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The melamine scandal indicates that traditional targeted detection methods only detect the specifically listed
forms of contamination, which leads to the failure to identify new adulterants in time. In order to deal with con-
tinually changing forms of adulterations in food and feed and make up for the inadequacy of targeted detection
methods, an untargeted detectionmethod based on local anomaly detection (LAD) using near infrared (NIR) im-
aging was examined in this study. In the LADmethod, with a particular size of window filter and at a 99% level of
confidence, a specific value ofGlobal H (GH, modifiedMahalanobis distance) canbeused as a threshold for anom-
alous spectra detection and quantitative analysis. The results showed an acceptable performance for the detec-
tion of contaminations with the advantage of no need of building a ‘clean’ library. And, a high coefficient of
determination (R2LAD=0.9984 and R2PLS-DA=0.9978) for the quantitative analysis ofmelaminewith a limit of de-
tection lower than 0.01% was obtained. This indicates that the new strategy of untargeted detection has the po-
tential to move from passive to active for food and feed safety control.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Food and feed safety is closely related to the quality of life and phys-
ical health of human beings. Consumers have been paying more and
more attention to food and feed safety following numerous safety scan-
dals in recent years. In 2007, pet food and animal feed contamination by
melamine was confirmed and reported by US scientists, leading to the
sickness and death of numerous pets (dogs and cats) [1]. In 2008, a
more serious milk powder contamination scandal occurred in China,
killing six infants andmakingmore than 52,000 children ill [2,3]. Subse-
quently, melaminewas detected inmany food and feed products,which
were also being exported to many countries worldwide. In addition,
many researchers had shown that melamine contamination in milk
andmilk productsmight be related not only to direct external additions,
but also to adulteration in animal feeds [4–7]. To ensure food and feed
safety, many countries set the maximum permitted concentration for
melamine in food and feed products at 2.5 mg/kg [8].
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After the melamine scandal, various targeted analysis methods
based on different platforms for detecting melamine were developed
quickly. These included chromatography-based methods such as high
performance liquid chromatography (HPLC) [9], gas-chromatography
mass-spectrometry (GC–MS) [10] and LC-MS-MS [11], enzyme linked
immunosorbent assays (ELISA) [12]; optical sensing technologies such
as near- andmid-infrared (NIR/MIR) spectroscopy [13,14], Raman spec-
troscopy [15,16] and near-infrared and Raman imaging [17–20]. How-
ever, adulterations with new, unknown illegal ingredients continue to
occur from time to time. If it relies on routine targetedmethods, analysis
will be trapped in a cycle of adulterations, followed by targeted analysis,
followed by new adulterations, and the adulterations could spiral out of
control [21,22]. A review of thewholemelamine scandal shows that one
main contributory factor was that melamine was not specifically listed
as an illegal additive, which underscores the vulnerability and deficien-
cies of targeted methods. A new strategy of untargeted detection
methods, which can respond quickly to suspicious contaminations by
screening out all anomalous spectra, is therefore urgently required to
deal with the ever-changing pattern of adulteration in food and feed
products, in order to keep people from harm [23].

In recent years, untargeted detection methods based on NIR spec-
troscopy have shown great application potential for detecting contami-
nants in agro-food products. In 2012, Moore et al. [23] proposed to
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standardize the non-targeted screening method for detecting adultera-
tions in skim milk powder using NIR spectroscopy and chemometrics;
in 2013, one-class partial least squares (OCPLS) classifier [24] combined
with NIR spectroscopy was investigated as a tool for untargeted detec-
tion of illegal adulterations in Chinese glutinous rice flour (GRF) [22],
Chinese propolis [25] and yogurt [21]; in 2015, Fernández Pierna et al.
[26] used multivariate moving window PCA for the untargeted detec-
tion of contaminants in milk using vibrational spectroscopy; in 2016,
Shen et al. [19] proposed a non-targeted adulterant screening method
based on the NIR microscopic spectral library of soybean meal to guar-
antee the quality of soybean meal, and in 2017, Fu et al. developed an
untargeted screening method to detect maleic acid in cassava starch
by Fourier transformnear-infrared spectroscopy [27]. All thementioned
untargeted detection methods needed to collect representative ‘clean’
samples in order to set up a reference library or build statistical models
based on the measured fingerprints, the unknown new sample could
then be characterized and its purity estimated; however, for most of
the mentioned untargeted methods it was almost impossible to quan-
tify the amount of adulterants.

In the present study, a novel untargeted adulterant screening
method based on local anomaly detection (LAD) by near-infrared
(NIR) imaging is examined, which has a significant difference with our
previous study [19] where the method needed a ‘clean’ and representa-
tive spectra library. The main drawback of that methodology was that
sometimes it was not possible to build such library, and then the
method failed. The method proposed in this study can also screen out
the suspicious spectra without having a spectra library previously
built. In this work, soybean meal has been used as one most of the im-
portant cereal products and in order to deal with the ever-changing pat-
tern of adulteration in food and feed products. It is nearly impossible to
make an exhaustive analysis of all potential adulterants in food and feed
using targeted detection methods with the ever-changing pattern of
adulteration. To a certain extent, methods based on vibrational spec-
troscopy as the NIR microscopy and hyperspectral imaging are more
suitable than GC or LC-MS techniques for untargeted detection, espe-
cially for solid samples. To investigate the performance of the LAD
method in distinguishing adulterants and quantitative analysis, one
sample with soybean meal and melamine arranged in special shape,
21 adulterated samples (prepared using three kinds of yogurt soybean
meal and six kinds of non-protein nitrogen) and 7 adulterated soybean
meal samples with different percentages of melamine were prepared,
respectively. The melamine concentrations selected were well above
the common international limit of 2.5 mg/kg. The choice of a higher
range was motivated by the fact that deliberate adulteration of feed/
food with melamine should be economically viable and then mass con-
tamination is expected. For ensuring the proposed LADmethod could be
used for analyzing the images acquired by different instruments, two
different NIR imaging systems were used to collect spectral images in
this study. All the adulterated samples were also analyzed by a targeted
detection method based on partial least squares discriminant analysis
(PLS-DA) and the results were compared.

2. Materials and methods

2.1. Samples collection

Three different soybean meal samples (hulls, full-fat and de-hulled
soybean meal) were selected from the sample library at the China Agri-
cultural University, one pure soybean meal sample was collected from
the sample library of the Valorisation of Agricultural Products Depart-
ment of theWalloon Agricultural Research Centre (CRA-W). Melamine,
cyanuric acid, urea, and di-ammonium phosphate (DAP) were pur-
chased from the Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Biuret was bought from the Tianjin Fuchen chemical reagents
factory (Tianjin, China). Mono-ammonium phosphate (MAP) was pur-
chased from Beijing Chemical Reagent Company (Beijing, China).
2.2. Sample preparation

All the soybean meal samples were ground until they could pass
through a 0.5-mm square mesh using a Retsch mill (Ultra centrifugal
Mill ZM100; Retsch GmbH, Haan, Germany). Three different sample
sets (A, B and C) were prepared in this study. One sample (set
A) consisted of pure soybean meal and melamine arranged in a special
shape, as indicated in Fig. 1A, was used to verify the LAD method. Set
B: Two sets of 21 adulterated samples were prepared as described in
Table 1, in set 1, each soybean meal sample was adulterated with one
type of non-protein nitrogen at 0.5% (w/w), and in set 2, each soybean
meal sample was adulterated with six types of non-protein nitrogen si-
multaneously, each at 0.5% (w/w). Set C: Seven adulterated soybean
meal samples with different concentrations of melamine (0.01%,
0.05%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% (w/w)) were prepared using the
soybeanmeal sample from the CRA-W, as shown in Table 2. All the sam-
ples of Set B and Cwere prepared in the laboratory using amixer (REAX
20/8; Heidolph, Schwabach, Germany). In order to obtain sufficient ho-
mogeneity, we prepared the various materials by stepwise, diluting the
contaminant with the soybean meal so that, in each dilution step, the
ratio of the 2 different materials to be mixed did not exceed a factor of
3 [28].

2.3. Apparatus and data collection

Two different NIR imaging systems were used in this work. All the
samples of set A and B were scanned using a Fourier transform infrared
(FT-IR) imaging system (Spotlight 400 FTIR Imaging system,
PerkinElmer Ltd., Beaconsfield, Bucks, UK). The instrument was
equipped with a mercury cadmium telluride (MCT) line array detector,
allowing the collection of spectra from arbitrary spatial regions with a
high spectral resolution. A CCD detector collected a visible image from
the same spatial region as the NIR microscopic image. Each sample
was spread on the Teflon Spectralon plate with a height of approxi-
mately 1 mm, and then the sample surface was smoothed. The NIR mi-
croscopic image scanning area of the set A was 5000 μm× 5000 μm, the
scanning areas of three pure samples (hulls, full-fat and de-hulled soy-
beanmeal), set 1 and set 2 from set Bwere of 5000 μm×5000 μm, 5000
μm×5000 μmand 8750 μm×8750 μm, respectively. The spatial resolu-
tion was 25 μm× 25 μm, and each spectrum was computed at 32 cm−1

resolution across the wavenumber range 7800–4000 cm−1 by combin-
ing 8 scans.

All the samples of set C and one melamine sample were scanned
using a line-scan NIR hyperspectral or push-broom imaging system
from BurgerMetrics SIA (Riga, Latvia) combined with a conveyor belt,
for better and faster image acquisition. The acquisition was carried out
using HyperProVB software from Burger Metrics SIA. In order to get
high quality of images, the sample was spread on the conveyor belt to
have a smooth surface. The conveyor belt speed was fixed at 145
μm s−1, and the spatial resolution was 30 μm, using a macro-lens at
4× magnification. All the images consisted of 200 lines of 320 pixels ac-
quired at 209wavelength channels (1100–2400 nmat 6.3 nm intervals;
i.e. 64,000 spectra by image). Each sample was divided into three parts
and seven images were scanned for each part, then 21 images were ob-
tained for each sample in total. The surface of all the scanned samples
should be flat.

2.4. Local anomaly detection (LAD) method and judgment criteria

In this study, the LADmethod was applied to detect suspicious non-
soybean meal ingredients in the NIR microscopic images. The LAD
method used a continuous-level sliding local window filter, which
moved one pixel at a time from the top left corner to the bottom right
corner, to analyze every pixel in the NIR microscopic image. In each
local window, the pixel under test (the central pixel in the window)
was regarded as a new unknown sample and the neighboring pixels



Fig. 1. (A) Preparation of sample set A, melamine was arranged in the white area in the image, (B) the detection results of sample set A by LAD method.

Table 1
Description of the sample set A.

Sample ID Mixing amount (%, w/w)

De-hulled Full-fat Hulls Urea Melamine MAPa DAPb Cyanuric acid Biuret

Set 1

1 99.5 – – 0.5 – – – – –
2 99.5 – – – 0.5 – – – –
3 99.5 – – – – 0.5 – – –
4 99.5 – – – – – 0.5 – –
5 99.5 – – – – – – 0.5 –
6 99.5 – – – – – – – 0.5
7 – 99.5 – 0.5 – – – – –
8 – 99.5 – – 0.5 – – – –
9 – 99.5 – – – 0.5 – – –
10 – 99.5 – – – – 0.5 – –
11 – 99.5 – – – – – 0.5 –
12 – 99.5 – – – – – – 0.5
13 – – 99.5 0.5 – – – – –
14 – – 99.5 – 0.5 – – – –
15 – – 99.5 – – 0.5 – – –
16 – – 99.5 – – – 0.5 – –
17 – – 99.5 – – – – 0.5 –
18 – – 99.5 – – – – – 0.5

Set 2 19 97 – – 0.5 0.5 0.5 0.5 0.5 0.5
20 – 97 – 0.5 0.5 0.5 0.5 0.5 0.5
21 – – 97 0.5 0.5 0.5 0.5 0.5 0.5

a MAP: mono-ammonium phosphate.
b DAP: di-ammonium phosphate.
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Table 2
Description of the sample set B.

Sample ID Mixing amount (%, w/w)

Soybean meal Melamine

1 99.99 0.01
2 99.95 0.05
3 99.90 0.10
4 99.50 0.50
5 99.00 1.00
6 98.50 1.50
7 98.00 2.00
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were the calibration set. Multivariate distancemeasuring computations
could then be used to assess whether the central pixel was an outlier in
the current local window. Here, the modified Mahalanobis distance
known as Global H (GH) (which was preferable to the Euclidean dis-
tance (ED) for measuring the suitability of samples for inclusion in the
calibration population) was calculated for each sliding local window
[29,30]. In order to resolve overlapped spectra, increase spectral resolu-
tion and reduce scattering effects, all the spectra used in this studywere
pre-treated with 1st derivative Savitzky-Golay and standard normal
variate (SNV).GHwas calculated according to Eqs. (1) and (2) as follows
[19,31]:

GH ¼ H2

f
ð1Þ

H2 ¼ M−S
� �

� V−1 � M−S
� �0

ð2Þ

Here S is the n × f score matrix of the current local window calcu-
lated by principal component algorithm (PCA), n is the number of spec-
tra in the current window and f is the number of principal components
selected. V is the covariancematrix ofmatrix S.M is the PCA score (1× f)
of the pixel under test.

According toWhitfield et al. [32], the GH criterion for deciding if the
pixel under test belongs to the currentwindowdepends on the number
of samples and the dimensions used. From a theoretical Mahalanobis
distance criterion, it has been established that P ∗ H2 can have an F-
distribution with f and (n − f + 1) degrees of freedom, where P = (n
− f + 1) / (n ∗ f). It is therefore possible to obtain a reasonable GH
threshold with a fixed level of confidence according to Eqs. (3) and (4):

P � H2 ¼ Fα f ;n− fþ1ð Þ ð3Þ

GHthreshold ¼ Fα f ;n− fþ1ð Þ
P � f

ð4Þ

where Fα(f,n−f+1) is the upper 100 ∗α% critical point of the F-distribution
with (f, n − f + 1) degrees of freedom.

Then, all the spectra with a GH value bigger than threshold will be
screened and classified by k-means clustering, and the similarity be-
tween screened spectra and pure samples will be calculated for further
analysis to avoid false judgment.

2.5. Problems in LAD method and solutions

In Du et al. [33], the LAD method was applied in NIR hyperspectral
remote sensing imaging and some problems, which are common to
the strategy proposed in this paper, were found, namely, the multi-
pixel targets in the local window and the absence of edge detection.

2.5.1. Deal with multi-pixel targets in the local window
The adulterated components with various particle sizes and shapes

usually occupied a small fraction of pixels in the NIR microscopic
image. Some small particles might occupy only one or less than one
pixel, called a single-pixel target, but others occupied not just one
pixel in the NIR microscopic image, but multiple particles gathered to-
gether; known as multi-pixel targets. The distribution of target pixels
has a great influence on the LAD method, and in particular these
multi-pixel targets. An example is provided to illuminate the two
cases in Fig. 2A, in which a 5 ∗ 5 sliding window filter (the red box)
has been used to detect contaminants (white areas) in a simulated
NIR microscopic image. With the local window filter moving in the
image, the single-pixel/multi-pixel target will be the central pixel
under test or the neighboring pixels as a calibration set in one window.
The single-pixel target is easy to detect with sufficient ‘clean’ neighbor-
ing pixels in this window, and its existence has practically no impact on
the detection of other ‘clean’ pixels in related windows. However, the
multi-pixel target will lead to unsatisfactory local distribution which
does not meet the basic requirements for outlier detection using the
GH criterion. The ‘clean’ pixel will still be an outlier when the number
of anomalous pixels are greater than the ‘clean’ pixels in one local win-
dow. To deal with this situation, all the pixels in one NIR microscopic
image were arranged completely randomly to generate a randomized
image, in which almost all the multi-pixels would be divided into single
pixels and evenly distributed in the image [34], as shown in Fig. 2B. In
this way, as the random image exhibits a totally random distribution,
it can be regarded as a homogeneity reference [34–36]. After every
pixel had been analyzed by the LAD method, the randomized image
will be recovered and suspicious sites will be visualized on the original
image according to the GH criterion. All anomalous spectra will also be
screened out and displayed in several groups.

2.5.2. Absence of edge detection
The LAD method used a continuous-level sliding local window filter

for the detection of the central pixel in the current window. This poten-
tiallymeans that an indefinite quantity of pixels on the four edges of the
image will be undetectable due to the use of a different size of window
filter, resulting in loss of information. It could lead to false judgments if
the target pixels only exist on the edge of the image. In order to avoid
this situation, edge expansion was a critical step in the LAD method. If
the window filter size was w ∗ w, (w − 1) / 2 layers of pixels were ex-
panded on each edge of the image, corresponding to the blue area
shown in Fig. 2C. There would be a small percentage of target pixels in
an NIR microscopic image of a low-level contamination sample, so the
pixels used for edge expansion were randomly selected from the origi-
nal NIR microscopic image.

In summary, the procedure of the proposed LADmethod is as shown
in Fig. 3, and about 7min would be taken for the analysis of each image.

2.6. Partial least squares discriminant analysis (PLS-DA)

As a comparison of the detection results of the LADmethod, PLS-DA,
which is a most commonly used supervised classification method, is
used for the detection of melamine in soybean meal samples. PLS-DA
is a variation of the partial least squares (PLS) regression algorithm for
discriminant analysis, which can seek a direct relationship between
the spectral data and the reference values or categorical variables to
classify samples into predefined groups. In this work, the representative
pure soybean meal spectra and pure melamine spectra were extracted
from theNIR hyperspectral images of soybeanmeal andmelamine sam-
ples (set B), respectively, and used as the training set of PLS-DA model.
All the samples are assigned a dummy variable (0 and 1) as the categor-
ical variable. The PLS-DAmodel is built with 10-fold cross validation and
the number of latent variables is chosen corresponding to theminimum
classification error.

2.7. Quantitative analysis

In order to evaluate the quantitative analysis performance obtained
with the LAD method, the relationships between the numbers of pixels



Fig. 2. The 5 ∗ 5 sliding window filter (the red box) used by the LAD method in a simulated image. (A) Simulated original image with single-pixel and multi-pixel targets (white areas);
(B) the randomized image generated by the original image with almost no multi-pixel targets; (C) edge expansion of image (blue areas).
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detected as ‘contaminant’ by both LAD andPLS-DAmethods and the ref-
erence values (known added concentrations) were studied,
respectively.

All the data are processed using Matlab version 7.14 (The
Mathworks, Inc., Natick,MA, USA)with the PLS_Toolbox version 8.0 (Ei-
genvector Research, Wenatchee, WA, USA) in this study.
3. Results and discussion

3.1. Analysis of pure samples

3.1.1. NIR spectra of pure soybean meal and non-protein nitrogen samples
The mean spectra of the NIR images of pure soybean meal samples

(de-hulled, hulls and full-fat soybean meal) and non-protein nitrogen
(melamine, cyanuric acid, urea, biuret, MAP and DAP) were shown in
Fig. 4. Comparison and analysis identified obvious differences in the
spectrum of hulls from those of de-hulled and full-fat soybean meal
samples around absorbance bands at 4762 cm−1 (O\\H bend and
C\\O stretch combination) and at 4252 cm−1 (CH2 bend second over-
tone) associated with cellulose; this was consistent with the hulls
high cellulose content. The spectra of de-hulled and full-fat soybean
meal had common protein absorbance bands around 6667 cm−1

(N\\H stretch first overtone), 4850 cm−1 (N\\H bend second overtone
or N\\H bend and stretch combination) and 4587 cm−1 (C\\H stretch
and C_O stretch combination); the difference between them was that
full-fat soybean meal showed obvious fat absorption around
5787 cm−1 and 4261 cm−1 [37,38]. In this study, six kinds of non-
Fig. 3. Flowchart of t
protein nitrogen (melamine, cyanuric acid, urea, biuret, MAP and
DAP) were selected as examples of contamination in adulterated soy-
beanmeal samples. The spectra of the six kinds of non-protein nitrogen
could be used as a reference to verify the anomalous spectra screened
out by the LAD method in adulterated samples. As shown in Fig. 4,
each non-protein nitrogen sample had its own near infrared character-
istic absorption peaks and could be easily distinguished from soybean
meal spectra.
3.1.2. LAD analysis of pure soybean meal sample
Firstly, we should know that the composition of each kind of pure

soybean meal sample is not single. There is a small amount of soybean
hulls exist in de-hulled and full-fat samples, and soy embryo can also
be found in soybean hulls sample. Then, the LAD method using a 5
∗ 5 pixels window filter and four PCA component scores was applied
to the NIR microscopic images of pure soybean meal samples. Different
numbers of anomalous spectra (the spectra andmixed spectra of the in-
gredient with low content in pure samples, not contaminant) were de-
tected and classified into four groups by the k-means method in each
kind of pure soybean meal sample. For further analysis and judgment,
the mean spectrum of each group and the mean spectrum of pure sam-
ples were compared; the results are shown in Table S-1 and Fig. 5. As
can be seen in Fig. 5A, themean spectra of groups 1, 2 and 4were clearly
different from the de-hulled sample and the mean spectrum of group 3
around absorbance bands at 4762 cm−1. Groups 2 and 4 showed high
correlation coefficient with hulls, indicating that hulls remained in the
de-hulled sample in the production process. However, the spectra of
he LAD method.

Image of Fig. 2
Image of Fig. 3
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group 1 without any obvious absorption peak around 4726 cm−1, was
similar neither to the de-hulled sample nor to the hulls, and should be
the resultant mixed spectra of de-hulled soybean meal and hulls. This
was because each pixel collected by the FT-NIR imaging system was
the mixed spectrum resulting from the constituent materials within
the pixel. Analysis of Fig. 5B and Table S-1 showed that hulls were also
present in the full-fat sample. Similarly, soy embryos inevitably ap-
peared in the hulls sample because of the processing technology. As
shown in Fig. 5C and Table S-1, the anomalous spectra of groups 1 and
2 detected in the hulls sample showed broad flat absorption peaks
around 4726 cm−1, which were similar to the anomalous spectra of
groups 1 and 2 in the de-hulled sample and of groups 1 and 3 in the
full-fat sample, indicating that the presence of soy embryo residue in
hulls. All the results indicated that, LAD methods can screen out a
small amount of spectra which are different with the spectra of the
main ingredient in the sample. Through comparison and analysis, we
can know that the anomalous spectra detected in pure samples are
the spectra of the low content ingredient which could not be regarded
as the spectra of contaminants in future analysis.

3.2. LAD analysis of adulterated soybean meal samples

3.2.1. Optimization of moving window filter size
In the LAD method, every pixel in the images was analyzed with a

window filter moving from the top left corner to the bottom right cor-
ner. For the calculation of GH between the central pixel and the mean
spectrum of the current window, each P ∗ H2 had an F-distribution
with f and (n− f+ 1) degrees of freedom, so the GH criterion changed
as the size of themovingwindow differed. Here, three different sizes (5
∗ 5 pixels, 7 ∗ 7 pixels and 9 ∗ 9 pixels) of window were used for
untargeted detection of the same image using the GH criterion based
on four PC scores with a 99% level of confidence; the threshold of GH
was 4.90, 4.00 and 3.70 respectively. As can be seen in Fig. 6A–C, 801,
1361 and 1438 anomalous spectra were screened out using window
Fig. 6. The results of LADmethods with different size of moving window filter for the same ima
values, (b) the frequency distribution ofGH values, (c) visualization of different types of spectra
specific GH threshold, (e), (f), (g) and (h) are four groups of spectra from (d) separated by k-m
whole image and the blue spectrum is the mean of current group.
filter sizes of 5 ∗ 5 pixels, 7 ∗ 7 pixels and 9 ∗ 9 pixels respectively. The
anomalous spectra detected in each image were then classified into
four groups. These are displayed in subfigures (e), (f), (g) and (h) and
the location of each abnormal spectrum in the original image is shown
in subfigure (c) using the same color as its spectra group. For further
analysis and judgment of each group of anomalous spectra, the correla-
tion coefficient between the mean spectra of each group obtained by
different window sizes and the mean spectra of each pure sample
(hulls, full-fat and de-hulled) were calculated. These are recorded in
Table 3. In each subfigure (e) from Fig. 6, the difference between spectra
of group 1 and themean spectra of three kinds of pure samples in Fig. 4
were big enough to be determined as the contamination's spectrum by
the naked eye, while all correlation coefficient valueswere less than 0.5.
The distribution of contaminations (group 1) is shown in subfigure
(c) with light blue pixels; further analysis found that brown pixels
ge: (A) 5 ∗ 5 pixels, (B) 7 ∗ 7 pixels and (C) 9 ∗ 9 pixels. Subfigure (a) image showed by GH
screened out by specific GH threshold and k-means cluster, (d) all spectra screened out by
eans method. In each subfigure (e), (f), (g) and (h), the red spectrum is the mean of the

Image of Fig. 4
Image of Fig. 5
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Image of Fig. 6


Table 3
The correlation coefficient between the mean spectra of each group obtained by different window sizes and the mean spectra of each pure sample.

Pure sample Groups from 5 ∗ 5 pixels Groups from 7 ∗ 7 pixels Groups from 9 ∗ 9 pixels

1 2 3 4 1 2 3 4 1 2 3 4

De-hulled 0.39 0.86 0.94 0.81 0.46 0.86 0.94 0.93 0.46 0.86 0.94 0.94
Full-fat 0.32 0.60 0.71 0.66 0.38 0.61 0.70 0.76 0.38 0.61 0.71 0.76
Hulls 0.22 0.99 0.95 0.62 0.29 0.99 0.95 0.74 0.29 0.99 0.96 0.75
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from group 4 usually appeared around light blue pixels (group 1)which
indicated that the spectra of group 4 were mixed spectra of contamina-
tions and soybeanmeal, as could also be verified through the correlation
coefficient. As the size ofwindow filter increased,more andmoremixed
spectra contained a small amount of exception information that was be
screened out, and the correlation coefficient values between group 4
and the de-hulled sample increased from 0.81 to 0.94, making group 4
more similar to the de-hulled sample. However, a difference could still
be found around 5000 cm−1, where the anomalous spectra had a
small absorption peak, whereas the spectra of soybean meal did not
exist. Through the correlation coefficient of group 2 and group 3 in
Table 3 and the comparison of anomalous spectra screened out from
pure samples in Fig. 4, these two groups appear to be the spectra of
hulls and the mixed spectra as detected in pure samples, i.e. anomalous
spectra of the sample itself rather than contaminants. In view of the cal-
culation speed and the difficulty of identifying the spectra of contami-
nants, a 5 ∗ 5 pixels window filter was selected and used in this study.

3.2.2. Verification of the LAD method
In order to verify the proposed LAD method, sample set A consisted

of pure soybean meal and melamine arranged in a special shape was
prepared and analyzed by LAD in this study. As shown in Fig. 1B, all
the anomalous spectra screened out by LAD were classified into 4
groups and shown in subfigure (e)–(f). It was obvious that the spectra
of group 1 (light blue points in subfigure (c)) and group 3 (orange
points in subfigure (c)) appeared in the center of the detected area by
LAD were from melamine, and the anomalous spectra of group 2
(green points in subfigure (c)) could be determined as mixed spectra
of soybean meal and melamine according to their locations. According
to the analysis results of pure soybean meal sample by LAD method,
the spectra of group 4 should be the spectra of hulls existed in soybean
meal sample. Through comparison, we could find the location of de-
tected melamine by LAD (light blue, orange and green points in
subfigure (c)) was consistent with the arranged place of melamine
(white area in Fig. 1A), indicating that LAD was a feasible and effective
untargeted method.

3.2.3. LAD analysis of adulterated samples with single non-protein nitrogen
In order to test the identification feasibility of contaminations in soy-

bean meal of the untargeted LAD method, 18 samples adulterated with
single non-protein nitrogen were prepared using three kinds of soybean
meal and six kinds of non-protein nitrogen according to the mixing
ratio in Table 1. All the adulterated samples were analyzed using a 5
∗ 5 pixels window filter, and all the results are shown in Fig. S-1,
Tables 4 and S-2. As can be seen in Fig. S-1, hundreds of anomalous spec-
tra were screened out in each adulterated sample (sample 1 to sample
18) using the untargeted LAD method proposed in this study. By analyz-
ing pure samples, we knew that hulls would inevitably appear in the de-
hulled and full-fat samples, and soy embryo are always found in hulls
samples, the spectra of which were anomalous but unrelated to the con-
taminations to be detected. To distinguish contaminations from anoma-
lous spectra, all the anomalous spectra screened out from each
adulterated sample were classified into four groups by the k-means
method and each anomalous spectrum was visualized in subfigure
(c) using the color of its group in subfigure (e), (f), (g) and
(h) respectively. The correlation coefficient between the mean spectra
of each group and the mean spectra of each pure sample were then
calculated and recorded in Table S-2. Generally speaking, a small number
of pure spectra of contaminations could be collected by the FT-NIR imag-
ing system using a 25 μm× 25 μm spatial resolution in the center of the
contamination's particle, and the difference between these and the spec-
tra of the pure sample was usually big enough to be recognized by the
naked eye. For example, the spectra of group 1 (light blue) in subfigure
(e) from Fig. S-1 sample 1, showed obviously different absorption peaks
from the mean spectrum of the whole image (red), and could be easily
determined as contaminations, and the correlation coefficient between
the mean spectrum of group 1 and the spectrum of hulls, full-fat and
de-hulled was 0.34, 0.47 and 0.56 respectively. Further analysis found
that most of the brown spectra from group 4 appeared around the light
blue (group 1) pixels in subfigure (c), which indicated that the spectra
of group 4 were mixed spectra of contaminations and soybean meal,
while the correlation coefficient between the mean spectrum of group 4
and hulls, full-fat and de-hulled was 0.67, 0.75 and 0.89 respectively.
The spectra of group 2 and group 3 were similar with anomalous spectra
detected in the pure de-hulled sample as shown in Fig. 5, which could be
classified as the spectra andmixed spectra of hulls by naked eye andusing
the correlation coefficients in Table S-2. Ultimately, therefore, 377 spectra
of contaminations and 555 anomalous spectra of hulls were screened out
in sample 1 by the LADmethod. The rest of the adulterated samples were
also analyzed in this way and the results of LAD method were compared
with theGHmethod based on the spectral library and the PLS-DAmethod
published in 2016 [19]. Through the comparisons in Table 4, we found
that the LAD method could screen out more spectra of contaminations
than the GH and the PLS-DAmethods in most of the samples adulterated
with 0.5% single non-protein nitrogen, whichmeant that the LADmethod
as untargeted detection pattern needs neither a spectral library nor a dis-
criminant analysis model and is more rigorous and effective for contami-
nation detection in soybean meal samples.

As referred to in previous work [19], DAP exposed to the air gradu-
ally loses ammonia and is converted intoMAP, whichmakes it impossi-
ble for the PLS-DA model to recognize. However, such situation would
not have a negative impact on untargeted detection methods, which
would be able to screen out all the suspicious spectra without knowing
what kind of illegal ingredient had been added to the soybean meal in
advance. Sample 16 is a typical case, in which only 5 spectra of DAP
were detected by the PLS-DAmethod,while 227 and193 spectra of con-
taminations were screened out by the LAD and GH methods respec-
tively. This shows that the untargeted detection method is more
advantageous in adulteration detection, without any concern about
the effect of the deterioration of adulterants.
3.2.4. LAD analysis of adulterated samples with multiple non-protein
nitrogen

The LAD method has performed well in the analysis of single non-
protein nitrogen adulterated samples, so soybeanmeal samples adulter-
ated with six kinds of non-protein nitrogen at the same time were also
prepared to test the LAD method in this study. As shown in Fig. S-1
(sample 19–21), all the anomalous spectra were classified into eight
groups. Combining the spectra in subfigure (d)–(l) and the correlation
coefficient in Table S-4, the spectra of contaminations could be easily
identified and visualized on the image (subfigure (c)), which suggested
that the LAD approach was also effective in the face of complex
adulteration.



Table 4
The LAD analysis results of adulterated samples set A.

Sample ID Total numbera Number of contaminant spectra

LAD method GH [19] PLS-DA [19]

Set 1 1 40,000 377 165 85
2 40,000 216 98 64
3 40,000 211 87 60
4 40,000 276 82 63
5 40,000 302 117 29
6 40,000 309 181 120
7 40,000 330 126 100
8 40,000 557 341 270
9 40,000 112 171 43
10 40,000 176 132 72
11 40,000 150 123 100
12 40,000 91 105 36
13 40,000 173 110 84
14 40,000 346 190 151
15 40,000 111 119 58
16 40,000 227 193 5
17 40,000 163 20 9
18 40,000 223 216 125

Set 2 19 122,500 1214 1549 1264
20 122,500 678 1781 814
21 122,500 772 1181 1803

a Total number of spectra from one image.
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In summary, the LADmethod proposed in this study showed accept-
able good performance for the detection of 0.5% (w/w) single and 3.0%
(w/w) multiple non-protein nitrogen adulteration in soybean meal
samples. The untargeted detection pattern without the need for either
Fig. 7.Regression lines between the concentrations of addedmelamine and the number of
pixels detected as melamine by: (A) LAD and (B) PLS-DA.
a spectral library or a discriminant analysis model showed great appli-
cation potential for preventing the emergence of new adulterations to
guarantee food and feed safety.

3.2.5. Repeatability of the LAD method
Because of the randomization step during data processing, the re-

producibility of the LAD method was tested by analyzing one image
by ten repetitions. As shown in Table S-3, the mean number of contam-
inant spectra screened out by the LAD method was 205.1 with a stan-
dard deviation (SD) of 7.46 and a relative standard deviation (RSD) of
3.64%, suggesting that the LAD method had good repeatability and
could be used as an untargeted detection method for the detection of
contaminants in soybean meal.

3.2.6. Quantitative performance of the LAD and PLS-DA method
The adulterated samples of set C were prepared to evaluate the

quantitative performance of the LAD method. For this, all the samples
of this set were analyzed by both LAD and PLS-DAmethods, the number
of detected contaminant pixels of each part is shown in Table S-4, which
corresponds to the mean value of the seven images, and the mean
values and standard deviation of the three parts of each sample were
calculated. Both liner and quadratic regression equations between the
real percentages of added contaminant and the pixels detected as mel-
amine by LAD and PLS-DAmethodswere studied, respectively. As could
be seen in Fig. 7(A) and (B), the quadratic regression equations (red)
showed better performance than liner regression equations (black),
and both quadratic regression lines showed a high R2 (R2LAD = 0.9984
and R2PLS-DA = 0.9978), which indicates that the LAD method has a sim-
ilar performance as PLS-DA for quantitative assessment of melamine as
adulterant concentrations in soybean meal. It could be seen from
Table S-4 that samples contaminated at 0.01% level could still be de-
tected indicating that the LOD (limit of detection) of the LAD method
can be lower than 0.01%.

4. Conclusion

In this study, six kinds of contaminants and two different NIR imag-
ing instruments were used to evaluate the performance of the new
untargeted LAD method to detect and semi-quantify adulterants. The
satisfactory results indicated that the untargeted LAD method could be
used for the detection of many kinds of contaminants, and could also
be applied to process different NIR images obtained by different types
of NIR imaging instruments. The detection pattern of the untargeted
LAD method, whose the LOD can be lower than 0.01%, should be ex-
tended to detect contaminants in other sample matrices, and there is
reason to hope that this will make it possible to identify suspicious con-
taminants as early as possible to keep human being from injury and
move food and feed safety control from passive to active.
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