Potential strategy of universal calibrations independent of the type of NIR instrument

Olivier Minet, Philippe Vermeulen, Juan Antonio Fernández Pierna, Bernard Lecler, Giovanni Salerno and Vincent Baeten Food and Feed Quality Unit, Valorisation of Agricultural Products Department, Walloon Agricultural Research Centre (CRA-W), Gembloux, Belgium

o.minet@cra.wallonie.be, v.baeten@cra.wallonie.be

Is the time for standardization and transfer of NIR spectral databases over ?

To provide a quick solution of calibration to any types of NIR spectrometers, the classical procedure consists in a transfer of spectral databases. Usually reference commodities (standards optic) are scanned in sealed cups on both device for which the calibrations are required (Master) and the device used to build the database (Slave). Then, an algorithm of transfer can be used to **simulate** the NIR data of the slave on the master.

This method presents some **limitations** :

- The measurement dates on both instruments must be relatively close which can be problematic when the instruments are not on the same country or not easily accessible;
- It is time consuming to send the standard optics at different locations and difficult to manage when dealing with a large number of spectrometers;
- The sample compartment of the instruments or the instrument itself must be **compatible with the sealed cups**;
- Usually a transfer is not enough and it is necessary to add spectra of the master in the simulated spectral database of the slave;
- A validation step is mandatory at the end of the procedure.

In order to cope with those limitations, a large experiment has been set up :

80 samples of white flour divided into 4 batches have been scanned on 12 different NIR devices (all anonymized) and analyzed by wet chemistry for the

determination of the **protein content**.

> 8 devices have the full classical NIR spectral range (1100-2500 nm) : ASD

Fieldspec, Bruker MPA, Buchi NIRMaster, Foss DS2500, Foss XDS, PerkinElmer FT

9700, Thermofisher Antaris, Unity Spectra Star XT

700-2500 nn

Buchi : 1100-2500 nm

Spectrale engine 3477

1550-1950 nm

> 4 devices have a reduced NIR spectral range : Perten DA7200 (950-1650 nm), Spectral engine 3477 (1550-1950 nm), Spectral engine 3487 (1750-2150 nm), VIAVI (950-1650 nm)

Jnity : 680-2600 nm

XDS: 400-2500 nm

Perten DA7200: 950-1650 nm

Spectrale engine 3487 1750-2150 nm

A first calibration (initial calibration) was calculated from the Initial Calibration Set (ICS) using the batches 1 and 3 of only 4 instruments: 2 FT systems and 2 monochromator systems having the **full classical NIR range** (1100-2500 nm).

Then, for every instrument, a new specific calibration has been established with the **initial calibration set + the batch 2** of each respective device.

All the calibrations have been calculated **automatically** by Winisi with **maximum 10 factors** PLS and by applying **SNV** and a **first derivative** as preprocessing.

The **batch 4** for **each device** constitutes the **final validation**.

Table 1 shows the data structure :

	NIP Instrument	Spectra of						
		Batch 1 (Monday)	Batch 2 (Tuesday)	Batch 3 (Wednesday)	Batch 4 (Thursday)			
	Device 1 - FT 1	Initial calibration set	Added in the initial calibration set	Initial calibration set	Validation set 1			
т	Device 2 - FT 2	Initial calibration set	Added in the initial calibration set	Initial calibration set	Validation set 2			
a	Device 3 - Monochromator 1	Initial calibration set	Added in the initial calibration set	Initial calibration set	Validation set 3			
b	Device 4 - Monochromator 2	Initial calibration set	Added in the initial calibration set	Initial calibration set	Validation set 4			
ĩ	Device 5 - Full range	Data not used	Added in the initial calibration set	Data not used	Validation set 5			
e	Device 6 - Full range	Data not used	Added in the initial calibration set	Data not used	Validation set 6			
C	Device 7 - Full range	Data not used	Added in the initial calibration set	Data not used	Validation set 7			
1	Device 8 - Full range	Data not used	Added in the initial calibration set	Data not used	Validation set 8			
-	Device 9 - Reduced range	Data not used	Added in the initial calibration set	Data not used	Validation set 9			
	Device 10 - Reduced range	Data not used	Added in the initial calibration set	Data not used	Validation set 10			
	Device 11 - Reduced range	Data not used	Added in the initial calibration set	Data not used	Validation set 11			
	Device 12 - Reduced range	Data not used	Added in the initial calibration set	Data not used	Validation set 12			

As expected, the results are better when real spectra are added into the initial calibration set with usually RPDC (SD=SEPC) values larger than 3. Even without adding spectra, the devices 6 and 7 have better performances of predictions than the 4 instruments used to built the initial calibration set. For devices having a reduced range, the performances are really lower.

Figure 1 illustrates the RPDC obtained with the initial calibration and the 12 specifics calibrations

Table 2 indicatives the performances expressed as SEC and SECV on both calibrations : the initial calibration and all specific calibrations

	Origin of calibrations	N	Mean	SD	Est. Min	Est. Max	SEC	SECV	R²	RPD _{CV}
	eqa 1 : Initial calibration based on the initial calibration set (ICS)	156	11.15	1.19	7.59	14.72	0.13	0.16	0.98	7.4
	ICS + batch 2 of device 1 - FT 1	175	11.10	1.19	7.54	14.66	0.13	0.16	0.98	7.6
т	ICS + batch 2 of device 2 - FT 2	174	11.12	1.18	7.57	14.66	0.13	0.16	0.98	7.3
· a	ICS + batch 2 of device 3 - Monochromator 1	175	11.09	1.18	7.54	14.65	0.12	0.15	0.98	7.7
b l e 2	ICS + batch 2 of device 4 - Monochromator 2	175	11.11	1.18	7.56	14.66	0.12	0.16	0.98	7.4
	ICS + batch 2 of device 5 - Full range	174	11.09	1.19	7.53	14.66	0.12	0.15	0.98	8.1
	ICS + batch 2 of device 6 - Full range	174	11.09	1.18	7.55	14.62	0.13	0.15	0.98	7.8
	ICS + batch 2 of device 7 - Full range	175	11.12	1.20	7.51	14.72	0.13	0.16	0.98	7.3
	ICS + batch 2 of device 8 - Full range	175	11.09	1.18	7.54	14.65	0.12	0.15	0.98	8.1
_	ICS + batch 2 of device 9 - Reduced range	177	11.08	1.18	7.55	14.62	0.21	0.25	0.96	4.8
	ICS + batch 2 of device 10 - Reduced range	177	11.10	1.19	7.54	14.66	0.24	0.26	0.95	4.6
	ICS + batch 2 of device 11 - Reduced range	178	11.09	1.19	7.52	14.67	0.22	0.24	0.96	4.9
	ICS + batch 2 of device 12 - Reduced range	178	11.08	1.18	7.55	14.61	0.25	0.28	0.94	4.2

Table 3 represents the SEPC
(error of prediction corrected
for the bias) for the initial
calibration and the specific
calibrations

	SEPC			
	Initial calibration	ICS + batch 2 of each respective device		
Device 1 - FT 1	0.215	0.178		
Device 2 - FT 2	0.118	0.107		
Device 3 - Monochromator 1	0.170	0.145		
Device 4 - Monochromator 2	0.164	0.150		
Device 5 - Full range	0.142	0.100		
Device 6 - Full range	0.105	0.086		
Device 7 - Full range	0.105	0.088		
Device 8 - Full range	0.247	0.134		
Device 9 - Reduced range	0.206	0.187		
Device 10 - Reduced range	0.330	0.281		
Device 11 - Reduced range	0.635	0.449		
Device 12 - Reduced range	1.201	0.358		

Table 4 describes the GH (Mahalanobis distance) and NH (Neighborhood distance) values. Adding only 20 real spectra allows to reduce considerably the values proving that it is possible to adapt easily the calibrations

	Avera	ge GH	Average NH		
	No real spectra added	20 real spectra added	No real spectra added	20 real spectra added	
Device 1 - FT 1	2.1	1.6	0.5	0.5	
Device 2 - FT 2	1.0	1.0	0.2	0.2	
Device 3 - Monochromator 1	0.9	0.7	0.1	0.1	
Device 4 - Monochromator 2	0.9	0.7	0.1	0.1	
Device 5 - Full range	13.2	12.6	8.5	8.2	
Device 6 - Full range	3.9	1.1	1.3	0.2	
Device 7 - Full range	4.2	1.3	2.2	0.3	
Device 8 - Full range	5.7	1.2	2.4	0.2	
Device 9 - Reduced range	35.6	1.7	21.9	0.4	
Device 10 - Reduced range	497.8	1.6	463.7	0.1	
Device 11 - Reduced range	706.4	1.5	672.1	0.1	
Device 12 - Reduced range	36.0	2.3	29.0	0.5	

Conclusion

Based on this study, it seems possible to skip the step of transfer of database between instruments provided the full spectral range is available. As a validation set is required anyway, just a bias correction seems to be enough provided that the calibration is based on spectra coming from different reliable devices. Further study should be launched on more complicated products and constituents like forage for instance.

Acknowledgements

The authors thank the technical staff of the Food and Feed Quality Unit, Stéphane Brichard, Nicolas Crasset, Eric Fontaine and Sandrine Mauro.

CRA-W thank also the equipment manufacturers who lend the spectrometers.

Wallonie recherche Walloon Agricultural Research Centre To address today's questions and to prepare tomorrow's challenges www.cra.wallonie.be **CRA-W**