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Abstract 

 

Winter wheat fungal diseases, responsible for high yield losses, can be assessed by 

computer vision to increase phenotyping performance. This study aims to compare 

multispectral imagery based on remote and proximal sensing for disease detection. 

Wavelength selection was achieved by ANOVA and stepwise regression. Prediction of 

disease severity was performed by means of an artificial neural network based on 

proximal sensing data. Septoria tritici blotch (STB) requires proximal measurements, but 

stripe and brown rusts can be detected from UAVs and from the ground. Prediction results 

obtained gave R² of 0.55 and 0.57 for STB and stripe rust respectively. 
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Introduction 

 

Recent study indicates Belgium is the fifth biggest consumer of phytopharmaceutical 

products for crop management (Service Public de Wallonie, 2018). The use of pesticides 

has been reduced by half compared to 1995 but has remained stable since 2010 and shows 

no sign of further decrease (Fioac de Wallonie, 2018). Pesticides are used to prevent the 

infection of stripe rust, brown rust and Septoria tritici blotch (STB) which are common 

diseases of winter wheat caused respectively by Zymoseptoria tritici, Puccinia striiformis 

and Puccinia recondita (Bodson et al., 2017). The strategy to reduce pesticide application 

in wheat management relies on (i) the selection and evaluation of varieties resistant to 

biotic stress and (ii) the spraying regulation depending on the severity of disease infection. 

Conventional assessment is based on visual or manual observations, but these methods 

suffer from limited phenotype data sets and bias between assessors. These problems can 

be resolved by use of automated phenotyping platform which can be exploited both for 

agronomic trial and production fields (Fiorani and Schurr, 2013).  

Developing a phenotyping device for early disease detection and to quantify plant health 

status for wheat has been reported in the literature by means of spectral imaging which 

has been identified as a key technology for plant phenotyping (Li et al., 2014). In 2004, 



Moshou et al. detected stripe rust in wheat by means of proximal sensing with high 

success rate, highlighting wavebands centred on 543 nm, 630 nm, 750 nm and 861 nm. 

By using a spectroradiometer in proximal sensing, Krishna et al. (2014) developed a 

model able to quantify stripe rust severity in wheat. For STB, Yu et al. (2018) accurately 

discriminated healthy from infected wheat based on hyperspectral proximal 

measurements. 

Most disease detection studies focus on proximal measurements of reflectance in the field 

(Bravo et al., 2003; Odilbekov et al., 2018) or in a laboratory (Devadas et al., 2009) but 

few of them consider aerial spectral measurements for disease detection (Nebiker et al., 

2016; Huang et al., 2007) which is more adequate for large-scale area such as production 

field. Moreover, disease detection studies are generally based on artificial disease 

inoculation leading to field infection occurrence at early growing stages. A combination 

of stresses can affect winter wheat simultaneously and belatedly in the growing season, 

complicating spectrally-based detection efforts. 

This study aimed to integrate ground-based and aerial multispectral approaches to 

characterise the three major fungal diseases affecting winter wheat, i.e. stripe rust, brown 

rust and STB, under natural conditions. The goal was to select the wavebands which could 

allow the differentiation between healthy and diseased wheat for the two scales and to 

investigate their potential for disease severity regression on proximal sensing data. 

 

Materials and methods 

 

Field experiment 

The experiments took place in fields dedicated to larger agronomic trials on winter wheat, 

Triticum aestivum L., designed in microcrops (1.8 x 6 m) to study the effects of wheat 

variety, fungal treatment and sowing date on crop yield. The experiments were monitored 

during the 2017 growing season by aerial remote sensing and during the 2018 growing 

season by proximal sensing. Both fields were located in Lonzée, Belgium (50° 32' 58'' N 

and 4° 44' 08'' E). In 2017, the approach based on unmanned aerial vehicle (UAV) focused 

on six varieties (Albert, Anapolis, Edgar, Mentor, Reflection and RGT Reform) sown on 

October 25 under two types of fungal treatments, i.e. no treatment (0T) and two treatments 

(2T) on May 10 and May 31. Three replications were studied. The experiment of 2018 

involved five varieties (Alcides, Benchmark, Edgar, RGT Reform and Triomph) sown on 

November 16 under 0T and 2T on May 8 and May 24 with four replications. For each 

experiment, the varieties were chosen based on their disease sensitivity to allow 

measurement of different levels of infection. 

 

Disease visual assessment 

Severities of STB, stripe rust and brown rust were visually assessed at the leaf level. Rust 

score is a degree of severity based on the Cobb’s modified scale (Peterson et al., 1948). 

STB severity represents the proportion of the leaf affected by symptoms. Five plants were 

collected for each microcrop. Disease score for each microcrop was the mean of leaf 

disease score. In 2017, 2T microcrops were not visually assessed and were considered as 

healthy (disease severity = 0) due to sufficient application of pesticides.  

 

Aerial sensing acquisition, image treatment and statistical analysis 

An octocopter UAV (X frame type) was flown over the 2017 agronomic trial on June 1, 

June 15 and July 7 at 100 m above ground level (AGL) at a speed of 5 ms-1. The Parrot 



Sequoia camera (Parrot SA, Paris, France) covering green (550 nm), red (660 nm), red 

edge (735 nm) and near infrared (790 nm) wavelengths was mounted on the UAV. The 

full width at half maximum was 40 nm for red, green, near infrared (NIR) and 10 nm for 

the red edge. The sensor allowed the computation of true reflectance imagery by means 

of an upward looking sunshine sensor measuring incident lighting and the use of grey 

calibration plate before each flight survey. Pix4D suite 3.1 (Pix4D SA, Lausanne, 

Switzerland) was used to perform a photogrammetric 3D reconstruction of the 

multispectral imagery using the ‘Ag Multispectral’ predefined workflow. The images 

acquired by the multispectral sensor were used to derive orthomosaic reflectance maps 

(0.1 m ground sampling distance, GSD) in the four wavelengths (green, red, near-infrared 

and red edge). Five white targets were precisely georeferenced using precision differential 

GPS (Real Time Kinematic GPS, ± 0.03 m mean XYZ accuracy) in order to ensure 

geometrical and positioning accuracy of the reflectance maps. 

At each date, averaged reflectance values were compared between 0T and 2T microcrops. 

Mean reflectance comparison was achieved by analysis of variance (ANOVA) carried out 

for each waveband on each date separately. A Kolmogorov-Smirnov test was applied on 

the samples to guarantee their normality. 

 

Proximal sensing acquisition, image treatment and disease prediction 

A multispectral acquisition prototype acquired images at 1 m above the canopy. The 

system included a monochromatic 12 bit 1.3 Mpixel camera CMOS BCi5 (C-Cam 

technologies, Leuven, Belgium) combined with optical filters placed on a motorised 

wheel to place each filter successively in front of the camera (Figure 1). Eleven 

wavebands were measured centred from 450 to 950 nm by step of 50 nm and with a 

bandwidth of 40 or 50 nm. To take into account the variations of illumination, each image 

was normalised by adapting the integration time of the camera based on the reflectance 

measured on a silicon white reference placed in the field of view of the camera. 

 

 
Figure 1: Proximal multispectral acquisition system. On the left, the camera and the 

motorised filter wheel. On the right, the full platform supporting the acquisition system. 

For a scene, 11 images were acquired and overlaid to obtain a single multispectral image 

on which plant-soil segmentation was performed. Since the image normalisation only 

considered global illumination, an artificial neural network (ANN) was trained to account 

for light contrast inside the scene of interest by classifying pixels under shady, sunny or 

cloudy conditions (Figure 2). 

 

 

 

 

 



 

 

 

 
                                                                     

Figure 2: Grey images of winter wheat acquired (A1, B1) and the same images after 

segmentation (A2, B2) in four classes: soil (black), shady (dark grey), sunny (white), 

cloudy (light grey) 

The mean reflectance was computed for the four groups of plant pixels (mean sunny, 

mean shady, mean cloudy and mean of total plant pixels). Texture analysis was performed 

by means of co-occurrence matrix on all plant pixels from which four parameters were 

extracted: correlation, contrast, energy and homogeneity (Baraldi et Parmigianni, 1995). 

Considering the 11 layers of a multispectral image, a scene was then characterised by 88 

features. A bidirectional stepwise regression was used to establish a model involving the 

most discriminative features and allowing waveband selection. Based on this feature 

selection, an ANN was trained and validated using 80% of the dataset and the model was 

tested on the remaining 20% images. This machine learning method was chosen for its 

capacity to resolve complex problems and to deal with a small amount of data (Hornik et 

al., 1989). 

 

Results and discussion 

 

Aerial sensing approach 

On June 1, 2017, due to absence of rust on all 0T microcrops except the variety Reflection 

infected by stripe rust, the other microcrops were only infected by septoria with severities 

ranging from 4% to 13%. The statistical analysis performed showed no significant mean 

difference between 0T and 2T (healthy) microcrops (Table 1). STB emerges on the lower 

leaves (Bahat et al., 1980) which makes it harder to detect from above. Indeed, the aerial 

nadir perspective induces occlusion on infected leaves below the crop canopy. In order to 

peek through the canopy and collect unmixed data from lower leaves, the spatial 

resolution needs to be finer which raises interest for proximal detection of STB. 

 

Table 1: p-values of the mean reflectance difference between infected and healthy 

microcrops for the three dates and varieties Albert, Anapolis, Edgar, Mentor and RGT 

Reform. Interaction between variety and health status being significant on July 7 for green 

waveband, analysis of variance has been split into five for every variety.  

 

 

 

 

 

 

On June 15, all five varieties were healthy regardless of their treatment. The lowest leaves 

were not taken into account due to their necrosis. However, ANOVA highlighted, by 

increasing p-value, red edge, NIR, green and red as significant. (Table 1). Even though 

p-value June 1 June 15 July 7 

Green 0.24 0.018 [0,045 - 6.95E-07] 

Red 0.28 0.033 3.18E-06 

Red edge 0.18 0.0002 1.07E-06 

Near infrared 0.98 0.0025 4.85E-06 

         A1                 A2                      B1                 B2 



STB was absent of the crop, the changes in reflectance values appeared due to accelerated 

plant senescence originating from previous STB infection. The detection of STB by 

UAVs is delayed in time.  

Between June 15 and July 7, brown rust developed on 0T microcrops up to severities 

ranging from 76% to 97%. On July 7, differences between 0T and 2T means were more 

significant than on June 15 for all wavebands (Table 1). This level of significance is 

probably due to the combination of the damage caused by septoria earlier in the growing 

season and the strong infection by brown rust. The most significant difference was still 

observed in the red edge band. However, the red band which showed the least significance 

on June 15 was the second most significant on July 7 due to symptoms of brown rust 

characterised by brown to orange spores. 

Variety Reflection was reported separately from the other varieties as it was the only 

variety infected by stripe rust during the acquisition period (31%, 54% and 93% 

respectively on the three dates of acquisition). It was also infected by septoria but only 

on June 1 with 21% severity. It was shown that septoria induced no significant mean 

difference in early infection. However, the ANOVA applied on June 1 highlights NIR (p-

value = 0.0014) and red (p-value = 0.0059) as significantly different for the Reflection 

variety (Table 2). This difference can be attributed to stripe rust infection. From June 1 

to July 7, stripe rust severity kept growing but significance of the red waveband remained 

stable while the green and red edge bands became increasingly significant. It was 

hypothesised that stripe rust infection can be detected early due to its yellow/orange 

spores reflecting light in the red band. Necrosis and cellular structure modifications 

induced by the fungus lead to changes in NIR (p-value = 7.77E-04) and red edge (p-value 

= 4.94E-05) bands where differences were the most significant on July 7. 

 

Table 2: p-value of the mean reflectance difference between infected and healthy 

microcrops for the three dates and variety Reflection only.  

 

 

 

 

 

 

Proximal sensing approach 

An increase in spatial resolution by means of proximal sensing allowed severity 

regression based on multispectral imagery (Erreur ! Source du renvoi introuvable.). 

Wavelengths of interest (Erreur ! Source du renvoi introuvable.) were located in the 

green (500 and 550 nm) and in the red/red edge (650 and 700 nm) bands. Wavelengths in 

the NIR band were excluded from the model despite being identified as key wavelengths 

for septoria detection due to the influence of water in this band (Yu et al., 2018). 

Prediction tends to underestimate STB severity especially for highly infected microcrops. 

Images at high severity were acquired on the last acquisition date (June 21) at growth 

stage 75 (Zadoks et al., 1975) where infected lower leaves were obstructed due to crop 

density. To improve the regression, shady features could help to detect these lower leaves. 

However, these features were excluded from the model since at advanced stages almost 

all the leaves are shaded except the flag leaves. The isolation of infected lower leaves 

could be assessed by means of sensors measuring depth like stereoscopic systems.  

p-value June 1 June 15 July 7 

Green 0.094 0.029 0.0077 

Red 0.0059 0.0068 0.0054 

Red edge 0.23 0.021 4.94E-05 

Near infrared 0.0014 0.015 7.77E-04 



 

Figure 3: Regression results for STB, stripe rust and brown rust between predicted and 

measured severity. 

 

These variables are used by the ANN for a regression characterised by a predicted R² of 

0.55 and a RMSE of 4.35% (Erreur ! Source du renvoi introuvable.). 

Wavelengths entered in the stepwise model for stripe rust detection in this work cover the 

spectrum used (Table 3). The waveband centred on 600 nm corresponds to the 

yellow/orange colour of stripe rust spores. In proximal sensing, Moshou et al. (2004) 

identified wavebands at 543 ± 10 nm and 861 ± 10 nm as the most discriminating by 

stepwise regression while Krishna et al. (2014) identified by principal component analysis 

(PCA) wavelengths at 428 nm and 672 nm. In this study, wavebands centred on 500 nm 

and 700 nm were the two most discriminative, 850 nm was also highlighted. There seems 

to be no consensus on proper waveband selection which implies that wavelengths selected 

are dataset specific. However, it is important to note that stepwise regression and PCA do 

not include highly correlated variables in the model which is the case for wavebands being 

close to each other. These variables were used by ANN to give regression results of 

predicted R² of 0.57 and predicted RMSE of 5.37% (Figure 3). 

Brown rust detection is assessed mainly based on textural features computed from 

wavelengths in the NIR and in the red bands (Table 3Erreur ! Source du renvoi 

introuvable.) corresponding respectively to the physiological changes induced by the 

disease and the colour of the brown rust spores. Reflectance at wavelengths from 550 to 

700 nm increased from the first days of inoculation (Kuska et al., 2015). In the literature, 

Leaf Rust Disease Severity Index 2 (LRDSI2) developed by Ashourloo et al. (2014) 

reached an accuracy of 86.5% for leaf rust detection and required wavebands centred in 

455 nm and 605 nm, which were both part of the model in this work. 

 

Table 3: Features selected by stepwise regression for STB, stripe rust and brown rust 

detection sorted by increasing order of significance. 

STB Stripe rust Brown rust 

Parameters λ (nm) Parameters λ (nm) Parameters λ (nm) 

Contrast 700 Energy 700 Correlation 800 

Homogeneity 650 Homogeneity 500 Homogeneity 600 

Contrast 550 Energy 600 Homogeneity 650 

Contrast 500 Mean sunny 850 Homogeneity 450 

Energy 650 Mean sunny 900 Energy 800 

Mean total 700   Energy 950 

 



Brown rust remained in 2018 at very low severity levels (<13%) which gave results of 

lower quality with a predicted R² of 0.41 and RMSE of 2.40% (Figure 3). This disease 

should be studied on a highly infected field in order to observe a wider range of infection. 

The co-development of the two rusts would be very challenging to discriminate.  

 

Conclusions 

 

This study compared multispectral imagery based on remote and proximal sensing for 

winter wheat fungal disease detection. Regarding STB, the remote approach remains 

limited to late STB detection. In contrast, proximal sensing improved detection thanks to 

wavelengths in the red, red edge and green bands. Predictions should be improved in 

further studies by isolating lower infected leaves. For stripe rust, the stepwise regression 

model highlighted wavebands in the NIR (850 nm and 900 nm) and in the red (600 nm 

and 700 nm) which were also retained with significant mean difference for drone-based 

approach. The coherence of wavelengths between remote and proximal sensing along 

with the very significant NIR and red mean difference in UAV sensing at 31% severity 

fosters the potential for stripe rust detection in remote aerial sensing. For brown rust, no 

specific wavebands of interest were clearly identified by ANOVA in UAV-sensing, 

making the link between both scales difficult. As for stripe rust, UAV-sensing showed 

however great potential for brown rust detection and should be tested on wheat infected 

at lower severity. In proximal sensing, red and NIR were significant but brown rust 

infection was too low to obtain good regression results.  

UAV imagery, due its ability to detect rusts should be used for agricultural management 

as the larger resolution allows a quick overview of the fields. The data measured at leaf 

level by proximal sensing could be used in plant phenotyping experimentations to have 

access to information about STB and to go further than a simple detection for the three 

diseases. Proximal sensing, by leaf segmentation and texture analysis, displayed a 

potential for severity prediction of septoria and stripe rust. The results obtained can be 

used for health status discrimination, but accurate quantification would require an 

improvement of the multispectral imaging device, especially by setting up a co-

registration of the images. Further studies should focus on wavebands of interest 

identified for each disease with narrower width and should consider more frequent time 

series measurements to improve detection and quantification. 
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