliers (Rousseeuw et al., 
2006). Models were then applied on the external validation data sets. Both cross-
validation and validation results were expressed in terms of R², root mean square error 
(RMSE), and ratio performance/deviation (RPD). The goal of the RPD criterion is to 



Chapter 4: MIR prediction of milk BHB, acetone and citrate 

61 

 

show simultaneously the accuracy of predictions and the global variability of the 
reference values (Williams and Sobering, 1993). The RPD is defined as the ratio 
SD/RMSE as RMSE can be the one calculated in cross-validation or the one of a 
validation set. When the RPD is between 1.5 and 2, the model can discriminate low 
from high values; a RPD between 2 and 2.5 indicates that rough quantitative 
predictions are possible, and a RPD between 2.5 and 3 or above corresponds to good 
and excellent prediction accuracy (Nicolaï et al., 2007). Then, to illustrate the 
usefulness of the developed equations for the detection of subclinical ketosis, the 
percentage of data well-classified into 2 classes (low vs. high values) was calculated 
based on a threshold 0.15 mmol/L for acetone (de Roos et al., 2007), and the same 
classification was done with a threshold of 0.2 mmol/L for BHB (Denis-Robichaud et 
al., 2014). All computations and chemometric analysis were carried out with programs 
developed in Matlab v7.5.0. (The Mathworks Inc., Natick, MA) and the PLS toolbox 
v. 4.11 (Eigenvector Research Inc., Wenatchee, WA). 

Results and discussion 

Reference Analysis  

Descriptive statistics of the initial data set are provided in Table 4-4. Content of 
BHB in the milk samples analyzed ranged from 0.045 to 1.595 mmol/L with an 
average of 0.215 mmol/L and a standard deviation of 0.174 mmol/L. On average, 
BHB content was higher in the present data set than in the data set of de Roos et al. 
(2007; average of 0.146 mmol/L with value ranging from −0.021 to 3.960) and of 
Denis-Robichaud et al. (2014; average of 0.18 mmol/L with value ranging from −0.03 
to 1.09 mmol/L). Acetone content in the milk samples analyzed ranged from 0.020 to 
3.355 mmol/L with an average of 0.103 mmol/L and a standard deviation of 0.260 
mmol/L. These values were in the same range than values presented by de Roos et al. 
(2007; from −0.021 to 3.960 mmol/L with an average of 0.146 mmol/L) and by Denis-
Robichaud et al. (2014; from −0.03 to 2.63 with an average of 0.100 mmol/L).  

Table 4-4. Descriptive statistics of the results from the reference analysis for BHB, acetone, 
and citrate 

Component Unit #N Min Max Mean SD SEL1 

BHB mmol/L 558 0.045 1.596 0.215 0.174 0.005 

Acetone mmol/L 548 0.020 3.355 0.103 0.260 0.006 

Citrate mmol/L 506 3.88 16.12 9.04 2.21 0.216 
1SEL = standard error of laboratory. 

Citrate content in milk samples analyzed ranged from 3.88 to 16.12 mmol/L with 
an average of 9.04 mmol/L and a standard deviation of 2.21 mmol/L. Calculated 
standard errors of the laboratory were respectively 0.005, 0.006, and 0.216 mmol/L 
for BHB, acetone, and citrate, meaning that the reference method was precise and did 
not affect the statistics obtained in the calibration step. Considering their respective 
molar mass of 104.11, 58.08, and 192.12 g/mol, these 3 molecules are present in milk 
on average at a level of 21.7 ppm for BHB, 5.8 ppm for acetone, and 1,684.31 ppm 
for citrate. Dardenne et al. (2015) mentioned that using FT-MIR technology, 
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constituents cannot be detected below 100 ppm. Therefore, it is worth noting that 
calibration of BHB and acetone contents in milk cannot be done by the specific 
spectral response of these molecules in milk but by indirect links with global milk 
composition. 

BHB Cross-Validation and Validation Results  

After edits to obtain a more balanced data set between low and high values, the BHB 
data set contained 433 samples of which 325 samples were randomly included into 
the calibration data set. Because the best results were obtained using a log-
transformation of the reference data, only these results are presented here. A PLS 
model was done using 8 latent variables, and 7 samples were considered as outliers 
and discarded. In the calibration data set, after removing the outliers, BHB content 
ranged from 0.045 to 1.595 mmol/L with an average of 0.235 mmol/L and a standard 
deviation of 0.193 mmol/L. The average of predicted values is 0.219 mmol/L, which 
is slightly smaller than the average of reference values; this is due to the slope between 
reference and predicted values of 1.1842 that can be observed in Figure 4-2.A.  

(A) (B) 

  
Figure 4-2. Plot of BHB reference values from flow injection analysis and BHB values 

predicted from Fourier transform mid-infrared analysis (A) for the cross-validation (n = 325) 
and (B) for the validation (n = 108). 

Table 4-5 shows the cross-validation statistics. The RMSE of cross-validation 
obtained is 0.109 mmol/L, with an R² of cross-validation of 0.71 and a RPD of 1.77. 
The error is relatively high due to the lack of precision of the model on high values of 
the data set (Figure 4-2.A), combined with the artificial removal of a series of samples 
with low values. The bias on high values might be induced by the logarithmic 
transformation of the reference data, giving more weight to low values in the model. 
However, when using a threshold of 0.200 mmol/L, 86.5% of the samples were well 
classified, with 87.4% of samples with low content of BHB and 85.0% of samples 
with high content of BHB well classified (Table 4-6), thereby demonstrating the 
usefulness of this equation to detect cows with an abnormally high content of BHB. 
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A data set of 108 samples was then used to perform an external validation. The BHB 
content ranged from 0.058 to 0.755 mmol/L with an average of 0.204 mmol/L and a 
standard deviation of 0.136 mmol/L (Table 4-5). The average of predicted values, 
which is 0.198 mmol/L, is comparable to the mean of reference values, showing a 
slope close to 1 between reference and predicted values in the validation step (Figure 
4-2.B).  

Table  4-5. Cross-validation and validation statistics for BHB, acetone, and citrate contents 
in milk1 

Item N 
No. 

of LV 

No. of 

Outliers 
Min Max 

Mean 

R 
SD 

Mean 

P 
RMSE R² RPD 

BHB (mmol/L) 

  Cross-validation 325 8 7 0.045 1.596 0.235 0.193 0.219 0.109 0.71 1.77 

  Validation 108 - - 0.058 0.755 0.204 0.136 0.198 0.083 0.63 2.36 
            

Acetone (mmol/L) 

  Cross-validation 168 7 2 0.020 3.355 0.190 0.397 0.146 0.248 0.73 1.60 

  Validation 56 - - 0.021 1.968 0.179 0.306 0.145 0.196 0.67 2.03 
            

Citrate (mmol/L) 

  Cross-validation 380 9 2 3.88 16.12 9.03 2.26 9.02 0.70 0.90 3.21 

  Validation 126 - - 4.44 15.16 9.08 2.03 9.10 0.76 0.86 2.96 
1Number of samples used, number of latent variables (LV), descriptive statistics of the reference values 

[minimum, maximum, mean (mean R), and SD], mean of the predicted values (mean P), root mean square 

error (RMSE), R², and RPD (ratio SD of calibration/RMSE) are presented. 

The RMSE of validation was 0.083 mmol/L, with an R² of 0.63 and a RPD of 2.33. 
The distribution of the data in the validation data set was slightly different than in the 
calibration data set, mainly due to reference values in average lower. Considering the 
lack of precision of the model for high values, this difference between the distribution 
of the calibration and validation data sets probably explained the difference in the 
cross-validation and validation statistics. The R² highly depends on the distribution of 
the data and especially on the range of data (Davies and Fearn, 2006). The R² of 
validation is lower than the R² of cross-validation probably because of a reduced range 
of values (Figure 4-2.B). However, the RMSE of validation is better, probably due to 
a higher proportion of samples with a relatively low content of BHB. Nevertheless, 
the accuracy shown by the model is satisfying and brings the RPD of validation higher 
than 2, which is the considered limit to start screening. Therefore, the equation 
developed in this study can provide an indicative value of the BHB content. When 
classifying the data of the validation data set into 2 classes by using a threshold of 
0.200 mmol/L, 90.8% of the samples were well classified, with 90.9% of samples with 
low BHB content and 90.6% of samples with high BHB content properly classified 
(Table 4-6). Therefore, one can conclude that the model is not good enough to provide 
precise quantitative values of milk BHB, especially when BHB content is elevated, 
but it can allow discrimination between high and low values of BHB with an 
acceptable rate of good classification. 
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Table 4-6. Results of classification of BHB predictions into 2 classes (% of samples; using a 
threshold of 0.200 mmol/L) for cross-validation and validation data sets 

Item (%) 
Low BHB content 

(<0.200 mmol/mL) 

High BHB content 

(>0.200 mmol/L) 

Global good 

classification 

Cross-Validation    n=198    n=120   

  Predicted low 87.4% 15.0% 
86.5% 

  Predicted high 12.6% 85.0% 

    

Validation    n=77    n=32  

  Predicted low 90.9% 9.4% 
90.8% 

  Predicted high 9.1% 90.6% 

Acetone Cross-Validation and Validation Results  

After edits to obtain a data set balanced between low and high values, the acetone 
data set contained 224 samples of which 168 samples that were randomly selected and 
included in the calibration data set. The remaining 56 samples were included in the 
validation data set. In the calibration data set, acetone content ranged from 0.020 to 
3.355 mmol/L with an average of 0.190 mmol/L and a standard deviation of 0.397 
mmol/L. A PLS model was done using 7 latent variables, and 2 samples were 
considered as outliers. The average of predicted values is 0.146 mmol/L; this 
highlights the slope effect of 1.6295 that can be observed in Figure 4-3.A between 
reference and predicted values.  

(A) (B) 

  

Figure 4-3. Plot of acetone reference values from flow injection analysis and acetone values 
predicted from Fourier transform mid-infrared analysis (A) for the cross-validation (n = 168) 

and (B) for the validation (n = 56). 

The RMSE of cross-validation was 0.248 mmol/L, with an R² of 0.73 and a RPD of 
1.60 (Table 4-5). This RMSE was in a similar range to the one obtained by Hansen 
(1999) in cross-validation (0.240 mmol/L), by Heuer et al. (2001; 0.210 mmol/L), and 
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de Roos et al. (2007; 0.184 mmol/L). Similarly to the BHB model, the acetone model 
was relatively imprecise when acetone values were high (Figure 4-3), and this lack of 
precision on high values affected dramatically the RMSE. However when classifying 
the data of the validation data set into 2 classes by using a threshold of 0.150 mmol/L, 
93.4% of the samples were properly classified, with 95.5% of samples with low 
acetone content and 84.4% of samples with high acetone content well classified (Table 
4-7). In the validation data set, acetone content ranged from 0.021 to 1.968 mmol/L 
with an average of 0.179 mmol/L and a standard deviation of 0.306 mmol/L. The 
slope between reference and predicted values is confirmed in validation step with an 
average of predicted values of 0.145 mmol/L and a slope of 1.5033 (Figure 4-3.B). 
The RMSE of validation was 0.196 mmol/L, with an R² of 0.67 and a RPD of 2.03 
(Table 4-5). Even if the R² was slightly lower in validation than in crossvalidation 
(0.67 instead of 0.73), the RMSE was also lower (0.196 instead of 0.248), meaning 
that the error was lower in the validation data set. Similarly than for BHB, these results 
can be explained by the distribution of both validation and calibration data sets. The 
RMSE of validation is lower than the one obtained by Hansen (1999). In the latter 
study, the validation data set was constituted by samples from New Zealand, whereas 
the calibration data set included with samples collected in Norway, Sweden, and 
Denmark. When classifying the data of the validation data set into 2 classes by using 
a threshold of 0.150 mmol/L, 89.3% of the samples were properly classified, with 
93.0% of samples with low acetone content and 76.9% of samples with high acetone 
content well classified (Table 4-7). Therefore, similarly to the BHB model, the 
acetone model seems to be not appropriate to provide precise quantitative values, 
especially when acetone content is elevated, but it can allow discriminating high from 
low acetone values. 

Table 4-7. Classification of the acetone predictions into 2 classes (% of samples; using a 
threshold of 0.150 mmol/L) for cross-validation and validation data sets 

Item (%) 
Low acetone content 

(<0.150 mmol/mL) 

High acetone content 

(>0.150 mmol/mL) 

Global good 

classification 

Cross-Validation    n=134    n=32   
  Predicted low 95.5% 15.6% 

93.4% 
  Predicted high 4.5% 84.4% 

    
Validation    n=43    n=13  
  Predicted low 93.0% 23.1% 

89.3% 
  Predicted high 7.0% 76.9% 

 

Citrate Cross-Validation and Validation Results  

The calibration data set for citrate contained 380 samples and the validation data set 
included 126 samples. In the calibration data set, citrate content ranged from 3.88 to 
16.12 mmol/L, with an average of 9.03 mmol/L and a standard deviation of 2.26 
mmol/L. The PLS model was done with 9 latent variables and 2 samples were 
considered as outliers. The slope between predicted and reference values is close to 1 
(Figure 4-4) and the average of predicted values is comparable to the average of 
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reference values, with respectively 9.03 and 9.02 mmol/L. The RMSE of cross-
validation obtained was 0.70 mmol/L, which is very low compared with mean or 
standard deviation, leading to an RPD of 3.21 (Table 4-5), indicating a fair estimation 
of citrate content and the use of the model for screening (Williams, 2004). The R² of 
cross-validation of the model was 0.90 (Figure 4-4.A). In the validation data set, the 
citrate content ranged from 4.44 to 15.16 mmol/L, with an average of 9.08 mmol/L 
and a standard deviation of 2.06 mmol/L (Table 4-5). The RMSE was 0.76 mmol/L, 
and the R² and the RPD were respectively 0.86 (Figure 4-4.B) and 2.96. Hence, these 
results were satisfactory, thereby allowing the use of citrate as a potential novel 
biomarker in milk potentially useful for management and breeding of dairy cows. 

(A) (B) 

  

Figure 4-4. Plot of citrate reference values from flow injection analysis and citrate values 
predicted from Fourier transform mid-infrared analysis (A) for the cross-validation (n = 380) 

and (B) for the validation (n = 126). 

Implications  

Because standardized spectra were used in the development of the prediction 
equations for BHB, acetone, and citrate content in milk, these equations can be used 
on all standardized instruments from the OptiMIR network (Grelet et al., 2015), 
thereby allowing the utilization of these new biomarkers in the development of 
breeding and management tools for dairy cows. Hence, the equations developed in the 
frame of this project have been disseminated throughout the OptiMIR network. In 
laboratories, the spectra are extracted from the instruments, stored into external 
database, and standardized before application of the equations. With automation and 
IT development, these steps can be run daily, producing a quick feedback on field. 
Taking into account the precision of the different calibrations, the predictions could 
be used for herd management, or at individual level by using thresholds or relative 
values to cope with low accuracy. In 2015, advisory tools for the detection of cows 
potentially suffering from (sub-)clinical ketosis or from energy deficit have been 
deployed in Alsace region in France (Pezon, 2015) and in Luxembourg and are still 
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under development in Germany, United Kingdom, and the Walloon Region of 
Belgium (Baugnies, 2015). Further studies will investigate the opportunity of using 
these traits as indicators of health traits and fertility in breeding programs. 

Conclusions  

This work confirmed the usefulness of the FT-MIR spectrometry to predict milk 
biomarkers such as the content in milk of acetone, BHB, and citrate. Cross-validation 
statistics of the developed equations for acetone and BHB were similar or better than 
previous work and highlighted the opportunity to use these predictions for the 
detection of cows with high or low levels of ketone bodies in milk rather than for the 
determination of their exact content. Such results are expected given that the low 
concentration of BHB and acetone in milk implies only an indirect calibration of these 
components. Additionally, external validation statistics were provided in this work 
and confirmed the cross-validation results. Although further research is warranted to 
demonstrate the interest of mid-infrared predicted citrate as a useful biomarker for the 
dairy industry, this study showed that the development of FT-MIR calibration for 
citrate content in milk is promising. Finally, this work emphasized the usefulness of 
the standardization of mid-infrared spectra from different FT-MIR 
spectrophotometers to merge data sets and create more robust calibrations that can be 
used through a large network. 
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Chapter 5: General discussion 

In a context where dairy farmers face difficulties to properly manage animals due 
to an increasing  herd size, lack of relevant workforce, and growing administrative 
work, tools providing new indicators reflecting cow status represent a potential 
solution to help farmers in the daily management of farm. Such tools are also of 
interest in the objective of optimizing management and maintaining profitability in a 
period where price volatility is endangering farm viability. Additionally, a generation 
of new phenotypes could allow the dairy sector to provide objective measurements of 
animal health, welfare and environmental impact, to meet society’s requirements. 
These new management indicators must be provided by a cost-effective technology 
available on a large scale. It is evident that analysis of milk through FT-MIR 
spectrometry is a potential solution to generate new information of interest for 
farmers. However, as mentioned earlier (cf. Introduction. Standardization), the use of 
this technology is currently suboptimal, and standardization of spectral data is needed 
to enable a global and efficient use of this resource. Consequently, the first objective 
of this work was to evaluate the possibility of applying a standardization method             
-widely recognised in the NIR sector- on MIR spectra of milk in order to create, 
transfer and use models of interest developed on different instruments and moments. 
Then, the study emphasises the creation of tools to help farmers manage negative 
energy balance and ketosis, which are two major issues threatening the sustainability 
of dairy farming.  

Based on the results obtained, the study provided new knowledge on the possibility 
of using PDS method to standardize MIR spectra of milk as well as the feasibility of 
transferring different types of models, with high or low robustness, and predicting 
milk composition, processing qualities or even cow’s status. The second part of this 
work validated the possibility of discriminating samples with high or low milk BHB 
and acetone and demonstrated the possibility of  accurately predicting citrate in milk, 
offering dairy farms a good opportunity to detect early negative energy balance. 

In this chapter, concrete outputs arising from the thesis will be described and results 
will be compared to those obtained in the literature, principally in the frame of studies 
using NIR spectrometers. Two essential elements regarding the standardization, 
reduction of spectral variability and  interaction with quality of models, will be 
evaluated in more detail. Finally, the need for quality insurance systems will be raised.  

Concrete and practical implementation of thesis outputs 

This work has contributed to the development of a standardization methodology to 
be applicable in routine for the use of models developed in a research context. The 
first concrete output concerns the global methodology of standardization. This is 
concretely comprised of protocols defining the constitution of raw milk samples              
-to serve as the common basis for the standardization procedure-, the sending of 
samples among laboratories, the procedure to analyse standardization samples, the 
constitution of the master and application of PDS, the criteria for analysing the results, 
the distribution of standardization coefficients, and the procedure to use them to 
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routinely standardize milk spectra. The organization of these steps is shown in Figure 
5-1.  

 The second significant output of this thesis concerns the creation of a 
standardization network. Indeed, the first interlaboratory study was conducted in 
December 2011 in the framework of the Interreg OptiMIR project (www.optimir.eu). 
It included 26 spectrometers from 12 laboratories in 3 countries. Since then, the 
number of spectrometers and laboratories has been constantly increasing. The Interreg 
OptiMIR project was completed in 2015 but the standardization network remains 
operational. In 2018, approximately 103 spectrometers from 41 labs in 12 countries 
have been contributing monthly to standardization efforts. This network, consisting 
mainly of milk recording organizations and research institutions, represents a concrete 
exchange platform. Indeed, this platform constitutes an opportunity to share resources, 
exchange data, work jointly to create common models and use them within the 
constituted working group.   

Thus, the models developed within the Interreg OptiMir project to predict milk 
BHB, acetone and citrate have been circulated among all the partners. Practically, 
after milk recording collection, individual milk samples are analysed on spectrometers 
and extracted FT-MIR spectra are standardized by the application of corresponding 
standardization coefficients. Spectra are usually stored in an external database, treated 
by automated homemade softwares developed within each institution and allowing to 
perform these steps daily. Standardized spectra are pre-treated with the same pre-
treatment as described in Chapter 4 and coefficients of each equations are applied to 
generate predictions for each individual sample. Full automation of these systems 
allow providing feedback to farmers a few days after milk sampling. Based on BHB, 

Figure 5-1. Scheme of the organization of monthly standardization 

http://www.optimir.eu/
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acetone and citrate predictions from MIR spectra of milk, tools helping farmers to 
detect negative energy balance or ketosis have been deployed by milk recording 
organizations since 2015 in France, Germany and Luxembourg are still under 
development in United Kingdom and Belgium.  

Comparison with NIR standardization networks 

In this study, the PDS method has been used in order to standardize mid-infrared 
spectrometers dedicated to milk analysis. Indeed, from the literature, this seems the 
more appropriate method to harmonize the spectral format of the instruments. 
However, this literature is based almost exclusively on NIR instruments used for the 
analysis of fuels or feed products (Table 5-1). In addition, from Wang et al. (1991), 
transfer performance can be impacted by the number and nature of the standardization 
samples. Currently, the samples used are real milk samples produced according to IDF 
norm 141. It is interesting to verify whether the use of PDS method to standardize FT-
MIR instruments used for analysing milk and based on reconstituted milk samples, 
performs equally well than in the framework of NIR instruments.  

The current study shows that the relative RMSE between master and slaves 
predictions, assessing the quality of model transfer, range from 0.4% to 4% for the fat 
and methane models, respectively (Chapter 3). In the literature, the first studies testing 
the PDS methods have focused on the analysis of gasoline and jet fuel using NIR 
instruments (Wang et al., 1991; 1992). In these studies, relative RMSE ranged from 
2.4 to 2.9 % when transferring models predicting different analytes of gasoline, and 
from 0.5 to 12.8% when transferring models predicting saturates and aromatic 
compounds in jet fuel, respectively. Other studies have focused on gasoline or diesel 
oil and reported relative RMSE from 0.3 to 5.9 % (Bouveresse & Massart, 1995) and 
from 0.6 to 19% (Lima & Borges, 2002). Relative RMSE in studies focusing on feed 
yielded higher values, namely, 10.5% in the case of a model predicting crude protein 
in silage (Liu et al., 2011) and 7% in the case of a model predicting fibre content of 
flax stem (Sohn et al., 2007). The main characteristics of these studies are summarized 
in table 5-1. 

Table  5-1. Overview of various studies aiming to standardize spectrometers using PDS 
method 

Study Instrument Matrice Models 
Relative 

RMSE (%) 

Grelet et al., 2017 FT-MIR Milk Fat, PUFA, FCY, CH4
1 0.4 - 4 

Wang et al., 1991 FT-NIR Gasoline Unknown analytes 2.4 - 2.9 

Wang et al.,  1992 FT-NIR Jet fuel Aromatics, saturates 0.5 - 12.8 

Bouveresse & 

Massart, 1995 
FT-NIR Gasoline Unknown analytes 0.3 - 5.9 

Liu et al., 2011 FT-NIR Silage Crude protein 10.5 

Sohn et al., 2007 FT-NIR Flax stem Fiber content 7 

Lima & borges, 

2002 
FT-NIR Diesel oil 

Density, viscosity, cetane number, cetane 

content, aromatics, distillation points 
0.6 - 19 

1 CH4 = methane emitted by dairy cows; PUFA = PUFA in milk; FCY = fresh cheese yield;  
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Compared against these studies, the results obtained in the framework of MIR 
analysis of milk show a similar range. In these studies, transfer performances are 
considered satisfactory for real world applications. Hence, this confirms the 
possibility of using PDS to standardize the MIR spectra of milk. This validates 
especially that the 5 milk interlaboratory samples are appropriate for this use. This 
also implies that the recombined milk samples contain enough spectral variability at 
each wavenumber to be used as standardization samples, which was expected due to 
the milk composition with large and orthogonal variations in fat and protein contents.  

In the current study, the averaged RMSE between master and slaves predictions 
after standardization were relatively limited compared with the inherent standard 
cross-validation error of each model, meaning that transfers did not add a significant 
error to the final predictions (Chapter 3). Indeed, the averaged RMSE were 3.7, 4.7, 
7.4 and 4.2 times smaller than the standard error of the models for fat, PUFA, FCY 
and methane, respectively. In previous studies, a transfer error slightly higher than  the 
model-inherent error was observed. This ranged from 1.1 to 1.3 times for Wang et al. 
(1992), and from 1.2 to 6 times for Lima & Borges (2002) while a third study (Sohn 
et al., 2007) observed a slightly smaller transfer error, 1.1 time, than the model error. 
The results obtained in the present study can be considered satisfactory since the 
transfer procedure adds fewer error to the final predictions -in comparison with the 
inherent error of models- than previous studies employing PDS and NIR 
spectrometers. This could be partially explained by the use of low performance 
models in the framework of the current work. Indeed, as discussed in the Chapter 3, 
low accuracy models are also of interest for farm management or genetic studies as 
they provide useful information not previously available on a large scale.  

Further evaluation regarding the reduction of spectral 
variability through standardization  

Chapter 3 shows succinctly the impact of standardization on the reduction of 
spectral variability among instruments. This reduction has been quantified in this 
chapter by comparing the GH between the slave instruments and the centroid of the 
master spectra, based on the 5 samples of the interlaboratory study, and calculated 
with 10 principal components. This showed on average a reduction factor of 186 after 
standardization (GH values decreased from 2656 to 14). This was illustrated visually 
by performing a PCA plotting the spectra of the 5 interlaboratory study samples 
analysed by master and slaves instruments before and after standardization (Figure 3-
2). This methodology allows to compare those samples to themselves, whether or not 
standardized. However, the small number of samples used only covers a limited milk 
spectral variability when compared to a real dataset obtained, for instance, during 
routine milk recording. This evaluation was consequently not representative of the 
effect of the standardization on the reduction of spectral variability under real 
conditions. In order to estimate this effect on real data, it is interesting to project the 
interlaboratory study samples, before and after standardization, into a real and highly 
variable dataset. This is done by projecting the data from Chapter 3, the 
interlaboratory study samples analyzed on the master and the slaves before and after 
standardization, on the fatty acid dataset obtained by Soyeurt et al. (2011). The 
original dataset has been updated with additional data for a total of 1,822 samples 
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from different instruments, breeds, diets and 7 countries. The test is performed with 
this dataset as it represents an important variability of real data coming from different 
systems and geographical regions. The spectra from all the slave instruments are 
interpolated on the master range. All the spectra are reduced to the 212 informative 
wave numbers and the PCA is done without pre-treatment of the spectra. As in 
Chapter 3, the first principal components, from 1 to 5, discriminate the interlaboratory 
studies samples and report information on milk composition. Figures reporting the 
projection of the data on those principal components, from PC 1 to PC 5, are shown 
in annex A. Figure 5-2 shows the projection of Chapter 3 standardized and raw inter-
laboratory data on PC 6 and PC 7 of the fatty acids dataset. On these principal 
components, the visual discrimination of interlaboratory study samples composition 
is limited and the effect of standardization on harmonization of spectral format can be 
observed. The interlaboratory study samples analysed by master instrument are 
represented by red points in the picture. The spectra of the interlaboratory study 
samples analysed by the different slave instruments without standardization are 
represented as green points. The spectra of the same samples after standardization are 
represented in blue. The fatty acids dataset samples, used only to evaluate the impact  
of standardization on the interlaboratory study samples under real conditions, are 
represented by grey points in the picture. 

It can be observed that some non-standardized spectra show a large deviation from 
the master and even from the fatty acid dataset. This reflects an important spectral 
difference between the response of those instruments and the response of the master. 

Figure 5-2. Principal component analysis of the spectra of the 5 interlaboratory study 
samples analyzed on 66 instruments, before and after standardization, and projected on the  

fatty acid dataset containing spectra from 1,822 individual milk samples. All the spectral data 
were plotted after selection of 212 informative wave numbers. Principal components (PC) 6 

and 7 reported on the picture. 
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Following standardization, the spectral variability is relatively limited, and spectra are 
situated in the areas surrounding the master spectra. Compared to non-standardized 
spectra, the variability is considerably reduced, with no spectra deviating from either 
the master samples or fatty acid variability areas. Variability of non-standardized 
spectra is visually less important when projected on fatty acids dataset than when 
projected alone (Figure 3-2). This was expected given that only 5 identical samples 
were analysed by the instruments whereas the fatty acid dataset contain numerous and 
significantly different individual samples, which comparatively reduce the variability 
due to spectral differences between instruments as if this variability was visually 
zoomed out. This application under real conditions confirms the conclusions derived 
from Chapter 3:  it is visually possible to observe that spectral homogeneity within 
the network increases around master spectral response following standardization. 

Interaction between standardization and quality of models 

As described in Chapter 3, the final precision when evaluating the transfer of models 
was not only due to the standardization process itself but was mainly impacted by the 
quality of the model being transferred. Indeed, Figure 3-5, indicates that a direct 
relationship seems to exist between the performance of the transfer (relative RMSE 
between slave and master) and the R²cv of the model. However, this observation has 
been made by comparing only 4 models. In order to confirm this hypothesis, it is 
necessary to study this relationship with a higher number of models. This has been 
done by calculating the relative RMSE between slaves and master predictions after 
standardization for models predicting fatty acids (Soyeurt et al., (2011), minerals 
(Soyeurt et al., 2009), methane (Vanlierde et al., 2016), casein (Not published), 
citrates (Grelet et al., 2016), FCY (Colinet et al., 2015) and lactoferrin (Soyeurt et al., 
2007). RMSE were calculated for the same interlaboratory study samples analysed on 
66 instruments than in Chapter 3. Figure 5-3 plots the relationship between the quality 
of transfer (relative RMSE) and the quality of models (R²cv). Relative RMSE range 
from 0.4 to 9.6%, which is in the same range than in the studies using PDS with NIR 
instruments described above (Table 5-1).  From Figure 5-3, the conclusions are not as 
evident as in Chapter 3. There is a very weak tendency of relative RMSE to decrease 
when model R²cv increases. The relationship is characterized by an R² of 0.057 
compared to 0.77 in Chapter 3. This suggests a potential impact of model quality on 
transfer performance, but particularly that the quality of model transfer should be 
influenced by additional parameters, such as robustness. The robustness of models is 
defined in Chapter 3 as the capacity of the models to function in all terrains and 
provide good results under various conditions. An important point influencing the 
robustness of models is the variability included in calibration datasets, both in terms 
of reference and spectral data. Indeed, to provide good results under real conditions, 
the calibration dataset must include a maximum variability of the different 
geographical regions, breeds, and diets encountered on the field. Robustness is also 
affected, among other factors, by the number of latent variables used in the PLS 
models, the precision of the reference method, the use of a repeatability file, the 
integration of several brands of FT-MIR spectrometers into the data set, and the 
reproducibility of wave number areas selected within the models.   
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In the current example, based on Figure 5-3, the relationship among fatty acids or 
minerals models seems different, and differs in terms of slope and level of relative 
RMSE. In particular, the relative RMSE between slaves and master is low for mineral 
models, while the R²cv is not higher than for fatty acids. In connection with 
robustness, the coverage of interlaboratory study samples variability could explain 
this low relative RMSE. Indeed, the minerals calibration dataset contains skimmed 
milk samples that could play a role in the coverage of the extremely low fat 
interlaboratory study samples (around 2%) and explain the better predictions using 
this model. Additionally, the number of latent variables used within the PLS models 
has been mentioned as a parameter influencing the robustness of models. In Figure 5-
4, the relative RMSE are plotted against the number of latent variables used in the 
PLS models, for the same models shown in Figure 5-3. According to Figure 5-4, a 
relationship seems to exist between those 2 parameters. Even if the R² between those 
2 variables is low, it also argues in favour of an influence of model robustness on the 
quality of model transfer. As reported in previous chapters, the selection of 212 
wavenumbers resulted from the analysis of the repeatability of the spectral response 
at the different wavenumbers when analysing identical milks on different instruments. 
However, the spectral response is not equally repeatable within the selected 212 
wavenumbers as well. The relative importance of regression B coefficients along the 
spectra, in combination with the different repeatability of those spectral areas, are also 
likely to influence the quality of model transfer.   
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Figure 5-3. Plots representing the link between the quality of the model (coefficient of 
determination of cross-validation; R²cv) and the performance of the transfer by piecewise 

direct standardization [relative root mean squared error (RMSE) between slaves and master 
predictions after standardization] from the 5 interlaboratory study samples analyzed on 66 

instruments. The different models originate from Soyeurt et al. (2011), Soyeurt et al. (2009), 
Vanlierde et al. (2016), Grelet et al. (2016), Colinet et al. (2015) and Soyeurt et al. (2007). 
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This additional study moderates the impact of model performances (R²cv) on model 
transfer performances. It suggests that other important model parameters could 
influence the results but also that part of the error could derive from the 
standardization process itself. Indeed, since this is simply a mathematical transfer, it 
cannot correct for “artefact” resulting from differences in the analysis, as good vs. 
insufficient homogenization of the samples, creating fundamental differences in the 
physico-chemical information contained within spectra from identical samples.  

Need for quality assurance systems to use models in routine 

As described in the Introduction chapter, deterioration of pieces, changes of 
temperature and humidity, maintenance operations, piece replacements, electronic 
drifts and detector instability lead to the instability of each individual spectrometer 
response over time. The sending of reference samples is currently limited to a monthly 
frequency, due to technical and economic reasons. However, the spectrometers can 
potentially be affected by drifts or perturbations between two interlaboratory studies 
leading to biased final predictions until the estimation of new standardization 
coefficients. Consequently, there is a need to monitor the individual stability in time 
of the instruments at least, and ideally design a mechanism to stabilize the observed 
deviations in order to insure correct predictions. Complementary to the monthly 
standardization, a method has been developed to monitor the instrument stability 
daily. It is based on the analysis of an identical UHT milk, from a unique production 
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Figure 5-4. Plots representing the link between the number of latent variables within the PLS 
models and the performance of the transfer by piecewise direct standardization [relative root 

mean squared error (RMSE) between slaves and master predictions after standardization] 
from the 5 interlaboratory study samples analyzed on 66 instruments. The different models 
originate from Soyeurt et al. (2011), Soyeurt et al. (2009), Vanlierde et al. (2016), Grelet et 

al. (2016), Colinet et al. (2015) and Soyeurt et al. (2007). 
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batch, for 3 months, minimally at a daily frequency. A fat prediction model is then 
applied to the raw spectra of this UHT milk acquired daily on a specific instrument, 
and raw predictions are plotted in time (Figure 5-5). Since the composition of the milk 
samples and the model applied on the spectra remain the same in time, the potential 
drifts observed for predictions originate consequently from the raw spectra themselves 
and reveal perturbations occurring on the spectrometer. A web tool has been 
developed by EMR (European Milk Recording; https://www.milkrecording.eu) to 
automatically produce this graph following the update of daily spectra, and allow 
laboratory managers to monitor the daily stability of their instruments. Figure 5-5 
shows an example of perturbation detected on an instrument. The detection of a 
perturbation could allow to run a new analysis of interlaboratory study samples in 
order to generate new standardization coefficients that take this drift into account. 
However, this is not an ideal solution as several days could elapse between the 
detection of a drift and the generation of new coefficients considering the time needed 
for dispatching the necessary samples. Consequently, further research is required in 
order to stabilize these perturbations on a daily basis. 

An additional quality assurance issue is the representativeness of a calibration 
dataset regarding a new sample to predict. Indeed, the use of extrapolation in infrared 
predictions is dangerous, as mentioned by Dardenne (2010). Applying a model for a 
sample not covered by the calibration dataset is likely to lead to erroneous predictions. 
It is consequently important to develop models covering the existing variability of 
milk MIR spectra and studied trait(s) as completely as possible, by including samples 
from different geographical regions, breeds, diets, and by analysing milks on different 
types of instruments in order to maximize the probability of covering the variability 
of the samples predicted under routine conditions. Additionally, it becomes essential 
to validate the suitability of the model for every new sample to be analysed by 

Figure 5-5. Plot of fat predictions over time originating from a fat model applied on non-standardized spectra 
from an instrument analysing a common batch of UHT milk during a period of 3 months. 

https://www.milkrecording.eu/
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calculating the distance between the sample to be predicted and the calibration dataset 
used to build the predictive model.  

References 

Bouveresse E., Massart D.L., Dardenne P., 1995. Modified algorithm for 
standardization of near-infrared spectrometric instruments. Anal. Chem. 67:8,1381-
1389. 

Colinet F., Troch T., Baeten V., Dehareng F., Dardenne P., Sindic M., Gengler N., 
2015. Genetic variability of MIR predicted milk technological properties in Walloon 
dairy cattle. Page 400 in Book of Abstracts of the 66th Annual Meeting of the 
European Federation of Animal Science. Wageningen Academic Publishers, 
Wageningen, the Netherlands.  

Dardenne P., 2010. Some considerations about NIR spectroscopy, closing speech at 
NIR-2009. NIR news, 21:1,8-14. 

Grelet C., Fernández Pierna J.A., Dardenne P., Soyeurt H., Vanlierde A., Colinet F., 
Gengler N., Baeten V., Dehareng F., 2016. Development of Fourier transform mid-
infrared calibrations to predict acetone, β-hydroxybutyrate and citrate contents in 
bovine milk through a European dairy network. J. Dairy Sci. 99:4816– 4825.  

ISO 9622:2013 | IDF 141:2013 – Whole milk – Determination of milk fat, protein 
and lactose content – Guidance on the operation of mid-infrared instruments. ISO, 
Geneva, Switzerland.  

Lima F.S.G., Borges L.E.P., 2002. Evaluation of standardisation methods of near 
infrared calibration models. J. Near Infrared Spec. 10:4,269-278. 

Liu X., Han L.J., Yang Z.L., 2011. Transfer of near infrared spectrometric models 
for silage crude protein detection between different instruments. J. Dairy. Sci. 94 :11, 
5599-5610. 

Sohn M., Barton F.E., Himmelsbach D.S., 2007. Transfer of near-infrared 
calibration model for determining fiber content in flax: effects of transfer samples and 
standardization procedure. App. Spectrosc. 61:4,414-418. 

Soyeurt H., Colinet F., Arnould V., Dardenne P., Bertozzi C., Renaville R., 
Portetelle D., and Gengler N., 2007. Genetic variability of lactoferrin content 
estimated by mid-infrared spectrometry in bovine milk. J. Dairy Sci. 90:4443–4450.  

Soyeurt H., Bruwier D., Romnee J.-M., Gengler N., Bertozzi C., Veselko D., 
Dardenne P., 2009. Potential estimation of major mineral contents in cow milk using 
mid-infrared spectrometry.  J. Dairy Sci.  92:2444–2454.  

Soyeurt H., Dehareng F., Gengler N., McParland S., Wall E., Berry D. P., Coffey 
M., Dardenne P., 2011. Mid-infrared prediction of bovine milk fatty acids across 
multiple breeds, production systems, and countries.  J. Dairy Sci.  94:1657–1667.  

Vanlierde A., Vanrobays M.L., Gengler N., Dardenne P., Froidmont E., Soyeurt H., 
McParland S., Lewis E., Deighton M. H., Mathot M., Dehareng F., 2016. Milk mid-
infrared spectra enable prediction of lactation-stage dependent methane emissions of 
dairy cattle within routine population-scale milk recording schemes. Anim. Prod. Sci. 
56:258–264. 



Promoting international prediction models through standardization of milk MIR spectra 

82 

 

Wang Y., Veltkamp D.J, Kowalsky B.R., 1991. Multivariate instrument 
standardisation, Anal. Chem., 63:23,2750–27. 

Wang Y., Lysaght M.J., Kowalski B.R., 1992. Improvement of multivariate 
calibration through instrument standardization. Anal. Chem., 64:5,562-564. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

 

Perspectives and conclusion 

 

 



Promoting international prediction models through standardization of milk MIR spectra 

84 

 

Chapter 6: Perspectives and conclusion 

Use of outputs in other researches 

The current standardization method has been used in several projects to ensure the 
possibility of merging datasets and transferring developed models. Current or finished 
projects have defined standardization as a basis for the work with spectral data. Thus, 
studies focusing on ketosis (Gele et al., 2015; Smith et al., 2016), cellular immune 
traits (Denholm et al., 2016), pregnancy (Lainé et al., 2017), detection of lameness 
(Mineur et al., 2017), metabolic status of cows (Grelet et al., 2018; de Koster et al., 
2018), nitrogen efficiency (Grelet et al., 2018) and technological properties of milk 
(Sanchez et al., 2018) have been conducted using standardized spectral data. 
Consequently, models derived from those works could potentially be applicable to the 
entire standardized network if the spectral variability is included in the calibration 
dataset. This method has also been used to implement new data to pre-existing datasets 
in order to increase the robustness and quality of models. In this manner,  additional 
data have been added to the models predicting fatty acids (Soyeurt et al., 2006; 2011), 
minerals (Soyeurt et al., 2009), Lactoferrin (Soyeurt et al., 2007), and enteric methane 
emitted by dairy cows (Dehareng et al., 2012; Vanlierde et al., 2016). Finally, several 
recent projects integrate the standardization as a basis prior to the model development 
step, such as Smartcow (H2020; www.smartcow.eu), D4Dairy (COMET-Project; 
https://d4dairy.com), HappyMoo (INTERREG NWE; 
http://www.nweurope.eu/projects/project-search/happymoo/) or Indigess 
(MOERMAN). 

Prospects regarding Master and network stability 

Between Chapters 2 and 3, a fundamental change occurred in the standardization 
procedure. The Master evolved from being a single instrument to a combination of 
several instruments. This change took place following the observations of instability 
over time of each individual instrument. The consequence of an unstable reference in 
time would be the drift of the entire network spectral response. This would 
consequently induce a bias in the final predictions because of incompatibility between 
spectra used to develop pre-existing models and new spectra standardized on a slightly 
different basis. As explained in Chapter 3, a partial solution has been applied by 
considering the master not as single instrument but as combination of several 
instruments, to be less influenced by individual variations and more stable in time. 
However, there is a need for additional research to develop a procedure that ensures  
a perfect stability of the reference. The first potential solution would be to increase 
the number of instruments in the combination constituting the master in order to 
increase the smoothing of individual variation. Nonetheless, this is only conceivable 
as a short or mid-term solution as each instrument has a limited service life, involving 
the future replacement of all the instruments currently contributing to the reference. 
For example, between January and December 2018, 7 Foss FT6000 have been 
replaced by new Foss FT7. Additionally, it would be necessary to conduct a more 
profound study on the impact of individual variation on reference variation and on 
final predictions. Consequently, the ideal solution would be to free the reference from 

http://www.smartcow.eu/
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existing physical instruments and consider a reference which would be perfectly stable 
in time. Direction for future research could focus on samples with the potential of 
being preserved or re-created equally over time.     

Perspectives regarding timing of sampling   

The outputs of this work and associated research are currently being used in the 
framework of classical milk recording. Individual cows are sampled once a month or 
every 6 weeks and milk samples analysed on regularly standardized FT-MIR 
instruments. However, following Berckmans (2006), an essential element for a PLF 
technology is the possibility of providing continuous (daily) monitoring. In the 
context of individual management, it is indeed necessary to quickly identify troubles 
and take the necessary steps to prevent the situation from becoming more critical. In 
contrast to other technologies, FT-MIR spectrometry is a very fast analysis, capable 
of scanning hundreds of samples per hour. Consequently, considering the high 
requirement of information for management and the high potential of this technology 
to analyse samples, the current use could be considered as suboptimal due to the 
limited and fixed sampling frequency associated with the classical milk recording.  

In order to better reach management requirements, a potential perspective could be 
to adapt the sampling in order to focus deeper on some critical periods. For example, 
the risk of diseases and metabolic troubles are not constant over the lactation. Around 
75% of diseases occur in the first month after calving in dairy herds (Suthar et al., 
2013). Regarding these issues, it seems logical to focus on the early lactation stage. 
To this end, an adaptation of the milk recording procedure directed at placing more 
emphasis on the first months, with higher sampling frequency during this period, 
would be better adapted to early detection of diseases. Additionally, the risk level does 
not only depend on the stage of lactation but it is also related to the individual status, 
history and potential of each animal. Further research highlighting risk periods for 
each individual animal following those criteria would be beneficial in order to define 
a finest sampling and allow an optimal detection of troubles. 

A second strategy to ensure the early detection of problems, is to increase the 
sampling frequency, ideally to reach a daily frequency. A daily estimation of 
parameters of interest would provide a very high throughput information, highly 
valuable as soon as proper analysis methods are used. Longitudinal analysis of data 
has shown to be an effective way for the detection of perturbations and analysis of 
resilience of animals (Poppe et al., 2018). However, daily sampling and analysis on 
classical FT-MIR instruments do not appear feasible for economic and technical 
reasons. Other technologies are better adapted to daily on-farm measurement, but first 
commercially available solutions currently provide information limited to one or a 
few traits, or supply predictions with low accuracy. The automated milking systems 
only allow conductivity measurements to be used as a mastitis indicator. Another 
system (Afilab, Afimilk®) consists of analysing milk on each individual milking unit 
with NIR spectrometers, which are more robust and more economically accessible 
than classical MIR instruments. It allows analysing for each animal fat, protein and 
lactose concentrations twice a day, but the results reported show low prediction 
accuracy as compared to classical MIR instruments (Kaniyamattam and De Vries., 
2014). A research project has also focused on the online NIR analysis of milk in the 
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milking room and reported good accuracy but only for a limited number of fatty acids 
groups (Nguyen et al., 2011). Currently, manufacturers are also showing interest on 
the development of low-cost MIR spectrometers, which given their lower cost could 
be installed in dairy farms. However, these technologies are not yet commercially 
available. Based on these examples, the development of such tools is still ongoing, 
and it is highly probable that a higher frequency of sampling will be associated with 
a lower accuracy of the predictions. Additionally, such instruments are also 
susceptible to have individual specific instrumental response and to suffer from drifts 
over time, and standardization procedures should also be considered. Nevertheless, 
technologies allowing high frequency analysis provide a complementary aspect to the 
precise but sporadic use of current system and is undeniably opening prospects in the 
near future. 

“Valorization” of raw tools  

From the step of development of models predicting new biomarkers of interest, 
usually done by research institutions, the direct outputs are usually raw predictions of 
molecules in milk or the status of cows. Final users do not necessarily know how to 
interpret these values, so these raw results are not directly usable by farmers. 
Consequently, a crucial step to meet the final expectation, which is to develop tools 
to help farmers in their daily management work, is the valorization of raw phenotypes 
into usable indicators to be easily adopted by farmers, with user-friendly presentation. 
A classical way is to introduce the tools is the presentation of results by displaying 
traffic lights, e.g.  a green light when cows are healthy and a red light when the status 
of cows show an imbalance.  For example, Figure 6-1 shows how the Walloon 
Breeding Association (AWE, http://www.awenet.be/) refines raw predictions of 
acetone and BHB in milk to provide a final classification of each individual cows 
following its ketosis status. This tool combines the predictions of BHB and acetone in 
milk with the ratio fat/proteins and the predictions of the oleic acid (C18:1cis9) to 
provide a classification of the cows into 4 classes regarding the risk of ketosis: low 
risk, risk of negative energy balance, moderate risk and high risk.  

Figure 6-1. Example of valorization of raw predictions (milk BHB, acetone, oleic acid and 
fat/protein ratio) into usable information by the « Cétolait » tool developed by the Walloon 

Breeding Association (AWE). 
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The refining of raw tools is an essential step, although often underestimated, for 
efficient field implementation. It is also important to provide users with concrete 
actions to be taken in cases of detection of sub-optimal status. The assessment of the 
economic impact due to the use of such tools is also a strong argument for the adoption 
of indicators. This step of tools presentation is not only a marketing matter as the 
intrinsic precision of the raw tools also need to be considered. The final presentation 
should be technically adapted to the accuracy of the prediction to avoid overestimating 
the technical potential of the tool. Some models are not precise enough to provide 
direct quantitative predictions, for which the probability of being distant from the real 
value is fairly high, as for BHB and acetone. In such cases, providing a final tool on 
a quantitative and precise scale would be counterproductive and could mislead the 
farmer. Combination with additional predictions, using thresholds or relative scales 
or even averaging at the level of the herd, to diminish randomly distributed errors, are 
potential solutions to overcome this low accuracy. 

Widening the use of IR predictions 

In this work, emphasis has been placed on predictions of new phenotypes in order 
to help dairy farmers in the management of their cows. However, due to the high 
potential of this technology, it is possible to imagine applications for other uses. 
Numerous models of interest have been developed linked to applications other than 
cow management and could be spread through the standardization method.  

Indeed, purchasing good quality milk products is clearly a concern for consumers.  
The potential of FT-MIR milk spectra to generate new predictions is logically of great 
interest for the dairy industry. The first models from milk spectra have been derived 
in order to predict fine milk composition. Such models can provide measurement of 
molecules linked to human health, such as poly-unsaturated fatty acids or calcium 
content in milk, in order to claim good quality or improve it. Other preoccupations of 
the dairy industry could potentially be approached through the FT-MIR technology 
such as authentication of milk regarding geographic origin or species, detection of 
milk adulteration, or ability of milk to be processed into different products.  

The potential of MIR analysis of milk in order to generate new phenotypes, 
enhanced by the possibility of using models on different instruments through the 
standardization procedure, is also of great interest for genetic research. Indeed, 
nowadays the possibility of accessing more and more genetic information for 
thousands of cows does exist, and the bottleneck in terms of genetic research is the 
large scale access to phenotypes of interest regarding these dairy cows. Knowing that 
most of the milk recording and payment laboratories are equipped with FT-MIR 
spectrometers, there is a possibility to apply robust models on large scale, as soon as 
this is possible through the standardization of spectral responses, and to generate the 
needed phenotypes of interest to associate with genetic information. 

Conclusion 

The objective of this research was to optimize the use of FT-MIR analysis of milk 
in order to provide new management tools for dairy farmers. Indeed, this technology 
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has been used for decades to predict fat, protein and lactose, and more recently in the 
areas of fine milk composition, milk processing qualities and status of cows, but its 
concrete use by field organizations is still suboptimal due to the impossibility of 
sharing data and models among spectrometers. Consequently, the sub-objectives of 
this work were 1) to test a standardization method, well known from the NIR sector, 
in the framework of MIR spectra of milk, 2) to ensure practically the possibility of 
using models of interest such as low robustness equations predicting status of cows 
and 3) to develop models predicting NEB and ketosis indicators, based on 
standardized spectra from different regions, to be used concretely as management 
tools

Chapter 2 has shown the possibility of standardizing a network of FT-MIR 
instruments dedicated to milk analysis by using the well-known PDS method based 
on common raw milk samples constituted from the IDF norm (ISO 9622:2013 | IDF 
141:2013). Concretely, this was illustrated by the transfer of a robust fat model from 
a master instrument into 21 secondary instruments. Results show that the use of a 
unique model was possible on instruments of different brands and models. This work 
constituted a first step in the optimization of FT-MIR analysis by highlighting the 
possibility of sharing data and models among trans-national organizations. 

Chapter 3 constituted a practical validation of the work done in Chapter 2 and 
provided assurance that models of interest with low robustness could be transferred 
from instrument to instrument. This was illustrated by the transfer on 66 instruments 
of models with limited robustness such as poly-unsaturated fatty acids in milk, 
methane emitted by dairy cows and fresh cheese yield of milk. This work also 
highlighted the fact that spectral standardization improves spectral and prediction 
reproducibility within the network. Concretely, it showed that models of interest for 
the dairy sector can be used on different instruments, independently of their brands 
and models. Thus, the method is the basis for data exchange, creation and use of robust 
models at an international level to generate new phenotypes to help farm management. 

Chapter 4 finalized this work by bringing up a practical case of model development 
predicting new phenotypes arising from the FT-MIR spectra of milk. This work 
illustrated and used the gains from previous chapters as it was based on standardized 
spectra coming from 4 European regions and acquired on 10 spectrometers. This last 
study focused on the development of calibrations aiming to provide indicators of 
negative energy balance and ketosis, which are important issues in early lactation. 
Results confirmed the potential of this technology to predict phenotypes of interest 
such as acetone, BHB, and citrate of milk, which are biomarkers for these metabolic 
troubles. 

This research yielded new knowledge about the possibility of using and sharing 
spectral data and models. But most importantly, it contributed concrete outputs to 
provide practically more information to farmers. A standardization procedure has 
been developed and is being utilized routinely by numerous European milk recording 
and research organizations. This standardization network has been constituted and 
represents an exchange platform to share resources and data, and work jointly to create 
common models and use them within the working group. Based on BHB, acetone and 
citrate predictions, tools helping farmers to detect negative energy balance or ketosis 
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have been deployed by milk recording organizations to provide feedback on NEB and 
ketosis. Finally, this work is not an end in itself but a basis for collaboration, research 
and concrete development of numerous tools for dairy farms and for the dairy sector 
in general. 
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Additional figures 

 

  

Figure A-2. Principal component analysis of the spectra of the 5 interlaboratory study samples 
analyzed on 66 instruments, before and after standardization, and projected on the fatty acids 

dataset containing spectra from 1,822 individual milk samples. All the spectral data were 
plotted after selection of 212 informative wave numbers. Principal components (PC) 3 and 4 

reported on the picture. 

 

Figure A-2. Principal component analysis of the spectra of the 5 interlaboratory study samples 

Figure A-1. Principal component analysis of the spectra of the 5 interlaboratory study 
samples analyzed on 66 instruments, before and after standardization, and projected on the 
fatty acids dataset containing spectra from 1,822 individual milk samples. All the spectral 
data were plotted after selection of 212 informative wave numbers. Principal components 

(PC) 1 and 2 reported on the picture. 
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Figure A-3. Principal component analysis of the spectra of the 5 interlaboratory study samples 
analyzed on 66 instruments, before and after standardization, and projected on the fatty acids 

dataset containing spectra from 1,822 individual milk samples. All the spectral data were 
plotted after selection of 212 informative wave numbers. Principal components (PC) 4 and 5 

reported on the picture. 
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Mathematical formula 

 

 

Determination coefficient 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)²𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)𝑛
𝑖=1

 

 

Where  

yi : value of the reference measure for i 

𝑦̂i : predicted value for i 

𝑦̅ : average of reference measures 

n : number of observations 

 

 

Root mean square error (RMSE) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑌𝑖 − 𝑌̂𝑖)²𝑛

𝑖=1

𝑛
 

 

Where  

yi : value of the reference measure for i 

𝑦̂i : predicted value for i 

n : number of observations 

 

 

Relative root mean square error (relative RMSE) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦̅
 

 

Where  

𝑦̅ : average of reference measures (of the calibration dataset) 
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