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During its growth, winter wheat (Triticum aestivum L.) can be impacted by multiple stresses

involving fungal diseases that are responsible for high yield losses. Enhancing the breeding

and the identification of resistant cultivars could be achieved by collecting automated and

reliable information at the plant level. This study aims to estimate the severity of stripe rust

(SR), brown rust (BR) and septoria tritici blotch (STB) in natural conditions and to highlight

wavebands of interest, based on images acquired through amultispectral camera embedded

on a ground-based platform. The severity of the three diseases has been assessed visually in

an agronomic trial involving five wheat cultivars with or without fungicide treatment. An

acquisition system using multispectral imagery covering the visible and near-infrared range

has been set up at the canopy level. Based on spectral and textural features, estimations of

area under disease progress curve (AUDPC) were performed by means of artificial neural

networks (ANN) andpartial least squares regression (PLSR). Supervised classificationwasalso

implemented by means of ANN. The ANN performed better at estimating disease severity

with R2 of 0.72, 0.57 and 0.65 for STB, SR and BR respectively. Discrimination in two classes

below or above 100 AUDPC reached an accuracy of 81% (k ¼ 0.60) for STB. This study, which

combined the effect of date, cultivar andmultiple disease infections, managed to highlight a

few wavebands for each disease and took a step further in the development of a machine

vision-based approach for the characterisation of fungal diseases in natural conditions.

© 2020 Published by Elsevier Ltd on behalf of IAgrE.
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1. Introduction

Whilewinter wheat is themost grown cereal, its yield remains

deeply impacted by fungal diseases, such as stripe rust (SR)

caused by Puccinia striiformis, brown rust (BR) caused by Puc-

cinia recondita and septoria tritici blotch (STB) caused by

Zymoseptoria tritici. These diseases can induce yield reductions

of up to 60% on sensitive and untreated wheat cultivars in

Belgium (Bodson, De Proft, & Watillon, 2017). In order to

ensure high yield, the current agricultural practice involve the

selection of resistant cultivars and the uniform application of

preventive pesticides. However, breeding resistant cultivars

requires plant phenotyping which is conventionally assessed

visually by experts. For instance, classical disease notation is

based on specific disease symptoms and visual estimations of

infected surfaces. Such a method remains time-consuming

and induces high variability between observations which

highlights the need for automatic and robust measurement

tools (Naik et al., 2017).

In the context of precision agriculture, numerical tech-

nologies have been used to account for the intra-plot vari-

ability of crop parameters (Lindblom, Lindblom, Lundstr€om,

Ljung, & Jonsson, 2017) such as leaf area index (Haboudane,

Miller, Pattey, Zarco-Tejada, & Stratchan, 2004), nitrogen

content (Filella, Serrano, Serra, & Pe~nuelas, 1995) and disease

infection (Mahlein, 2016). These current innovations are

considered as promising to monitor disease state in crops

such as winter wheat and then adapt the amount of pesti-

cides sprayed to be more cost-effective and with limited

impact on the environment (Van Der Werf, 1996). In agro-

nomic trials, the numerical advances would play a significant

role in characterising plants resistant to diseases (Kuska

et al., 2015). These technologies are however not fully

developed yet and require accurate phenotyping tools,

especially in natural conditions.

Among the available technologies, imaging spectroscopy

has been identified as a mature and adequate way for plant

phenotyping (Li, Zhang, & Huang, 2014). The reflectance

spectrum of a leaf is influenced in the visible range

(400e700 nm) by pigment concentrations (Gitelson, Gritz, &

Merzlyak, 2003; Inoue et al., 2016), in the near-infrared

(700e1300 nm) by leaf cellular structure (Pe~nuelas & Filella,

1998) and in the mid infrared (1300e3000 nm) mainly by ra-

diation absorption by water but also by protein, lignin and

cellulose (Downing, Carter, Holladay, & Cibula, 1993; Koch,

Ammer, Schneider, & Wittmeier, 1990; Zhao et al., 2016).

Multispectral imagery in the visible and near-infrared do-

mains carries a lot of information on plant disease state

(Sankaran, Mishra, Ehsani, & Davis, 2010). For winter wheat,

it has been successfully set up in proximal sensing to detect

SR infection at the growth stage of first node (GS 31; Zadoks,

Chang, & Konzak, 1974) on an artificially inoculated cultivar

(Moshou et al., 2004). Odilbekov, Armonien�e, Henriksson, and

Chawade (2018) offered the possibility of STB detection on

winter wheat grown in greenhouse conditions. Until

recently, studies in proximal disease detection on wheat
often occur early in plant development when the canopy

architecture is still open (Bravo, Moshou, West, McCartney, &

Ramon, 2003; Krishna et al., 2014). Furthermore, the experi-

mental setup is often combined with, on one side, healthy

wheat and, on the other side, wheat artificially infected by a

single disease. Although essential for the identification of

wavebands where reflectance is altered by the disease

infection, this first step in imaging-based wheat phenotyping

needs to be taken further in real conditions. Over time in the

field, wheat can reach high canopy densities which induce

shadows and overlapping leaves, and can also be affected by

multiple diseases at the same time. In-field phenotyping in

natural conditions is still challenging but needs to be

assessed in order to move forward towards the development

of a robust and accurate high-throughput phenotyping

machine.

Values of reflected light measured by spectral imagery are

commonly exploited in vegetation indices to be correlated to

reference phenotypic measurements (Devadas, Lamb,

Simpfendorfer, & Backhouse, 2009; Franke & Menz, 2007;

Nebiker, Lack, Ab€acherli, & L€aderach, 2016). However, indices

created for wheat phenotyping are often specific to the crop

studied (Lowe, Harrison, & French, 2017; Verrelst, Koetz,

Kneubühler, & Schaepman, 2006). Due to its intrinsic fine

spatial resolution, proximal imaging can also provide relevant

textural information. Indeed, disease symptoms and physio-

logical modifications alter the leaf reflected light spectrum

with different spatial arrangements (Martinelli et al., 2015). SR

is characterised by small yellow-orange spores along leaf

ridges. BR is quite similar, but spores are orange-brown and

are uniformly distributed on leaf surface whereas STB induces

the appearance of small black dots name pycnidia in brown-

to-grey spots of different shapes (Fig. 1). Moreover, while

rusts develop mainly on the upper leaves of plants, STB

initially infects lower leaves andmakes it harder to detect due

to shading and occlusions.

Regarding data processing, several algorithms can be

used to correlate measurements to observations. Partial

least squares regression (PLSR) is a commonly used statis-

tical analysis for plant phenotyping and in particular dis-

ease detection (Krishna et al., 2014; Zhang et al., 2012). With

the technological progress, machine learning has proven to

be fast and efficient when it comes to image classification

(Mohanty, Hughes, & Salath�e, 2016). Especially, artificial

neural networks (ANN) and support vector machines have

been successful in disease detection (Mahlein, Oerke,

Steiner, & Dehne, 2012; Mewes, Franke, & Menz, 2011;

Moshou et al., 2004; Rumpf et al., 2010). With image acqui-

sition in natural conditions, the dataset will involve winter

wheat at different growth stages and infected by multiple

diseases which complicates plant phenotyping and requires

the use of efficient algorithms of machine learning. To find

the most suitable tool for winter wheat phenotyping,

different approaches must be used and compared when

predicting disease severity.

This study aims to investigate whether the severity of the

three main diseases affecting winter wheat, namely SR, BR
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Fig. 1 e Typical disease symptoms for BR (left, photo taken by S�ebastien Dandrifosse), STB (middle, photo taken by Charlotte

Bataille, Walloon Agricultural Research Centre) and SR (right, photo taken by S�ebastien Dandrifosse).
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and STB, can be predicted using reflectance and pixel

arrangement in specific wavelength bands in the visible and

near-infrared domains. This study compares the performance

of PLSR and ANN for disease severity regression based on

textural analysis and pixel group reflectance from multi-

spectral images. This research also intends to embrace every

aspect of field conditions such as wind, natural disease inoc-

ulation and canopy architecture densification by observing

five varieties of winter wheat with contrasting diseases sen-

sitivities over five acquisition dates.
2. Materials and methods

2.1. Experimental field

The experiment took place in an agronomic trial studying the

effect of cultivar and number of fungicide treatments on

winter wheat yield. The field is located in Lonz�ee in Belgium

(50�320N; 4�440E). Winter wheat was sown on 16th November

2017 with a density of 350 grains m�2. Nitrogen fertilisation

was applied at three specific growth stages: start of tillering

(GS 21 according to the Zadok’s scale), stem elongation (GS 31)

and flag leaf (GS 39). This study focused on five cultivars of

winter wheat (Alcides, Benchmark, Edgar, RGT Reform and

Triomph) presenting contrasting degrees of sensitivity to SR,

BR and STB. The cultivars have been exposed to no fungal

treatment (0T) or two treatments on 8th and 24th May 2018

(2T) respectivelywithOpus team1.5 l ha�1þ Bravo 1 l ha�1 and

Aviator XPRO 1.25 l ha�1. Therewere four replications. The five

cultivars and the applied treatments were chosen in the in-

terest of observing a large range of disease severity. The field

was divided inmicro-plots (8� 2.05m2) including a small band

on each side to limit border effects. Fungal inoculation

occurred naturally and relied on the selection of cultivars of

winter wheat sensitive to SR, BR and STB.
2.2. Disease score assessment

Disease severity for SR, BR and STB was assessed weekly from

2nd May (GS 31) to 3rd July 2018 (GS 83) by an expert in plant

pathology. The assessment was performed on individual

leaves randomly sampled. The severity was then averaged at

the micro-plot scale. Rust severity represents a degree of leaf

infection according to the modified Cobb scale which ranges

from 0 to 100 (Peterson, Campbell, & Hannah, 1948). STB

severity represents the percentage of the leaf surface pre-

senting symptomatic lesions. In order to properly assess the

disease infection throughout the growing season and account

for the time evolution of the disease severity, the disease score

of a plot at a given date is given by the area under the disease

progress curve (AUDPC) as explained by Arora, Venkatesh,

Sharma, and Saharan (2014). In order to analyse the contrast

in infection between the varieties for each disease, the

Tukey’s honestly significant difference (HSD) test was used as

a post hocmean separation test (p < 0.05). This comparison test

was performed for each date of image acquisition by inter-

polating the observed disease scores.

2.3. Multispectral acquisition system

Amultispectral imagery system has been set up bymeans of a

monochromatic 12-bit 1.3-megapixel BCi5 CMOS camera (C-

Cam technologies, Leuven, Belgium). For a given scene, this

system acquired a set of 11 images through band-pass filters

placed on a motorised wheel which successively presented

the filters under the camera (Fig. 2). The wavebands of the

filters were centred at wavelengths from 450 nm to 950 nm in

steps of 50 nm with a bandwidth of 40 or 50 nm. The camera

andwheel controllers were coded in Cþþ. In order to take into

account the variations of the natural illumination conditions,

a reference plate made of a diffuse white coated plastic ma-

terial was placed in the field of view of the camera at the

https://doi.org/10.1016/j.biosystemseng.2020.06.011
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Fig. 2 e Experimental set up: (a) box containing the camera (green rectangle) and the motorised filter wheel, (b) platform

composed of the box (blue rectangle), the white reference (red rectangle), the computer, the battery, and the gantry placed

above a micro-plot. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)

Table 1 e Dates of image acquisition and corresponding wheat growth stages according to the Zadok’s scale.

Date 25th May 30th May 6th June 13th June 21st June

Growth stage GS 39

Flag leaf

GS 59

End of heading

GS 65

Medium flowering

GS 71

Watery ripe

GS 75

Medium milk
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canopy level. The integration time of the camera was adjusted

to match the average reflectance of the white reference with a

grey level of 0.95 ± 5% for each considered waveband. This

allowed benefit to be taken of the colour depth resolution

while avoiding pixel saturation and normalisation of the

monochromatic images between acquisition dates for a given

waveband. The vision system was placed at 1 m above the

canopywhich results in a spatial resolution of 1mmat the top

level of the winter wheat cover.

2.4. Image acquisition

The raw dataset consists of 630 multispectral images, each of

them composed of 11 single-waveband monochromatic

layers. These images were acquired on five different dates

from 25th May to 21st June 2018 (Table 1). In order to account

for the intra-plot variability, four and three marked scenes

were shot for 0T and 2T, respectively.

2.5. Image treatment

An image pre-treatment was performed in order to extract a

unique leaf segmentation mask for all the layers of a multi-

spectral acquisition. Due to the time sequence of the optical

filters, the wind could induce leaf displacement between the

layers. This would make it difficult to extract a unique vege-

tation mask through all the wavebands and then disturb the

disease detection algorithms. To assess the wind effect during

a multispectral shot, the images obtained with the first, the

fifth and the eleventh wavebands in the acquisition sequence
were compared. Since, these wavebands were centred in the

near-infrared (i.e. 950 nm, 900 nm and 850 nm, respectively),

leaf segmentation could be performed on each layer inde-

pendently due to the high soil-plant reflectance contrast. The

distributions of segmentation difference compared two by

two are depicted in Fig. 3. The difference minimum is at 4%

and the distribution peaks occurs at around 15%whichmeans

that no multispectral image presented perfect leaf-scale su-

perimposition between the layers.

The wind blew strongly during the whole day of 21st June

2018. Images from this acquisition day are mostly on the

right part of the graphs of Fig. 3 with 81% of images above a

segmentation difference of 30%. This validates that seg-

mentation difference is a good indicator of wind effects on

acquisition quality. Images of poor quality were removed by

identifying outliers by means of the method proposed by

Leys, Ley, Klein, Bernard, & Licata (2013). The outlier detec-

tion rule is given by

xi > MðxÞþDl b Mðjxi �MðxÞjÞ
where x is the considered distribution, Mð ,Þ is the median

operator, xi is the tested value of the distribution,Dl is the level

of decision and b is a constant equal to 1.4826 (Rousseeuw &

Croux, 1993). This method is used for non-normal distribu-

tion as the median is barely sensitive to outliers. The level of

decision Dl is arbitrary and was set to 3, which was motivated

in this study by the need to have a large dataset for regression.

This criterion leads to a segmentation difference threshold of

34%, above which the multispectral images were removed

from the data set. This appears to be a good compromise

https://doi.org/10.1016/j.biosystemseng.2020.06.011
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Fig. 3 e Histogram of percentage leaf segmentation difference between the first (950 nm), fifth (900 nm) and eleventh

(850 nm) filters of the acquisition sequence.
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between high quality data and a sufficient quantity of data for

algorithm training. As a consequence, the number of images

was narrowed down to 562.

Neural network-based leaf segmentation was operated on

these multispectral images using the 11 waveband layers. In

order to take into account the natural lighting contrast, pixels

belonging to leaves were separated into three groups

depending on the lighting conditions they had been exposed

to, i.e. sunny, shady or cloudy conditions (Fig. 4). Moreover,

since STB infection starts from the bottom of the canopy, the

associated symptomsmight be preferably located in the shady

zones. A fourth group named ‘total’ gathered every plant

pixel.

A first set of layer features was extracted by averaging

the reflectance values of the four aforementioned groups of
Fig. 4 e Example of a raw canopy image (left) and a segmented

condition (top) and cloudy condition (bottom). Pixels are classifie

classes: sunny (white), shady (dark grey) and cloudy (light grey
plant pixel (sunny, shady, cloudy and total). In addition,

statistical textural features were computed for the group of

all plant pixels (total) of each waveband layer by means of

an associated grey level co-occurrence matrix. Such a ma-

trix represents the frequency at which any combination of

pixel intensity values occurs in the image by considering

adjacent pixel pairs. Four scalar properties, defined as

contrast, correlation, energy and homogeneity, are directly

deduced from the grey level co-occurrence matrix and

quantify how the pixel intensity values are arranged in the

whole image (Baraldi & Parmiggiani (1995)). These eight

features, i.e. the average reflectance value of the four leaf

groups and the four textural parameters of the total leaf

group, were computed for each waveband resulting in 88

features per observed scene for disease detection. The
image (right) in contrasting illumination conditions, sunny

d as soil (black) or plant. Plant pixels are separated in three

).
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Fig. 5 e Time evolution of the observed infection score based on the area under the disease progress curve (AUDPC) during

the 2018 season: average score over the five varieties (top-left), STB score (top-right), SR score (bottom-left), BR score

(bottom-right).
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proposed image treatment was implemented in Matlab by

using precompiled routines.

2.6. Regression algorithms

Based on the spectral and textural features extracted from the

multispectral images, disease detection models were estab-

lished bymeans of PLSR and ANN. PLSR is specifically adapted

when number of features is high (Tenenhaus, Gauchi, &

M�enardo, 1995). This algorithm constructs a regression

model based on a small number of uncorrelated latent vari-

ables built from the independent features. The optimal model

was selected by minimising the root mean square error

(RMSE). ANN were chosen for their capacity to resolve com-

plex problems and to generalise a small amount of data (Rafiq,

Bugmann, & Easterbrook, 2001). ANN require however a

smaller amount of features. Based on a bidirectional stepwise

regression (StepReg), variables were selected if their p-value

was lower than a given threshold. Each time a new variable

enters the model, already selected variables were tested and

taken out of themodel if their p-value was superior to another

given threshold. These thresholds were fixed at 0.3 and 0.7,

respectively, in order to have a sufficient number of features.

This allows removing correlated variables. Remaining vari-

ables are ranked by order of increasing p-value to identify the

most significant. Multiple ANN-based models were built by

means of the most significant features by successively

considering one to 15 input features. ANN architecture was

composed of one hidden layer of two to nine neurons. The
optimal model for disease severity prediction was picked by

minimising the RMSE. The model hyper-parameter tuning

was set by splitting the dataset into 80% for training and 20%

for testing for both regressionmethods. Image processing and

algorithms were implemented in Matlab using the neural

network toolbox for ANN and the statistics and machine

learning toolbox for PLSR.

2.7. Image classification

Classification between healthy and diseased wheat crops is

usually performed in the literature between treated plots and

untreated inoculated plots. In this contribution, natural inoc-

ulation and the use of cultivars with contrasting disease sen-

sitivities did not allow the direct identification of two distinct

classes. In order to investigate the potential for health status

discrimination, images were classified into two classes ac-

cording to an arbitrarily chosen threshold value of AUDPC

disease score. As theAUDPC values range from0 to 300 for each

disease, three infection threshold values were successively

considered as 20, 50 and 100. These will be further referred as

low, intermediate and high levels of infection threshold values,

respectively. To evaluate the quality of classification, sensi-

tivity or true positive rate (TPR), specificity or true negative rate

(TNR) and accuracy (Acc) were deduced as follows:

TPR¼ TP
TPþ FN

TNR ¼ TN
TNþ FP

Acc ¼ TPþ TN
TPþ TNþ FPþ FN

where TP is the true positive number, TN is the true negative

https://doi.org/10.1016/j.biosystemseng.2020.06.011
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Table 2 e Tukey’s HSDmultiple comparison test for the levels of infection of each fungal disease at each image acquisition
date. The letters indicate the groups of cultivars combinedwith (2T) or without (0T) fungal treatment which are statistically
different per date and per disease at the p < 0.05 level.

STB SR BR

May 25 May 30 June 6 June 13 June 21 May 25 May 30 June 6 June 13 June
21

May
25

May
30

June
6

June
13

June
21

Alcides, 0T b bc abc ab bcd b b b b c b c b b b

Alcides, 2T b bc bc ab cd b b b b e b c b b b

Benchmark, 0T ab abc abc ab abc a a a a a a a a a a

Benchmark, 2T ab abc bc b d b b b b e b c b b b

Edgar, 0T ab abc ab a a ab ab b b de a b a a a

Edgar, 2T ab ab abc ab bcd b b b b e b c b b b

RGT Reform, 0T ab abc abc ab abc ab ab a a b b c b b b

RGT Reform, 2T b c c b d b b b b e b c b b b

Triomph, 0T a a a a ab ab ab b b cd b c b b b

Triomph, 2T ab abc abc ab bcd b b b b e b c b b b
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number, FP is the false positive number and FN is the false

negative number. A predicted disease score is counted as

positive if higher than the considered threshold value,

whereas a lower predicted disease score is classified as

negative. The true and false qualifications refer to an

agreement and a disagreement with the observed score,

respectively. The disease classifications were also assessed

by means of the Cohen’s coefficient k which reads

k¼pa � pe

1� pe

where pa is the probability of agreement between both disease

assessment methods, i.e. pa ¼ Acc, and pe is the probability of

random agreement. The Cohen’s coefficient is known to be

more robust than the accuracy parameter since it accounts for

the probability of true values occurring randomly.
3. Results and discussion

3.1. Disease severity

During the 2018 season, the weather conditions led to a

high level of natural STB infection for all cultivars. As

depicted in Fig. 5, the applied treatment did not allow

maintaining healthy micro-plots. However, Table 2 shows

that the score of STB can hardly be statistically differenti-

ated across cultivars. Regarding BR and SR, the infection

was nicely controlled by the fungicides. The monitored

wheat cultivars with contrasting disease sensitivities gave

expected results and offer a dataset with a wide range of

disease severity (Fig. 5). However, both rusts were charac-

terised by some heterogeneities in the level of infection

between the cultivars. SR began late in the season but was

quite virulent, especially on cultivar Benchmark and RGT

Reform which can be statistically separated from the other

cultivars from 6th June and even from each other for the

last acquisition date, as explained in Table 2. In contrast,

Benchmark and Edgar were significantly more attacked by

BR than the other cultivars with a relative regular time

evolution since 25th May.
3.2. Cultivar reflectance

Cultivars of wheat can differ from each other in terms of, for

instance, number of leaves, leaf size, leaf tilting and the

presence of bearded ears. These morphological differences

can induce changes in reflectance from one cultivar to

another. Figure 6 shows the mean values of reflectance for

treated (2T) micro-plots of the five studied cultivars. The

treated cultivars were unaffected by the rusts and slightly but

evenly infected by STB. Among the considered cultivars,

Benchmark has higher standard deviation than the other

cultivars in the visible domain and slightly increased reflec-

tance at 650 and 700 nm. In the red edge and in NIR, however,

RGT Reform differs from the other cultivars due to its higher

standard deviation and lower reflectance. Benchmark has also

lower reflectance than Alcides, Edgar and Triomph at 750 nm.

These inter-cultivar differences are rather small compared to

standard deviation but may confuse regression algorithms.

The study of several cultivars at different growth stages

should allow the construction of robust models.

3.3. Inter-temporal reflectance

The multi-temporal assessment of the disease score has to

take into account reflectance variations due to plant growth.

Figure 7 shows the values of reflectance for treated (2T)micro-

plots of cultivars at the monitored growth stages (Table 1). On

25th May (GS 39) the flag leaf was fully developed, which ex-

plains the high level of NIR reflectance. It is also observed that

the reflectance in the red band increases with time while NIR

reflectance decreases. On 21st June (GS 75), reflectance drop-

ped at every wavelength. The variations in reflectance be-

tween growth stages are higher than the inter-cultivar

variations especially for the last date. This may hide varia-

tions due to a disease infection, the senescence stage onset or

a photosynthetic activity decrease.

3.4. Disease score regression

The regression results are shown in Figs. 8e10 for STB, SR and

BR, respectively. Corresponding R2 and RMSE are listed in

https://doi.org/10.1016/j.biosystemseng.2020.06.011
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Fig. 6 e Averaged reflectance ± standard deviation of

treated wheat for each cultivar.

Fig. 7 e Averaged reflectance ± standard deviation of

treated wheat at each observed growth stage (GS 39, flag

leaf; GS 59, end of healing; GS 65, medium flowering, GS 71,

watery ripe; GS 75, medium milk).

Fig. 8 e Regression results between observed AUDPC of STB an

and artificial neural networks (right).
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Table 3. The regression of STB disease score shows an

increasing trend for PLSR and ANN (Fig. 8). The ANN gives

better predictions, especially in terms of RMSE, with R2 pre-

dicted and RMSE predicted of 0.72 and 34.9 respectively for

ANN and 0.69 and 37.1 respectively for PLSR (Table 3).

For SR, ANN gives more accurate predictions in terms of R2

(0.57) and RMSE (23.7) than PLSR which gives R2 of 0.19 and

RMSE of 32.6 (Table 3). In comparison with ANN, PLSR over-

estimates points observed at AUDPC values close to zero and

greatly underestimates points above observed values of 100.

Figure 9 displays clearly two groups of observations. For

AUDPC values below 100, regression is poor in quality and SR

is often undetected. However, for AUDPC observed above 100,

all observations were predicted around 100 by ANN which

reveals potential for discrimination in two classes. The num-

ber of observations above 100was however rather small due to

a low natural infection level during the 2018 season.

BR had slightly infected the winter wheat field during the

acquisition period. Benchmark and Edgar cultivars were

slightly but steadily infected, which provides over time ob-

servations at high AUDPC. Severity prediction is once again

better with ANNwhich reached predicted R2 of 0.65 and RMSE

of 27.2 (Table 3). However, the R2 and RMSE were boosted by

many points at low AUDPC and the lack of observations at

high AUDPC values (Fig. 10).

The optimal model depends on the disease being esti-

mated. The number of uncorrelated variables of PLSR opti-

mising RMSE for STB, SR and BR, respectively is presented in

Table 4. This also shows, for each disease, the number of

predictive features obtained from StepReg and the number of

neurons used in the hidden layer of ANN. STB requires more

features for bothmodels, which is related to the broader range

of disease score with respect to SR and BR. For better perfor-

mance, the numbers of predictive features for ANN are

equivalent to the PLSR models, or even less for the case of SR.

The superiority of ANN could be partially explained by its

intrinsic ability to model non-linear relationships

(Barmpalexis, Karagianni, Nikolakakis, & Kachrimanis, 2018;

Lin, Groves, Freivalds, Lee, & Harper, 2012). In addition,

whereas PLSR uses rebuilt uncorrelated variables, ANN works

directly on spectral and textural features from raw images. As

a consequence, the latter has the ability to provide easily

interpretable results with the aim of eventually designing

dedicated in-field acquisition systems appropriate for
d predicted AUDPC by partial least squares regression (left)
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Fig. 9 e Regression results between observed AUDPC of SR and predicted AUDPC by partial least squares regression (left) and

artificial neural networks (right).

Fig. 10 e Regression results between observed AUDPC of BR and predicted AUDPC by partial least squares regression (left)

and artificial neural networks (right).
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precision agriculture. For these reasons, the sequel of this

discussion will be based on ANN results.

For STB, the ANN-based predictions have been computed

using 13 input features ranked by increasing p-values in Table
Table 3 e Summary of R2 and RMSE of the training and
prediction sets for PLSR and ANN regression of STB, SR
and BR disease score.

STB SR BR

PLSR ANN PLSR ANN PLSR ANN

Predicted R2 0.69 0.72 0.19 0.57 0.41 0.65

Predicted RMSE 37.1 34.9 32.6 23.7 35.3 27.2

Trained adjusted R2 0.63 0.79 0.37 0.55 0.46 0.68

Trained RMSE 38.1 30.4 30.5 26.7 31.2 25.3

Table 4 e Number of parameters (predictive features/
hidden neurons/uncorrelated variables) used in the
optimal ANN-based and PLSR-based models.

Disease Predictive
features
number
(StepReg)

Hidden neurons
number (ANN)

PLSR
uncorrelated

variables number

STB 13 6 12

SR 5 3 10

BR 8 4 9
5. Physiological changes induced by STB are known to reduce

reflectance in the red edge and NIR wavelengths (Moshou

et al., 2011). The waveband at 750 nm, which covers the red

edge-NIR transition, is present three times in the top six fea-

tures. The lack of other red edge and NIR bands in the most

discriminating features is explained by the use of the stepwise

selection. Red edge selection conforms to the recent article by

Yu et al. (2018), which also highlighted such a region (730 nm)

for STB detection. However, it is shown in Table 5 that the

most important features in this study are 600 nm and 650 nm.
Table 5 e Features selected by stepwise regression for
STB disease score assessment, ranked by increasing p-
values.

Waveband [nm] Feature

600 Mean cloudy

600 Energy

650 Homogeneity

750 Contrast

750 Mean cloudy

750 Homogeneity

650 Mean sunny

650 Energy

550 Homogeneity

700 Energy

800 Correlation

850 Homogeneity

900 Contrast
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Table 7 e Features selected by stepwise regression for BR
disease score assessment, ranked by increasing p-
values.

Waveband [nm] Feature

650 Homogeneity

950 Contrast

750 Contrast

450 Mean cloudy

800 Mean cloudy

650 Energy

700 Homogeneity

850 Mean cloudy
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As has been discussed before, reflectance in the red edge and

NIR depends greatly on the growth stage (Fig. 5) and may

therefore bring biased information for STB regression.

Instead, selected features cover the wavelengths corre-

sponding partially to yellow which is the colour of blotches of

STB and dried leaves due to senescence. With ten variables in

the model, textural features showed that they are crucial for

disease score regression.

In addition, cloudy conditions brought poor contrast in the

image due to the lack of shade. This helped to compare be-

tween leaves and gave features of good quality for disease

regression (Table 5). Unexpectedly, no feature derived from

shady conditions was selected even though STB infection

usually develops in lower leaves, shaded by upper leaves. This

could be explained by the fact that, at advanced growth

stages, almost all the leaves are shaded except the flag leaves.

Moreover, as the winter wheat grows, fewer lower leaves

remain visible by the camera due to covering by upper leaves.

SR is known to have an increase in reflectance in the green-

red bands (500e690 nm) and in the NIR bands (750e1300 nm)

with a maximum difference at 620e670 nm (Yuan et al., 2014).

By means of a hyperspectral vision system, Bravo, Moshou,

West, MacCartney, & Ramon (2003) identified 543, 630, 750

and 861 nm as key wavebands. However, in this study the

selected features only cover the red edge (700, 750 nm) and NIR

(900 nm) (Table 6). The regression has been influenced by STB

infection which was dominant in the agronomic trial, espe-

cially for the Benchmark cultivar. The combined effects of both

diseases can disturb AUDPC regressions and predictions of SR,

which explains the lack of wavebands in the yellow range and

the poor regression at low AUDPC. As for STB, textural features

were the prevailing type in the stepwise selection. As shown

previously in Fig. 7, the growth stage highly influences reflec-

tance, especially in the red edge and in NIR, which can hide

modifications of reflectance in these bands induced by disease

infection. Textural features are more reliable for disease

regression with multi-temporal data because local modifica-

tions due to diseases symptoms on the leaf can be compared

with the healthy neighbouring pixels.

The typical brown-orange colour of BR spores is located

around 600 nm (Wahabzada et al., 2015), which is partially

covered by the most discriminating feature at 650 nm wave-

band (Table 7). Other features include wavelength in the NIR

(950 nm) and in the red edge (750 nm). The prevailing type of

feature is textural with homogeneity and contrast in the top

three selected features. Textural analysis is adapted to the

typical symptoms of BR, consisting of small dots uniformly

distributed on the leaf. The use of features in the NIR and red
Table 6 e Features selected by stepwise regression for SR
disease score assessment, ranked by increasing p-
values.

Waveband [nm] Feature

750 Contrast

750 Correlation

900 Mean total

900 Contrast

700 Energy
edge bands, where BR hardly induces any changes in reflec-

tance (Wahabzada et al., 2015), is due to the need to predict

AUDPC. A high AUDPCmeans that wheat had previously been

strongly infected, which should have caused changes in its

health and physiological status. Besides, STB infection in-

duces changes in the red edge and NIR bands and has also BR

infected wheat. These bands may not be directly used to

detect BR, but to differentiate BR from STB infection.

As discussed above, the waveband selection globally con-

forms to other studies which generally measure the canopy

reflectance in natural conditions by means of spectroradi-

ometer. Such devices offer a higher spectral resolution but do

not allow distinguishing elements of the scene such as leaves.

Hyperspectral imagery can take full advantage of both spec-

tral and spatial resolution but remains complex and costly to

implement in field conditions.

3.5. Image classification based on AUDPC

For STB, Table 8 shows the confusion matrices of AUDPC two-

class discriminations considering separately three arbitrarily

chosen threshold values. At low and intermediate threshold,

STB was not well classified due to a lack of observations below

20 resulting in a low specificity. At high threshold, sensitivity

and specificity had moderately high and comparable values.

STB discrimination reached good accuracy at high threshold

considering the combination of factors affecting wheat in

natural conditions. Predictions and observation were in

moderate agreement for intermediate and high infection in

terms of Cohen’s coefficient.

Although specificity and accuracy were good, SR

discrimination suffered from low sensitivity at every infec-

tion level due to too many points observed above the

threshold values but predicted below (Table 9). As most

points have AUDPC values below 20, the algorithm tends to

optimise its accuracy by predicting systematically low

AUDPC values. The moderate agreement for intermediate

and high infection level (k ¼ 0.56 and 0.60) shows however

potential for discrimination in two classes and discrimina-

tion should be assessed in future years when conditions are

suitable for significant SR infection.

BR classifications were very similar to SR with low sensi-

tivity (Table 10). At low threshold, however, sensitivity and

specificity had similar values but the accuracy was only at

68% with a fair agreement of 0.35. The slightly lower quality

for BR classifications with respect to SR could be partially
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Table 8 e Confusion matrices of the classification with respect to a low (20), intermediate (50) and high (100) AUDPC
threshold value for STB.

AUDPC threshold
20

AUDPC threshold
50

AUDPC threshold
100

Observed below Observed above Observed below Observed above Observed below Observed above

Predicted below 3 2 19 5 60 10

Predicted above 8 100 14 75 11 32

Sensitivity 98% Sensitivity 94% Sensitivity 76%

Specificity 27% Specificity 58% Specificity 85%

Accuracy 91% Accuracy 83% Accuracy 81%

Kappa 0.33 Kappa 0.56 Kappa 0.60

Table 9 e Confusion matrices of the classification with respect to a low (20), intermediate (50) and high (100) AUDPC
threshold value for SR.

AUDPC threshold
20

AUDPC threshold
50

AUDPC threshold
100

Observed below Observed above Observed below Observed above Observed below Observed above

Predicted below 82 13 99 5 107 2

Predicted above 7 10 3 5 1 2

Sensitivity 43% Sensitivity 50% Sensitivity 50%

Specificity 92% Specificity 97% Specificity 99%

Accuracy 82% Accuracy 93% Accuracy 97%

Kappa 0.40 Kappa 0.51 Kappa 0.56

Table 10 e Confusion matrices of the classification with respect to a low (20), intermediate (50) and high (100) AUDPC
threshold value for BR.

AUDPC threshold
20

AUDPC threshold
50

AUDPC threshold
100

Observed below Observed above Observed below Observed above Observed below Observed above

Predicted below 48 10 93 9 105 5

Predicted above 26 28 4 6 0 2

Sensitivity 74% Sensitivity 40% Sensitivity 29%

Specificity 65% Specificity 96% Specificity 100%

Accuracy 68% Accuracy 88% Accuracy 96%

Kappa 0.35 Kappa 0.42 Kappa 0.43
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explained by the rather progressive time evolution of BR

infection.

Currently, AUDPC is not directly used in agricultural

practice. Based on the proposed disease assessment, the de-

cision of fungal treatment application could be linked to such

a variable. However, for the case of STB the disease has to be

treated only if the infection reaches the upper leaves. This

spatial dimension is not assessed by the AUDPC variable. The

classification results based on AUDPC show nonetheless good

potential for high-throughput phenotyping in agronomic

trials.
4. Conclusions

This study needed to take into account the difference in

reflectance due to the cultivar but also the change in reflec-

tance over time as images from flag leaf emergence to grain
development at medium milk were mixed in one dataset.

Despite the combination of stresses observed in natural con-

ditions, some wavebands stood out with 750, 600 and 650 nm

for STB, 700, 750 and 900 nm for SR and 650, 750 and 950 nm for

BR. Moreover, the textural analysis and the segmentation ac-

cording to the illumination conditions have been crucial for

AUDPC regression. For each disease, ANN reached higher

performance than PLSR and proved their efficiency in

resolving complex problems. The selectedwavebands allowed

health status discrimination thanks to ANN at high AUDPC

(100) with an accuracy of 81% (k ¼ 0.60) for STB. SR and BR lack

observations at high AUDPC. Better results can be expected

from further studies with earlier infection at high levels of-

fering a more significant number of contrasting disease

scores.

Regarding agricultural practice, further studies should

focus on disease discrimination based on a disease score

related to curative action. For cultivar phenotyping, the
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assessmentmethod appears truly promising as good accuracy

was reached for STB in difficult conditions. Pixel depth mea-

surement and image co-registration should improve the

regression results and allow disease discrimination especially

between STB and rusts. This study should be repeated in

future years to measure different natural disease develop-

ment scenarios in order to consolidate the relevant

wavebands.
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