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Abstract 11 

In this study a quick and efficient routine procedure for food fraud detection by multiple 12 

adulterants is presented. Non-targeted analysis employs the Near Infrared (NIR) spectroscopy 13 

measurements and one-class classification modeling as the chemometric data processing. The 14 

approach is illustrated by the analysis of a large collection of NIR spectra of soybean meal. The 15 

clean and contaminated samples are studied. The main advantage of the proposed approach is 16 

that it is not aimed at identification and quantification of a specific contaminant. The procedure 17 

is designed in such a way that it detects any deviations from the clean samples. The non-targeted 18 

analysis has its own limit of detection (LoD). In the study we have presented an approach for 19 

LoD assessment. This issue is of great importance for practical applications. The proposed 20 

approach can be applied for other types of feed and food products. 21 

Keywords 22 

melamine, cyanuric acid, non-protein nitrogen contamination, one-class classifier, SIMCA, limit 23 

of detection 24 

1 Introduction 25 

Soybean meal is one of the most important agricultural raw materials and one of the main 26 

ingredients in both feed and food because it is an important source of oil and especially due to its 27 

complete protein profile. This protein content dictates the price of the soybean meal in the 28 

market: the higher the content, the higher the price (Yang, Han, Wang, Li, Fernández Pierna, 29 

Dardenne, & Baeten, 2016). This opens the door to multiple cases of fraud and adulteration of 30 

soybean meal with illegal substances. The most popular and studied case is probably the 31 
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example of melamine (1,3,5-triazine-2,4,6-triamine), a molecule with a high content of Nitrogen 32 

and therefore ideal to boost artificially the protein content of soybean meal (Dorne, Doerge, 33 

Vandenbroeck, Fink-Gremmels, Mennes, Knutsen, Vernazza, Castle, Edler, & Benford, 2013; 34 

Hilts,& Pelletier, 2008). Since 2007, multiple cases of adulterated soybean meal with melamine 35 

have been reported (Andersen, Turnipseed, Karbiwnyk, Clark, Madson, Gieseker, Miller, 36 

Rummel, & Reimschuessel, 2008; Adams, 2008) and the European Commission was obliged to 37 

take measures to ban the import from China of food and feed containing soya and soya products, 38 

after high levels of melamine were found in Chinese soybean meal. To ensure food and feed 39 

safety, many countries set the maximum permitted concentration for melamine in food and 40 

animal feed products at 2.5 mg/kg (except for powdered infant formula where the limit is fixed 41 

to 1 mg/Kg) (Commission Decision, 2008).  42 

Due to the emergency, a large number of targeted analysis methods based on different 43 

platforms for detecting melamine in soybean meal and other food/feed matrices were quickly 44 

developed. These included chromatography-based methods such as high performance liquid 45 

chromatography (HPLC) (Venkatasami, & Sowa, 2010), gas-chromatography mass-46 

spectrometry (GC-MS) (Pan, Wu, Yang, Wang, Shen, & Zhu, 2013) and LC-MS-MS (Filigenzi, 47 

Puschner, Aston, & Poppenga, 2008) or enzyme linked immunosorbent assays (ELISA) (Lei, 48 

Shen, Song, Yang, Chevallier, Haughey, Wang, Sun, & Elliott, 2010) among others. However, 49 

most of those methods are usually time-consuming, expensive, damaging to the sample and need 50 

chemical reagent. Therefore, there is a real need for fast, non-destructive and automatically 51 

controlled screening methods that will guarantee quality and security. In this context, vibrational 52 

spectroscopic methods, such as Near Infrared (NIR) spectroscopy, can play an important role 53 

due to their capacity to be a rapid, non-destructive and non-polluting method that requires 54 

minimal or no sample preparation (Downey, 1996; Blanco, & Villarroya, 2002; Dardenne, & 55 

Baeten, 2002; Baeten, Fernández Pierna, Lecler, Abbas, Vincke, Minet, Vermeulen, & 56 

Dardenne, 2016; Sun, 2018) Many studies have investigated the feasibility of using NIR to 57 

detect melamine (Ferreira, Galão, Pallonea, & Poppi, 2014; Mauer, Chernyshova, Hiatt, 58 

Deering, & Davis, 2009; Balabin, & Smirnov, 2011; Haughey, Graham, Cancouët, & Elliott, 59 

2013; Jawaid, Talpur, Sherazi, Nizamani, & Khaskheli, 2013; Abbas, Lecler, Dardenne, & 60 

Baeten, 2013; Chen, Yang, & Han, 2013; Yang, Wang, Han, Li, & Liu, 2014; Fernández Pierna, 61 

Abbas, Lecler, Hogrel, Dardenne, & Baeten, 2015; Fernández Pierna, Vincke, Baeten, Grelet, 62 

Dehareng, & Dardenne, 2016; Li, Kang, Shi, & Liu, 2016). 63 

Adulterations with new, unknown illegal ingredients continue to occur from time to time. 64 

It is, then, nearly impossible to make an exhaustive analysis of all potential adulterants in 65 
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soybean meal using targeted detection methods with the ever-changing pattern of adulteration. 66 

For this reason, methods able to work in an untargeted way are needed. In recent years, 67 

untargeted detection methods based on NIR spectroscopy have shown great application potential 68 

for detecting contaminants in agro-food products. Non-targeted analysis is an effective tool for 69 

combating food fraud (López, Trullols, Callao, & Ruisánchez, 2014; Baeten, Vermeulen, 70 

Fernández Pierna, & Dardenne, 2014). Using this approach, the product is analyzed as a whole 71 

object. We do not quantify specific adulterants in a product and do not verify whether specific 72 

product characteristics match claims. A similar approach is now popular in pharmaceutical 73 

chemistry, where counterfeit drug detection is often based on the analysis of the whole remedy 74 

profile (e.g. NIR, or Raman spectra), but not on the assessment of an active pharmaceutical 75 

ingredient (API) concentration or on the presence of a specific excipient (Rodionova, Titova, 76 

Balyklova, & Pomerantsev, 2019).  77 

Various analytical methods, such as non-targeted isotope and trace element analysis, 78 

molecular spectroscopy like mid infrared, near infrared and Raman spectroscopy, non-targeted 79 

mass-spectrometry, and many others, are used for food fraud detection. The necessity to use 80 

these methods is primarily caused by the variety of contaminants and by the evident inability to 81 

foresee the type of an adulterant in a future routine testing. Collection of data (spectra or other 82 

fingerprints) yielded in the course of non-targeted analysis is usually rather complex and 83 

therefore it demands special mathematical/statistical processing for extraction of useful 84 

information. A special class of pattern recognition methods, called one-class classifiers (OCC) or 85 

class modeling is used (Rodionova, & Pomerantsev, 2020) for these purposes. The key feature in 86 

implementation of such methods is a set of the objects which effectively represents a class of the 87 

authentic, non-adulterated objects. This class is called the target class.  88 

The goal of the study is the presentation of an approach for food fraud detection that 89 

employs rapid NIR measurements and OCC modeling in the case when adulterants are 90 

numerous. The approach is illustrated by the chemometric analysis of a large collection of NIR 91 

spectra of soybean meals. The clean and contaminated samples are studied. The data driven soft 92 

independent modeling by class analogy (DD-SIMCA) method is used for class modeling. 93 

An additional objective is to develop a novel approach for the assessment of the Limit of 94 

Detection (LoD) in the non-targeted method. This characteristic is of great importance for any 95 

analytical technique since it provides the limits of applicability of the method in practice. To our 96 

knowledge, this is the first attempt to evaluate LoD for a qualitative technique.  97 
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2 Materials and methods 98 

2.1 DD-SIMCA  99 

Data driven SIMCA (DD-SIMCA) (Pomerantsev, & Rodionova, 2014) is a modification of 100 

the well-known SIMCA approach (Wold, 1976). In this technique, the SIMCA model is based 101 

on the principal component analysis (PCA) decomposition (Pearson, 1901; Bro, & Smilde, 102 

2014) of training matrix X 103 

X=TPt +E, (1) 

where, X is the (I×J) matrix of  predictors/fingerprints for I samples described by J variables. 104 

T={ tik} is the (I×A) score matrix, which rows are the coordinates of the projections of data 105 

points on the principal component space.  P is the (J×A) loading matrix, which orthonormal 106 

columns define the orientation of the principal components (PCs). E is the (I×J) residual matrix, 107 

and A is the number of principal components, PCs.The results of decomposition are used for 108 

calculation of two relevant statistics. They are the orthogonal distance (OD) and the score 109 

distance (SD). OD is the squared Euclidian distance between sample i and the scores subspace. It 110 

is calculated as the sum 111 

  i=1,..., I (2) 

of the squared residuals presented in matrix E defined in Eq.(1). SD is the squared Mahalanobis 112 

distance calculated for each sample i by the formula   113 

,  i=1,..., I. (3) 

where tia is an element of matrix T defined in Eq.(1), and  is the eigenvalue. In the 114 

result, each sample can be plotted in the so-called Distance plot in the coordinates q/q0 vs. h/h0. 115 

It has been shown (Pomerantsev, 2008) that both distances are well approximated by the 116 

scaled chi-squared distribution, and the full distance (FD) can be calculated as   117 

 (4) 

where h0 and q0 are the scaling factors, Nh and Nq are the numbers of degrees of freedom (DoF), 118 

and Nf=Nh+Nq. The parameters are considered unknown, and are estimated using the training 119 

dataset. For this reason the approach is called data driven. 120 
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DD-SIMCA establishes the decision rule that determines whether a new sample belongs to 121 

the target class. This is determined by employing a cut-off value 122 

, (5) 

which delineates an acceptance area in the Distance plot. Here χ–2 is the quantile of the chi-123 

squared distribution. Samples for which FD satisfies Eq.(5) are attributed to the target class 124 

(Rodionova, & Pomerantsev, 2020). 125 

2.2 Figures of Merit 126 

Performance of an OCC model is first of all characterized by the ability to correctly 127 

attribute target class samples. The DD-SIMCA method has a possibility to set a priori a desired 128 

risk of the wrong rejection of the target samples using Eq.(5). Parameter α is the type I error, that 129 

is a share of misclassified target samples. The complementary characteristic is model sensitivity 130 

(SEN), the fraction of the correctly classified samples (true positive) from all the samples for the 131 

target class, 132 

, (6) 

Sensitivity is calculated for the target samples separately for the training and test sets. The 133 

consistency between the training and test values of SEN helps to evaluate the complexity of the 134 

model, i.e. select the number of PCs. It is important to note that α-value is selected before the 135 

model development and sensitivity is calculated after that. In case the model complexity is 136 

selected using the results of classification of the target samples only, such an approach is called 137 

rigorous (Rodionova, Oliveri, & Pomerantsev, 2016). In the absence of alien (non-target) classes 138 

this is the only way for validation of the results of classification.  In the absence of alien classes, 139 

it is impossible to estimate the type II error β, which is defined as the error to attribute an alien 140 

object to the target class (false positive). The complimentary characteristic is specificity, SPS, 141 

which is preferably to calculate for each alien class separately. SPS is the fraction of samples 142 

from an alien class, which is correctly classified as the non-member of the target class (true 143 

negative). 144 

, (7) 

If the model complexity and the cut-off level are established using both characteristics, 145 

SENS and SPS, such an approach is called compliant (Rodionova, et al, 2016). Further for the 146 

development of a final model we will use the compliant approach. 147 
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2.3 Dataset description 148 

Dataset Soya comprises 1200 NIR spectra of clean soybean meals at 700 wavelengths 149 

(1100 - 2498 nm).  The samples present the natural variability in the chemical composition and 150 

particle size. These variations are reflected in the NIR spectra of clean soybeans, which also 151 

demonstrate a large variability. This is due to the fact that the dataset used in this study comes 152 

from a large soybean meal dataset comprising spectra measured with different Foss instruments 153 

and coming from all around the world, from different providers and varieties. In the result, the 154 

training set can be viewed as a collection of several subsets, as well as individual extreme 155 

samples. The Soya dataset is divided randomly on the training set of 800 samples and the test set 156 

of 400 samples. In case the number of samples is more than 1000, such an approach is 157 

appropriate. Thus the entire matrix consists of 1200 rows (samples) and 700 columns 158 

(wavelengths). 159 

   160 

2.4 Contaminated samples 161 

118 adulterated samples are prepared using various concentration of melamine (Mel), 162 

cyanuric acid (CA), and their mixtures (Mix). Together with 10 non-contaminated samples they 163 

are used in Validation and Routine datasets.  164 

 165 

Table 1 Validation and Routine datasets 

 Validation set (V) Routine set (R) 

Contamination 
% of contaminant 

added 
Number of 

samples 
% of contaminant 

added 
Number of 

samples 

No adulterant ------ 6 ----- 4 

Melamine (Mel) 0.53-6.00 29 0.53-6.03 11 

Cyanuric acid (CA) 0.50-6.04 31 1.48-5.55 9 

Mel+CA (Mix) 0.50-6.05 34 0.54-2.62 6 

 166 

The Validation set consists of 100 NIR spectra that include 6 clean samples and 94 167 

contaminated samples (columns 1 and 2 in Table 1). This set is used in the compliant approach 168 

for tuning the SIMCA model. 169 

The Routine set consist of thirty NIR spectra of clean and contaminated samples (columns 170 

3 and 4 in Table 1). This set simulates routine testing and its results do not have an influence on 171 

the SIMCA model complexity, and on the selection of the cut-off level. 172 

Details on the procedure of the synthetic samples’ preparation and chemical analysis are 173 

presented in (Abbas, et al, 2013). 174 
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2.5 Spectra acquisition 175 

Spectroscopic analyses of the adulterated samples were performed in duplicate using an 176 

XDS spectrometer (Foss). Spectra were collected between 400 and 2498 nm with an interval of 2 177 

nm and by co-adding 32 scans. Spectra were collected as log 1/R. 178 

2.6 Software 179 

All calculations are performed using Chemometrics Add-In for the Microsoft Excel 180 

(Pomerantsev, 2014) and DD-SIMCA – A MATLAB GUI tool (Zontov, Rodionova, 181 

Kucheryavskiy, & Pomerantsev, 2017).  182 

 183 

3 Results and discussion  184 

3.1 Model complexity 185 

In case only clean soybean samples are analyzed, the SIMCA model with 4 PCs is an 186 

optimal classification. For the selected value of the type I error α=0.01, sensitivity equals 97 % 187 

for the training set, and 98 % for the test set (Fig. 1, the red dashed line). At the same time, 188 

classification of the adulterated samples from the validation set yields rather low specificity, 189 

which equals 85 %. Fourteen contaminated samples are wrongly attributed to the target class. 190 

This demonstrates that the rigorous approach to the model optimization provides a low 191 

specificity. This can be explained by the fact that the model accounts for the main common 192 

properties of a large heterogeneous training set. 193 

 194 

 
Fig. 1. Figures of merit (FoM) for the SIMCA model vs number of PC: 1 - training SEN, 2 - test SEN, 3- 
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SPS s 

 195 

To reach the highest possible model specificity we increase the model complexity till 10 196 

PCs (Fig. 1, the black dashed line). For this model only two adulterated samples (V9 and V10) 197 

are wrongly attributed to the target class. This corresponds to specificity about 98 %. Six clean 198 

samples from the validation set are classified properly.  199 

The selected model is applied to the Routine set to verify how the constructed model 200 

classifies samples in routine testing. Again two samples with a low concentration of 201 

contaminants, R17 and R19, are wrongly attributed to the target class. Fig. 2a represents a 202 

general overview of the classification results for the Validation and Routine sets. Samples are 203 

located in accordance with their SD and OD values (Eqs.(2), (3)). The critical FD is fcrit=13.28 in 204 

accordance with Eq.(5). The greatest FD value 3566.6 is achieved for a sample from the 205 

Validation set; the sample is contaminated with 1.08% of melamine and 3.42 % of cyanuric acid. 206 

Its spectrum is depicted in Fig. 3 (curve 4). The axes in Fig. 2a are logarithmically transformed 207 

to present all the adulterated samples. The general trend reflects the dependence between 208 

contamination and FD –the higher the contamination, the greater FD is, and, respectively, the 209 

farther is the location in the distance plot. Of course, the greatest interest is for the samples 210 

located near the acceptance border. These are the samples with a low level of contamination that 211 

are shown in the inset of Fig. 2a.  212 
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Fig. 2 . The SIMCA results of with PCs=10, α=0.01, presented in Distance plots. 

(a) Validation set (the open yellow squares), Routine set (the open violet circles); the closed violet circle 

stand for misclassified samples; (b) Validation set: Melamine (closed red squares), CA (the open blue 

diamonds), mixtures (the closed bi-colored circle); closed blue diamonds stand for misclassified samples 

 213 

The correspondent part of the Distance plot is shown in Fig. 2b. It presents the Validation 214 

set. The non-contaminated samples (the open diamonds) and the contaminated samples wrongly 215 

attributed to the target set (two closed blue diamonds, V9 and V10) are located inside the 216 

acceptance area bounded by the threshold (the green solid line). All other samples are located 217 

beyond the threshold. As expected, the samples with low concentration of adulterants are harder 218 

to reveal. In Fig. 2b the samples marked as the closed blue diamonds are contaminated by CA 219 

only, the red closed squares stand for the samples adulterated with melamine only, and the 220 

closed bi-colored circles represent the samples with both adulterants mixed. As can be seen the 221 

‘pure’ melamine contamination can be easily discriminated from the clean samples. This cannot 222 

be said about the low CA concentrations (0.5 % CA), nor about the low mixture contaminants 223 

(0.37 % Mel, 0.13 %CA). 224 

The reason why two contaminated samples (V10 and V9 with 0.53 % of CA) are located 225 

inside the acceptance area can be explained as follows. In classifying samples we, in some sense, 226 

assess the main similarity between the spectral characteristics. In our case, the difference 227 

between the clean soybean samples – the blue spectrum, 1, and the green spectrum, 2, in Fig. 3 – 228 

is higher than that for the contaminated sample (the red spectrum 3).  229 

 
Fig. 3. SNV corrected NIR spectra (Absorbance (Log 1/R) versus Wavelength (nm)). Spectra 1 (blue) 

and 2 (green) stand for clean samples, spectra 3 (red) and 4 (pink) stand for contaminates samples 
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 230 

More systematic analysis of limits of detection is presented in the next section. 231 

3.2 Limit of detection 232 

The presented results demonstrate a relation between the adulterant concentrations and the 233 

FD value, though this dependence is not so straightforward. We model this relationship using the 234 

popular response surface technique (Bezerra, Santelli, Oliveira, Villar, & Escaleira, 2008) 235 

utilizing the quadratic response function 236 

 (8) 

where vector z contains the adulterants concentrations: z1=[Mel], z2=[CA]. Variable z0, vector b, 237 

and matrix A comprise six unknown parameters, which are estimated to obtain the best 238 

agreement between the known FD values, f, and the response function, F,   239 

 (9) 

Function F(z) can be used to predict the FD value for the given concentrations of 240 

contaminants.  241 

Considering the whole range of z’s and FDs, we come to the conclusion that the quadratic 242 

function, given in Eq. (8), is inappropriate since the modeled response is highly nonlinear, 243 

exponential, or Gaussian. However, within the range we are mostly interested in, namely, at a 244 

small level of contaminants ([Mel]<1.5, [CA]<1.5), the quadratic model works rather well.       245 

 
Fig. 4. Response function F modeling the FD values. The yellow squares are for the Validation set, the 

violet circles stand for the Routine set. 
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Fig. 4 shows the results of the response modeling. The yellow squares represent the 247 

Validation set that is used for the model training; the violet circles stand for the Routine set that 248 

is utilized for the response model validation; the green line is the trend between F and f. In the 249 

plot we can see the large deviations from the trend. Certainly, they are explained by the high 250 

variations observed in the clean spectra of soybean that have been discussed above.   251 

The obtained function F(z) can be used to calculate the limits of detection (LoD), which 252 

are the Mel and CA concentrations that cannot be revealed by the method presented. The LoD 253 

border is obtained from the following equation  254 

F(Mel, CA) = fcrit (10) 

where fcrit is defined in Eq. (5). The curve that delineates the LoD area is shown in Fig. 5. The 255 

Mel and CA concentrations located below the border cannot be detected.  256 

 
Fig. 5. The LoD border 

 257 

From this plot, we can conclude that adulterations with Mel and CA are not equivalent. The cut-258 

off concentration of CA is about 0.5 %, while for Mel it is much lower, about 0.07%.  This 259 

means that the proposed method, combination of NIR spectroscopy and SIMCA, has higher 260 

specificity related to melamine than to cyanuric acid. Certainly, the LoD border given in Fig. 5 261 

should not be considered exactly due to the mentioned variability in the spectra of clean soybean 262 

samples. Unfortunately we do not have samples with very low concentrations of contaminants 263 

for testing the proposed LoD. 264 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.02 0.04 0.06 0.08 0.10

CA

Mel



12 
 

3.3 Comments on the Soya dataset 265 

In trying to develop a universal classification model we compiled a Soya dataset with very 266 

different soybean samples. From the statistical point of view the Soya dataset is not an entire set, 267 

but a collection of several, at least two, different subsets, and maybe several outliers. Applying 268 

the distance plot and the recently proposed sequential outlier detection procedure (Rodionova, & 269 

Pomerantsev, 2020), it is possible to extract the core group consisting of 1076 samples. The 270 

remaining 124 samples are considered as outliers. In Fig. 3a sample #1 comes from the main 271 

group and sample #2 belongs to the outliers. At the same time, it should be underlined that 272 

model based on the core samples wrongly classifies half of the clean samples in the Validation 273 

set as the extraneous ones, but the gain in the model specificity is rather small.  We always have 274 

a trade-off between higher sensitivity and high specificity. The appropriate decision is to collect 275 

a representative set of samples, which are similar to the outlier subset and develop two models 276 

for revealing the contaminated samples. 277 

4 Conclusions  278 

A quick and efficient routine procedure for revealing adulterated soybean meal is 279 

presented. It is based on NIR spectra acquisition and chemometric data processing using the DD-280 

SIMCA method. The procedure is based on the collection of a large dataset of clean soybean 281 

meal spectra and on a small set of synthesized samples. The procedure provides a possibility to 282 

reveal melamine, cyanuric acid and mixed contaminants simultaneously. 283 

The main advantage of the proposed approach is that it is not aimed at identification and 284 

quantification of a specific contaminant, as is usually done for revealing melamine in various 285 

products. The procedure is designed in such a way that it detects any deviations from the clean 286 

samples. This allows us to foresee that the procedure will be valid in cases where some new and 287 

unexpected contaminant is used. Of course, this is provided a signal from this contaminant 288 

presents in the acquired spectra. The same approach can be applied for other types of feed and 289 

food products. 290 

A non-targeted analysis has its own limit of detection. In the study we have presented the 291 

approach for LoD assessment. This issue is of great importance for practical applications. 292 
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Highlights 

• Non-targeted analysis for revealing multiple adulterants is proposed  

• NIR spectroscopy and data driven SIMCA used for detection fraud of soybean meal 

• Contaminants of Melamine and Cyanuric acid are analyzed 

• Risk-based modeling is applied 

• The assessment of the limit of detection for multiple adulterants is presented 
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