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A B S T R A C T   

Winter cover crops, used as green manure, can supply up to 45 units of nitrogen per hectare to the following 
summer crops. In order to contribute to the establishment of the nitrogen balance sheet for fertilisation 
recommendation of subsequent main crop at field scale, this supply is currently derived from the biomass pro
duction, classically estimated visually using 3 classes: 0–1, 1–3, 3+ tons of dry matter per hectare (Mg DM ha− 1). 
The capabilities of Sentinel-2 satellite data to retrieve an operator-independent winter cover crop biomass have 
been assessed. Biomass samples were collected in 1 m quadrats for various types of winter cover fields classically 
used in Belgium (mustard, phacelia, oat and a range of mixed cover), in 2016 and 2017 (yield between 0.1 to 5 
tons of dry matter per hectare). Empirical relationships between the winter cover crop biomass and a wide range 
of vegetation indices (VIs) derived from Sentinel-2 have been defined, and the most performant VI identified. For 
pure stands of winter cover crops, the cross-validation RMSE (CVRMSE) of the best model is 0.36 Mg DM ha− 1 for 
mustard and 0.3 Mg DM ha− 1 for phacelia. The CVRMSE observed for mixed stands, around 0.61 Mg DM ha− 1, is 
roughly two times higher than the CVRMSE observed for pure stands. The added-value of objective satellite- 
based estimation of winter cover biomass was also assessed by comparing respective estimations with regards 
to an independent reference dataset made of sample measurements on the ground. Models based on Earth 
observation showed better results than farmer visual assessment for mustard crops, and were as good as farmers 
for phacelia crops.   

1. Introduction 

In intensive cropping systems, nitrogen (N) recommendation 
methods for main crops have been based for years on the provisional N 
balance sheet approach, at field scale. The presence of a winter cover 
crop, used as a green manure/catch crop in the crop rotation, has a 
significant impact on the N balance. In addition to its positive impact on 
soil (organic matter, erosion, biological activity, etc.), winter cover crop 
limits nitrate leaching and makes it available for the subsequent main 
crop (Besnard and Le Gall, 2000; Justes et al., 2012), supplying, for 
instance, up to 45 kg N ha− 1 when considering a mustard crop (Sinapis 
alba sp.) with a biomass production of more than 3 tons of dry matter per 
hectare (Mg DM ha− 1) (Cugnon et al., 2013). The level of this effect is 
linked, in particular, to the winter cover crop type and its biomass 
production (Destain et al., 2010; Kuo et al., 1996). In order to use 

specific framework like the Requaferti model, the biomass production is 
estimated visually through farmers or practitioners according to 3 
classes: 0 to 1 (weak), 1 to 3 (medium) and more than 3 (high) tons of 
dry matter per hectare (Mg DM ha− 1) (Cugnon et al., 2013). 

According to the local technical and extension service structures 
delivering N recommendation to farmers, collecting such information is 
not easy and often inaccurate. This situation is exacerbated by the 
evolution of agriculture in Northwestern European regions: a decreasing 
number of farmers, an increase in farm size (EUROSTAT, 2018), a loss of 
farmer historical knowledge regarding the specific field characteristics 
(due to increasing field renting and cropping operations more and more 
dedicated to external enterprises). In addition, some observations are 
just made by visual assessment (e.g. cover crop biomass level), 
enhancing the variability of the data accuracy. 

Facing the resulting operator-dependent nature of the information to 
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be collected, there is a real need to develop new global tools to support 
the collection of accurate and operator-independent information, aim
ing to contribute to relevant N recommendations. The recent launch of 
new European satellites such as Sentinel-2a/2b (S2), largely designed 
for agriculture monitoring at field scale, open new opportunities to 
reach such an objective (ESA, 2012). Their spatial, temporal, spectral 
and radiometric resolutions, together with their systematic acquisition 
strategy and free-access policy, are expected to supply enhanced Earth 
observation products (Jaramaz et al., 2013) triggering the development 
of a new approach for N-recommendation. 

Vegetation indices (VIs) are widely used for the estimation of vege
tation biomass or other biophysical variables (BVs) such as leaf area 
index (LAI) (Kalaitzidis et al., 2009; Xue and Su, 2017). Vina et al. 
(2011) demonstrate the possibility to estimate maize and soybean LAI 
using one unique VI derived from close range and aircraft mounted 
sensor images, despite their contrasting vegetation structure. Frampton 
et al. (2013) assessed the capacity of S2 to retrieve crops LAI, leaf 
chlorophyll concentration and canopy chlorophyll content (CCC), 
through their relationship with several VIs. Clevers et al. (2017) showed 
that potato LAI and CCC can be estimated accurately with S2 10 m bands 
only, while Delegido et al. (2011) proved the importance of the 20 m S2 
red-edge (RE) bands for the estimation of LAI and CCC of numerous crop 
types. 

More specifically, several studies have shown the potential for 
remote sensing (RS) to retrieve winter cover crop biomass, through the 
relationship between VIs and the biomass, using a proximal sensor such 

as cropscan (Prabhakara et al., 2015), sensor mounted on unmanned 
aerial vehicle (Hunt et al., 2013; Yuan et al., 2019) or SPOT-5 satellite 
sensor (Hively et al., 2009). These studies considered exclusively gra
minaceous winter cover crop like wheat, barley, rye or ryegrass, used as 
main crops after the winter season, and, except for Prabhakara et al. 
(2015) who also used a RE band, the VIs calculated are limited to the use 
of green, red, and near infrared (NIR), showing good results until 1 to 
2 Mg DM ha− 1 and saturation issues for higher biomass. 

This paper aims at assessing the capabilities of S2 data to retrieve 
‘Belgian’ winter cover crop biomass production. The cover crops 
considered can reach biomass up to 5 Mg DM ha− 1 and are pure stand 
mustard (Sinapis alba sp.), phacelia (Phacelia tanacetifolia sp.) and oat 
(Avena sativa L.) crops, and different types of mixed cover crops (two to 
four different species). Empirical relationships between the winter cover 
crop biomass and 73 VIs have been established from the blue, green, red, 
three RE, two NIR and two short-wave infrared (SWIR) bands. In order 
to quantify the RS added-value with regards to visual farmer-based 
estimation, biomass estimation obtained from satellite RS data and 
from visual assessment have both been compared with reference field 
measurements. 

2. Material and methods 

2.1. Location and types of collected data 

The field data collected in this study concerned winter cover crop 

Fig. 1. Location of the areas of interest (AOI) for winter cover crop species identification and biomass sampling campaign in 2016 and 2017 (continuous line) and for 
winter crop species identification and plant height measurement in 2017 (dashed line). The Belgian agricultural regions containing these AOI are mentioned. 
(Projected coordinate reference system: WGS 84/UTM zone 31N). 
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species identification, biomass sampling and plant height measurement. 
In 2016 and 2017, species identification and biomass samples were 
collected along with height measurement (only in 2017), in the vicinity 
of Gembloux (loamy soils; continuous line area in Fig. 1). In 2017, 
winter cover crop species identification and plant height measurements 
were collected in four additional areas, distributed in contrasting 
Belgian agricultural regions differing for pedo-climatic conditions 
(dashed line area in Fig. 1) and including sandy-loamy, loamy and stony- 
loamy soils. The choice of these additional areas in 2017 was linked to 
two factors: the importance of the area covered by winter cover crops 
within the different Belgian agricultural regions and related legislative 
management restrictions (i.e. authorized winter cover crop burial date 
that can differ between regions, (SPW, 2017)). 

2.2. Field data sampling procedures 

2.2.1. Biomass sampling 
The first biomass sampling campaign was organised in November 

2016. This campaign only focused on white mustard (Sinapis alba sp.), 
widely used as a winter cover crop in Belgium. Twenty-three fields 
presenting visually differing levels of aerial biomass had been selected. 
Four aerial biomass samples (geolocalized with a hand-held GPS device) 
had been collected per field in 1 sqm quadrats on the 8th and 10th of 
November 2016. Each sampling point was located at least 50 m from the 
field border and in a homogeneous biomass zone (visually assessed). The 
flowering percentage was visually assessed and classified (0–25, 25–50, 
50–75, 75–100% of the plants in bloom). Collected biomass samples 
were directly sealed in plastic bags, to avoid water losses, and then fresh 
weighed in the laboratory. A representative subsample of about 500 g 
was oven-dried at constant temperature (80 ◦C) for a minimum of 72 h 
up to constant weight, to determine the dry matter content (%), and to 
derive the dry matter biomass (DMB) production (Mg DM ha− 1). 

A second campaign was organised in October 2017 using the same 
protocol. The biomass sampling also concerned white mustard, and was 
extended to three additional winter cover crop types: phacelia (Phacelia 
tanacetifolia sp.), oat (Avena sativa L.) and mixed cover crops. Mixed 
cover fields correspond, most of the time, to ecological focus areas as 
defined by the Common Agricultural Policy (SPW, 2017). These are 
composed of two to four different species, which are mainly phacelia, 
mustard, oat and fodder radish, or also vetch, sunflower, clover, field 
bean and pea. Forty-two fields were sampled from the 15th to the 31th of 
October 2017. The number of samples per field ranged from 4 to 8. In 
total, 180 biomass samples were collected. The number of samples for 
white mustard, phacelia, oat and mixed cover was respectively equal to 
36, 42, 20 and 82. The botanical composition of each mixed cover was 
recorded. 

2.2.2. Biomass proxy 
The vegetation height can be used as a biomass proxy. It was 

measured during the 2017 campaign at each of the 180 biomass sam
pling points, and also in 136 other winter cover crop fields (7, 10,14 & 
22nd of November 2017), in the four areas of interest (AOIs) described 
in Fig. 1. In these 136 winter cover crop fields, the height was measured 
four times next to a geolocated point, located at least at 50 m from the 
field boundary. 

2.2.3. Visual estimation of biomass classes 
The farmer-based estimation of biomass for provisional N balance 

sheet method is in essence subjective and qualitative: 0 to 1 (weak), 1 to 
3 (medium) and more than 3 (high) Mg DM ha− 1. It is also subject to 
uncertainties, due to the time lag between the cover crop ploughing, 
generally operated in November/December, and farmer estimation 
usually 2 to 4 months later, when the provisional N balance sheet is 
established. To assess the added value of RS data, expected to be more 
objective and accurate, the farmers visual estimation of these classes was 
collected between the end of February and mid April 2017 and 2018 for 

most of the fields sampled in autumn 2016 and 2017 respectively. 

2.3. Meteorological data 

Daily meteorological data from the Ernage weather station, 
belonging to the Belgian Royal Meteorological Institute, located in the 
sampling AOI, were retrieved for September, October and November 
2016 and 2017. The minimum temperature at 1.5 m, and grass mini
mum temperature at 10 cm height, were used to assess the winter cover 
crops growing conditions. 

2.4. Satellite data 

Five 2016 and eight 2017 S2 optical images with few or no clouds 
(less than 20% in the sampling AOI) were selected over the winter cover 
crops growing periods, i.e. between mid-August and the end of 
November (Table 1). Images were atmospherically corrected using the 
OPERA algorithm processing (Sterckx et al., 2015). The 10 and 20 m 
resolution reflectances of the S2 multi spectral instrument were used for 
calculation of the VIs list in appendix A. This selection results from a 
thorough literature review and regroups VIs related to crop biomass or 
crop biomass proxies with a view to assess multiple possible combina
tions of bands allowed by S2. In particular, as suggested by Jaramaz 
et al. (2013) and Delegido et al. (2011), the use of the RE bands should 
enhance the estimation of crop biophysical parameters, like LAI, which 
is directly related to aerial biomass. Three BVs were also considered: the 
fraction of photosynthetically active radiation (fAPAR), the fraction of 
vegetation cover (fCOVER) and LAI, retrieved through the inversion of 
the BV-NET radiative transfer model using height bands of S2: green 
(B03), red (B04), RE (B05, B06, B07), NIR (B8A) and SWIR (B11, B12), 
as described by Weiss and Baret (2016). 

2.5. Methods 

The methodology developed in this study, aiming to estimate winter 
cover crops biomass (classes) based on S2 data has been motivated, as 
aforementioned, by a supposed misestimation of this information by 
farmers. In order to check this assumption, field-based estimates of 
winter cover DM biomass classes were first compared to the a posteriori 
estimates provided by farmers. This assumption being validated, the 
next step aimed at the identification of the best combinations of VIs and 
statistical models for estimating winter cover biomass using a cross- 
validation approach. The selected relationships were afterwards also 
validated on an independent data set (biomass proxy). The added value 
of using satellite data was finally assessed based on a comparison with 
farmers visual assessment. Because of satellite images availability issues 
in 2016 (detailed in the results section), 2016 data were only used in the 
first step of the methodology. 

2.5.1. Fields and farmers data comparison 
Sampled DMB data were averaged by field and categorised in the 

three classical classes described above, in order to compare it with the 
farmer’s assessment through a confusion matrix. 

2.5.2. Data extraction and VIs calculation 
Using samples GPS positions, 10 and 20 m S2 reflectances, as well as 

BVs, shadow mask and cloud mask were extracted from the selected 
images using a buffer of 20 m radius around the sampling point, 

Table 1 
Sentinel 2 optical images selection for years 2016 and 2017.  

Year Operational S2 Selected dates 

2016 S2A 08–16, 08–26, 09–08, 09–25, 10–08, 10–15, 12–04 
2017 S2A &S2B 08–29, 09–25, 10–15, 10–18, 10–30, 11–07, 11–17, 

11–22  
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resulting in a mean value for each sample from 12 to 14 pixels at 10 m 
resolution and 2 to 4 pixels at 20 m resolution. Data was filtered using 
the cloud and shadow masks. S2 images were checked at the sampling 
points positions to apply a manual correction of these masks, and ensure 
any later issues linked to misclassified masks pixels. VIs (Table A.4) were 
then computed. Considering the non-systematic coincidence between 
the sampling and the S2 acquisition dates and a time lag of 5 days 
maximum, VIs and BVs values have been estimated for each sampling 
date, based on linear regressions between the two surrounding dates. 

2.5.3. Assessment of the relationships between VI/BV values and DMB 
A visual assessment of the VI – DMB relationships tend to show a 

saturation of VI/BV values at high biomass. Several models and vari
ables transformation have been considered for assessing the relationship 
between VI/BV and DMB (Table 2). For each relationship, the coefficient 
of determination (R2) and the root mean square error (RMSE) were 
retrieved. In order to better evaluate the strength of the relationships 
between the remotely-sensed VI/BV and the field data, a 10-fold cross- 
validation has been used and the cross-validation RMSE (CVRMSE) 
computed. This was applied to the whole dataset (mixed, phacelia, 
mustard and oat) and separately on the four cover crop types. The 
possible effect of flowering on the defined relationships was investi
gated. The models with the lower CVRMSE were selected, and the time 
series of the VIs/BVs used in these models, visually assessed. 

As a saturation in the selected VIs/BVs was still noticed, the two VIs 
approach developed by Nguy-Robertson et al. (2012) for LAI estimation 
issues, was tested to mitigate this limitation. Data set was divided into 
two groups based on observed biomass: lower and higher than 

2 Mg DM ha− 1. The choice of this DMB value to separate the two groups 
was based on a visual assessment of the first approach VI/BV – DMB 
relationships saturation. The same methodology as described above was 
applied to both groups separately. In the results, the first approach (one 
VI) and the second approach (two VIs) are called respectively approach 
1 and approach 2. 

2.5.4. Model validation with biomass proxy 
Relationships between DMB and crop height have been established 

per crop type based on 2017 field data. The quality of each model was 
assessed by a 10-fold CVRMSE. These models were used to estimate the 
DMB for the 136 fields where only height measurements were taken in 
2017. These estimated DMB were used as validation data sets. S2 data 
were extracted and interpolated (at the height measurement dates) in 
the same way as already described above (but only with one geolocated 
point per field). For each cover crop type, the best VI value-DMB model 
selected was applied to predict the response value and then the valida
tion RMSE was calculated. 

2.5.5. RS data added value assessment 
Farmers providing an estimation of biomass classes at field level, 

reflectance data extracted at this level and the VIs corresponding to the 
best models previously identified, have been computed for the selection 
of satellite images available for mid-October to mid-November and 
filtered using the cloud/shadow masks (at the field level). For each field, 
reduced with an inner buffer of 15 meters to avoid border effects and 
shadows, these models have been applied considering the maximum VI 
value reached over this period in order to get the DMB value and its class 
considered in the provisional N balance sheet. The choice of considering 
the maximum VI values has been guided by the fact that the biomass 
estimation provided by farmers corresponds to the maximal observed 
situation, and by the a priori positive relationships of the considered 
models. The biomass classes estimated by farmers and those based on 
satellite data have been compared to the observed biomass classes 
through an error matrix. The comparison of the true positive rates, and 
accuracy, allowed an assessment of the added value of remotely-sensed 
estimation of biomass class compared to the estimation provided by 
farmers. 

Table 2 
Models tested for the relation between the vegetation index value (x) and the dry 
matter biomass per hectare (y).  

Model Transformed variable for 
linearisation 

Formula 

Linear regression / y = a + b . x 
Order 2 polynomial 

regression 
/ y = a + b . x + c . x 

Linear regression x y = a + b . exp(x) 
Linear regression x y = a + b . x 
Exponential model y y = a . ebx ⇔ ln(y) = ln 

(a) + b . x 
Power model y and x y = a . xb ⇔ ln(y) = ln 

(a) + b . ln(x)  

Fig. 2. Distribution of sampled dry matter biomass per winter cover crop type and per year.  
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3. Results 

3.1. Winter cover crop biomass assessment 

3.1.1. Distribution of the samples 
Distribution of sampled biomasses per crop type is presented in Fig. 2 

for both years. Although all the 3 biomass classes considered in the 
provisional N balance sheet are represented, most of the samples belong 
to the intermediary class (1-3 Mg DM ha− 1) whatever the winter cover 
crop type and the year. An exception can be, however, observed for pure 
stands of oats represented by a limited number of samples all belonging 
to the lowest biomass class (< 1 Mg DM ha− 1). For this reason, this 
winter cover crop type was not considered separately in our analysis but 
is still included in what is called later the full category, including the 
whole dataset. 

3.1.2. DMB estimation by farmers 
As far as samples are considered as representing the monitored fields, 

comparisons of sampled and farmers-estimated biomass classes (Fig. 3) 
show an obvious overestimation of biomass classes by farmers. The 
overall accuracy is equal to 63% (12 fields correctly classified over 19) 
and 77% (27 fields correctly classified over 35) respectively for 2016 
and 2017. True positive rates are, respectively for the three classes, in 
2016, 0, 53, 11%, and in 2017 14, 49, 14%. These classification errors 

justify the objectives followed in this paper. 

3.1.3. Satellite data availability and meteorological conditions 
Fig. 4 presents the time series of the satellite images used in this 

study, the air temperatures at 1.5 m and grass minimum temperature at 
10 cm for both years. A low availability of usable images can be clearly 
observed for 2016. This low availability is linked to the frequent cloudy 
conditions met during this period, and the fact that Sentinel-2B, 
launched in March 2017, was not yet available. No valid images were 
available between the 15th of October and the 4th of December 2016. 
Considering that samples were collected on the 8th and 10 November 
2016, the number of days between image acquisition and sampling dates 
is important, varying between 24 and 28 days. 

Walloon legislation authorises the destruction of winter cover crops 
from the 15th of November (SPW, 2017). S2 images acquired on the 4th 
of December 2016 allowed assessment that only 6 of the 23 fields had 
not yet been destroyed (the other 17 parcels presenting reflectances 
characteristic of bare soil). According to Labreuche (2009), the tem
perature at 2 m height inducing critical freezing damage is between − 5 
and − 10 ◦C for mustard. Fig. 4 can show that this threshold was reached, 
after the sampling dates, at the end of November. It can therefore be 
assumed that the vegetation in the 6 remaining parcels has been clearly 
impacted by frost. Estimating a VI value at sampling dates based on 
usable S2 images, acquired before and after these dates, is therefore not 

Fig. 3. 2016 and 2017 error matrix of the farmers biomass class assessment (whole field) with sample-based biomass class as reference value (samples average).  

Fig. 4. 2016 and 2017 timelines of used Sentinel-2 images (vertical lines), biomass sampling dates (diamond) and evolution of the minimum temperature in the 
sampling area of Gembloux (black line =minimum temperature under shelter at 1.5 m, dash line = minimum temperature at 10 cm on grass). Vertical dash lines for 
each figure = Legal dates for end of sowing and start of destruction of winter cover crop in Wallonia. 
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Fig. 5. Based on 10 fold cross-validation RMSE, top 5 of the models tested (highlighted bars) for the 2017 whole dataset (full), for mixed cover, for mustard and for 
phacelia. The italic black number is the R2 of the model. 

Fig. 6. Models ranking by cross-validation RMSE (CVRMSE) for each category (only situations with a CVRMSE lower than 1 are presented) on 2017 data. Total 
number of models tested per category is 456 (combination of 76 VIs/BVs with 6 different model types). The solid lines represent the minimum observed CVRMSE 
values, the dashed lines this minimum value + 0.1 Mg DM ha− 1 and the ranking position of the model just under this threshold, the dotted lines the CVRMSE for the 
bests simple linear regressions and the corresponding ranking position. Note that for Mustard, the vertical dotted and dashed lines are at the same ranking position. 
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possible in 2016. 
In 2017, the occurrence of usable images is higher, and allows esti

mation of VI value at sampling date. The time lag between the sampling 
and the satellite acquisitions is a maximum of 5 days. The relationships 
between DMB and VI values is therefore only assessed for 2017 data. 

3.1.4. Identification of the best models (approach 1) per winter cover 
category 

In this study, a model should be understood as a combination of a 
model type (e.g. linear regression) and a VI (e.g. MTCI). In total, more 
than 450 models were tested (6 model types × 76 VIs/BVs). The selec
tion of the five best models per winter cover crop category, based on the 
10-fold CVRMSE, is presented in Fig. 5. Best models usually consider an 
exponential (y = aebx) or a power (y = axb) relationship (Figs. 5 and 6). 
For pure stands, the CVRMSE of these 5 best models varies between 0.36 
and 0.38 Mg DM ha− 1 for mustard, and between 0.3 and 

0.31 Mg DM ha− 1 for phacelia. R2 is around 0.9 for mustard and 0.75 for 
phacelia. According to CVRMSE, phacelia models perform better than 
mustard models while it is the contrary according to R2. This is 
explained by the high difference of DMB average, influencing the 
calculation of R2: 1.99 Mg DM ha− 1 for mustard and 1.57 Mg DM ha− 1 

for phacelia. The CVRMSE observed for mixed category and full cate
gory, around 0.6 Mg DM ha− 1, is roughly two times higher than the 
CVRMSE observed for pure stands. R2 is around 0.67 for both categories. 
Average DMB value is 1.60 Mg DM ha− 1 for mixed stands and 
1.53 Mg DM ha− 1 for full category. This is comparable to the phacelia 
category DMB average. 

Fig. 6 shows that the difference of CVRMSE between models is 
sometimes limited. For instance, in the full category, the best model 
presents a CVRMSE of 0.59 but 37 models presenting a CVRMSE lower 
than 0.69 Mg DM ha− 1 (0.59+0.10) can be identified representing 8.1% 
of the models tested. For mixed category, 23% of models have a 

Fig. 7. Best VI-DM biomass model by category (highlighted diagonal of graphs) on 2017 data. CVI, MTCI8a and RENDVI85 used with an exponential model. MSI 
used with a power model. 
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CVRMSE of less than 0.7 Mg DM ha− 1 (the CVRMSE of the best model 
being equal to 0.6). For mustard, 3.5% of the models have a CVRMSE 
lower than 0.46 Mg DM ha− 1 and for phacelia, 23.7% less than 
0.4 Mg DM ha− 1. This figure shows also that the linearisation method
ology is useful particularly for mustard and full categories where the 
difference between the best model and the best simple linear model 
reaches nearby 0.1 Mg DM ha− 1. This difference is less pronounced for 
phacelia (0.06) and even less for mixed category (0.03). For this last 
category, a simple linear regression could be used instead of the expo
nential model. 

Within each category, the top five (Fig. 5) highlights two (for full) to 
five (for mixed) VIs that are strongly correlated. Except for the NDReSw, 
all indices use the B8 or B8A bands (NIR) in combination with one or two 
other bands. The other bands used are B03 (green), B04 (red), B05 (RE), 

B06 (RE), B11 (SWIR), B12 (SWIR). The MSI and the NDWI1 are in the 
top 5 for three of the four categories. Both of them are calculated with a 
combination of B8A and B11 S2 bands. 

3.1.5. Best model by category (approach 1) 
The best model for mustard, phacelia and mixed cover use respec

tively the Chlorophyll Vegetation Index (CVI, from Vincini et al., 2008 
In: Clevers et al., 2017), the MERIS Terrestrial Chlorophyll Index 
(MTCI8a, using B8A instead of B6, from Dash and Curran, 2004 In: Vina 
et al., 2011) and one of the multiple possibilities of Red-Edge Normal
ized Difference Vegetation Index (RENDVI85, suggested by Delegido 
et al., 2011) with an exponential model and have respectively a CVRMSE 
of 0.36, 0.30 and 0.61 Mg DM ha− 1 (Fig. 7). The corresponding linear 
relationships, which involve a transformation on y, have a R2 

Fig. 8. Best VI-DM biomass model with flowering percentage indications for mustard and mixed categories on 2017 data (no flowering was observed in the sampled 
Phacelia fields). 

Fig. 9. DM biomass classes mean VI value time series, for each winter cover crop type (2017 data). The VIs are the four best VIs selected for each of the four cover 
crop types (mustard: CVI, phacelia: MTCI8a, mixed: RENDVI85, full: MSI). The NDVI is added to allow a comparison with this widely used VI. Error bar = standard 
deviation. White area = sampling period. Dashed lines = Legal dates for end of sowing and start of destruction for winter cover crops in Wallonia. 
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respectively equal to 0.92, 0.78 and 0.66. Among these three VIs, CVI is 
the more specific to one category according to the low R2 when it is used 
for another category than mustard. MTCI8a is less specific and 
RENDVI85 even less. For the full category, the best model is a power 
model based on the Moisture Stress Index (MSI, from Rock et al., 1985 
In: Radoux et al., 2016). This model presents a CVRMSE of 
0.59 Mg DM ha− 1 and the linear relationship, which involves both a 
transformation on x and y, has a R2 of 0.69. Contrary to the three pre
vious VIs mentioned, MSI shows a negative correlation with the DMB. 
When applied on the other category, MSI is as good as CVI for mustard, 
and performant for mixed category, while it shows bad results for 
Phacelia compared to MTCI8a of even RENDVI85. 

Several studies have highlighted the influence of flowering on re
flectances, and subsequently on VIs (Fang et al., 2016; Sulik and Long, 
2015). For mustard (Fig. 8), a relationship between the vegetation indice 
(CVI) values and the flowering percentage seems to be observed; higher 

CVI values corresponding to higher flowering percentage, but also to 
higher biomass. This trend is less significant for mixed covers. Flowering 
is mainly regulated by environmental factors, such as photoperiod or 
vernalization, but can also be induced by stress factors such as nitrogen 
deficiency (Takeno, 2016). A relationship between biomass and flow
ering is therefore theoretically not straightforward. Our available data 
set (especially the lack of data with a high flowering percentage and low 
biomass) does not unfortunately allow us to determine the possible ef
fect of biomass and flowering on reflectances. 

As depicted in Fig. 9, the CVI allow a good discrimination of biomass 
classes during the sampling period, while for the other three indices a 
saturation seems to be observed making discrimination of high classes 
more difficult (especially for MSI). These indices seem, however, to 
allow a better discrimination of classes earlier in the growing season. 
The first value in the CVI time series seems aberrant for the first two 
biomass classes. At this time, the ground is most probably bare or almost 

Fig. 10. Best VI-DMB models by category (according to the 10 folds cross-validation RMSE), considering the separation of biomass in two classes (inferior to 
2 Mg DM ha− 1 to the left, and superior to 2 Mg DM ha− 1 in the middle) resulting in the use of two different indices and relationships by category winter cover crop 
(approach 2). Exponential model for mustard (a), phacelia (b) and mixed (c), using respectively MTCI & RedSWIR1, MTCI & PSRI, FAPAR & GI. Power model for full 
category (d), using MSAVI2 & NHI. 

Fig. 11. Relationship between the vegetation height and the dry matter biomass for different winter cover crop types (2017 data). CVRMSE = mean RMSE from 10 
folds cross-validation. 
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bare, which is confirmed by the NDVI time series observation. The CVI 
seems to be impacted by bare soil and a sufficient cover of the ground is 
necessary to obtain a reliable biomass estimation. 

The error bar shows the standard deviation. Globally, it is higher for 
low biomass classes and lower for high biomass classes. This can be 
linked to the saturation but not exclusively. For the mixed category, the 
very high standard deviation value for the lowest biomass class is linked 
to the distribution of a group of biomass samples that include biomass 
near 0 Mg DM ha− 1 (Fig. 7), which present reflectance close to a bare 
soil, inducing a high variability inside the 0-1 Mg DM ha− 1 class. 

3.1.6. Exploring the possibility to use two VIs (approach 2) 
Fig. 10 presents the best models identified for each considered winter 

cover crop category when relationships between observed biomasses 
and VIs are defined considering separately 2 groups of biomass (lower 
and higher than 2 Mg DM ha− 1). CVRMSE for this second approach can 
be considered as the average value between CVRMSEinf and 
CVRMSEsup. This approach allows us to reach significantly lower 
CVRMSE than the previous one. It decreases from 0.36 to 
0.21 Mg DM ha− 1 for mustard, from 0.30 to 0.22 Mg DM ha− 1 for pha
celia, from 0.61 to 0.37 Mg DM ha− 1 for mixed cover and from 0.59 to 
0.38 Mg DM ha− 1 for full category. CVRMSEinf is quite similar between 

the four categories, suggesting that it would be performant to use a 
unique relation for all crop types for biomasses under 2 Mg DM ha− 1. 
CVRMSEsup results show that higher biomass values remain not well 
estimated for mixed and full categories. The high biomass are negatively 
correlated with the selected VI for phacelia, mixed and full categories. 

3.2. Validation using biomass proxy data 

The relationship between the vegetation height and the DMB for the 
different winter crop types is presented in Fig. 11. The R2 (the CVRMSE) 
is equal to 0.91 (0.39 Mg DM ha− 1), 0.87 (0.28 Mg DM ha− 1) and 0.72 
(0.59 Mg DM ha− 1) respectively, for mustard, phacelia and mixed winter 
cover. Considering the weakest relationship observed for mixed winter 
cover crops, the validation based on biomass has not been performed for 
this crop type. 

Results of this validation for mustard and phacelia are presented in 
Fig. 12. Some data were out of the range of the models for mustard (grey 
points on the figure). Three low biomass values were linked to a lower 
height than the height-DMB model min height value and three high 
biomass values were linked to a higher CVI value than the VI-DMB 
model max CVI value. The validation RMSE decreases from 0.95 to 
0.58 Mg DM ha− 1 when putting these 6 values apart. Considering the 

a b Fig. 12. Validation of the mustard (a) and 
phacelia (b) VI-DM biomass models using 
truth biomass estimated by height measure
ment. Black line = identity line (y = x). For 
mustard, two 10 folds cross-validation RMSE 
values are displayed: one for the whole data
set available (grey), the other excluding the 
data out of models range values (three low 
biomass values linked to a lower height than 
height-DM biomass model min value and 
three high biomass values linked to a higher 
CVI than the VI-DM biomass model max 
value).   

Fig. 13. Error matrix of winter cover crop types biomass values at field level distributed over different classes, assessed from farmer-based or RS models-based 
approaches and compared to the distribution over similar classes of sample-based biomass values considered as a reference (2017 data). 
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second RMSE for mustard, the validation RMSE for both crop types 
(0.62 Mg DM ha− 1 for phacelia) is roughly twice higher than the model 
CVRMSE. Nevertheless, knowing the error induced by the estimation of 
biomass through vegetation height, these results are consistent with the 
VI-DMB models performances. For mustard, the model seems to over
estimate low biomass value (under 1 Mg DM ha− 1) but this can be linked 
to an underestimation of biomass by the height-DMB model. For pha
celia, the range of validation data is limited and the high biomass values 
appear more challenging for the model. 

3.3. Added-value of the RS models 

Comparisons of biomass values distributed over different classes at 
field level, estimated on the one hand either on farmers-based obser
vations or based on selected RS-models, and on the other hand with the 
plant sample-based estimations, are presented in Fig. 13. Biomass values 
estimated by farmers or RS-based models tend to be generally higher 
than the ones estimated from plant sample-based measurements, 
considered as the reference method. This is particularly true for the 
mixed winter cover crops and the full data set of winter cover crops. 
Results between model and reference method are very good for pure 
stand mustard, while good for pure stand phacelia. From Table 3, we can 
conclude that the classifications of mustard biomass level using RS- 
based models are more accurate than the farmers estimations and 
reach the same accuracy for phacelia biomass. For mixed stands (and all 
crop types together), farmers classification is slightly more accurate than 
RS-based classification. 

These results are based on the strong assumption that the four 
samples collected per field are representative of the whole field. Though 
the sampling points have been selected so as to integrate the intra-field 
heterogeneity, this assumption could be questionable. The direct com
parison of biomass classes estimated on the one hand by the RS-models 
and on the other hand by the farmers highlights their convergence; 
estimated biomass classes are identical for 25 fields over 35 (Fig. 14). 
This can be explained by the fact that both estimations considered the 
whole field area and not samples. On the other hand, Fig. 13 shows that 
farmers and RS-models approaches do not fail in the same way. This 
would have been probably the case if the sampling were poorly repre
sentative of the whole field. 

4. Discussion 

For each of the four winter cover crop categories considered in our 
study (mustard, phacelia, mixed and full i.e. whole types together), an 
empirical model considering the relationship linking the DMB and a VI 
has been identified. The methodology assessed a range of different 
empirical models, concluding that several models were as good as the 
four described in Fig. 7, as illustrated in Figs. 5 and 6. Also, the model 
ranking is certainly sensitive to the distribution of each category 
considered. It could be different, for instance, by reducing the range of 
biomass of one category by putting aside one crop of the dataset. 

Except for CVI, suitable specifically for mustard biomass estimation, 
a saturation of the VI can be observed for high values of DMB, usually 
above 2 Mg DM ha− 1. As stated in the results, CVI is probably not good 
when the crop reflectance is close to bare soil, showing that it is 
necessary to ensure there is sufficient canopy covering of soil before 
using this VI practically, for example by using NDVI first. The over
estimation of low biomass value in the validation steps reinforced this 
assumption. Moreover, the validation steps showed that the models are 
somehow limited for high biomass value because higher CVI than 
observed in the model dataset were possible for similar high biomass 
values. An easy way to handle this practically could be to set the biomass 
value at the maximum value of the model when CVI is higher to the 
maximum CVI of the model. 

Despite the assessment of the whole panel of 10 and 20 m bands of S2 
through VIs, including RE bands, supposed to enhance the biomass 
estimation, (Delegido et al., 2011), the saturation issues were not 
completely solved, even if saturation appears at higher biomass levels 
than those observed for cereals winter cover crops by Hively et al. 
(2009) and Prabhakara et al. (2015). Studies showed that the use of RE 
bands does not always improve biophysical parameters retrieval. On one 
side, Sharma et al. (2015) show that the use of RE, in spite of red band, 
reduce saturation in corn yield estimation, and Vina et al. (2011) show 
better results for LAI estimation in maize and soybean using RE VIs 
(MTCI and CI RE). On the other side, Kross et al. (2015) observed similar 
performances of RE and other VIs for LAI and biomass estimation of 
maize and soybean and Clevers et al. (2017) highlighted similar con
clusions for the LAI and CCC of potato crops. In our case, RE seems to 
improve the biomass estimation and reduces saturation issues, at least 
for phacelia and mixed categories, for which the model selected uses a 
RE VI. 

The second approach tested in this study to tackle the saturation 
issues by using a different VI for low and high biomass values 
(Nguy-Robertson et al., 2012) showed that VIs highlighted for biomass 
values under 2 Mg DM ha− 1 performed very well, even for the mixed and 
‘full’ categories. For values above 2 Mg DM ha− 1, the results were 
significantly worse even though the curves did not show saturation is
sues. This shows that these high values are still difficult to handle with 
this second approach. Operationally, this approach would necessitate, 
firstly a distinction between the two groups of biomass, which could be 

Table 3 
Overall accuracy of farmers-based and RS models-based biomass class estima
tions compared to the reference sample-based biomass at field level (detailed 
classifications in Fig. 13), for different types of winter cover crop (2017 data).  

Category Parcels Farmer accuracy (%) Model accuracy (%) 

Full 35 77 61 
Mixed 14 79 68 
Mustard 9 78 100 
Phacelia 7 71 71  

Fig. 14. Error matrix of winter cover crops biomass values distributed over different classes and estimated from farmers-based observations versus RS models- 
based approaches. 
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done by the model using one VI for the whole range of biomass 
(approach 1). 

This difficulty in handling high biomass values represents a limita
tion in the context of total nitrogen recommendation, as it limits the 
possibility to discriminate between medium and high DMB classes 
(respectively 1–3 and >3 Mg DM ha− 1). Though particular attention has 
been paid when selecting sampling points to cover the widest range of 
DMB situations, these different models have been calibrated/validated 
mainly using samples from the intermediary biomass class. The model’s 
validity range concerns therefore, mainly one, rather wide 
(2 Mg DM ha− 1), DMB class. The relevance of these models in total ni
trogen recommendation systems based on DMB classes, is therefore 
rather limited, but could positively contribute in systems based on 
continuous values, especially for winter cover crop types with a 
maximum DMB usually lower than 2.5–3 Mg DM ha− 1, such as phacelia. 
This statement is reinforced by the fact that farmers provide qualitative 
information on the DMB available in their different fields. The farmer 
has just to specify if the biomass is “low”, “medium” or “high”. Moving 
from a qualitative to a quantitative estimation of the biomass level can 
be complicated, especially for mixed stands that can be very diversified 
in terms of floristic composition, and subsequently in their structure 
(height, density, number of vegetation layers, etc.). The increasing 
occurrence of these mixed stands in the Belgian landscape represents a 
real challenge in an objective of DMB estimation by satellite RS and 
more generally in the context of total nitrogen recommendations. 

These limitations (saturation issues, limited number of samples) can 
explain partly why farmers can provide, except for mustard and pha
celia, a better estimation of DMB at parcel level than satellite data. Other 
plausible explanations can be proposed. The reference DMB at parcel 
level is first of all based on a limited number of samples which, though 
collected in homogeneous areas within the different parcels, do not 
necessarily represent the intra-field heterogeneity. Using classes can also 
induce errors especially for situations at the different defined boundaries 
classes. 

Different ways to go further in this study can be considered. Models 
were calibrated and validated based on data acquired only for one year. 
Considering data for several years would allow an increase in the cali
bration range. In the same way, it would be also interesting to take 
regular samples during the growing period, in order to better evaluate 
the relationship linking biomass and VIs. One of the limitations of our 
study is the cloudy conditions hampering the use of optical satellites 
such as S2 and leading to the impossibility to use S2 data in 2016 and to 
a non systematic coincidence between sampling and image acquisition 
dates in 2017. A possible solution to address this problem could be the 
use of SAR data like Sentinel-1, for instance through the use of VV, VH or 
their ratio (Veloso et al., 2017). More sophisticated empirical regression 
techniques such as ANN (Artificial Neural Network) or decision tree/r
andom forest regression (as suggested by Wang et al., 2016) could also 
be tested. However these techniques require a lot of observations and a 
very intensive field campaign would need to be organised. 

Furthermore, some crop growth models such as STICS are now also 
able to simulate growth of some winter cover crops such as mustard or 
rye-grass (Dorsainvil, 2002). Using these models, possibly combined 
with satellite data, through assimilation techniques represents another 
way that could be followed to estimate winter cover crop biomass. 

5. Conclusion 

These findings have to be considered as a first research results in a 

topic never addressed in literature to our knowledge, i.e. assessing the 
potentialities of S2 satellite data for estimating the DMB of the green 
manure winter cover crops in intensive cropping systems. The resulting 
models can assess the biomass level for mustard, phacelia, and mixed 
cover crops, to be used as an input for nitrogen fertilization recom
mendation frameworks. Models performed twice better for pure stands 
cover crops (mustard and phacelia) than for mixed cover and allow 
classifying the biomass in the three classes required for the nitrogen 
provisional balance sheet method. A remaining challenge concerns these 
mixed cover crops to be further investigated possibly by stratifying the 
mixed cover crops according to similar canopies. The saturation issues 
were not solved for phacelia and mixed cover crops with high biomass 
levels. A possible limitation of S2 images is the cloud occurrence, which 
can be high in the period of interest (mainly autumn) in various 
Northern European countries. 
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Table A.4 
Vegetation indices tested with S2 images for winter cover crop biomass retrieval.  

Original 
acronym 

Index Used 
acronym 

(Derived) S2 Formula Source Original author 

Chlogreen Chlorophyll Green index Chlogreen B8A/(B3 + B5) Radoux et al., 2016 Datt, 1999 
CIGr Green Chlorophyll Index CIGr B8/B3 − 1 Clevers et al., 2017 Gitelson et al., 2003 
CIGr Green Chlorophyll Index CIGr2 B8A/B3 − 1 Vina et al., 2011 Gitelson et al., 2003 
CIRe Red-edge Chlorophyll Index CIRe B7/B5 − 1 Clevers et al., 2017 Gitelson et al., 2003 
ClRe Red-edge Chlorophyll Index ClRe2 B8A/B5 − 1 Vina et al., 2011 Gitelson et al., 2003 
CRI Carotenoid Reflectance Index CRI 1/B3 + 1/B8 Wang et al., 2016 Gitelson et al., 2002 
CVI Chlorophyll Vegetation Index CVI (B8/B3)(B4/B3) Clevers et al., 2017 Vincini et al., 2008 
EVI Enhanced Vegetation Index EVI 

2.5
(B8 − B4)

B8 + 6B4 − 7.5B2 + 1  
Wang et al., 2016; 
Prabhakara et al., 2014 

Liu and Huete, 1995 

EVI2 Enhanced Vegetation Index 2 EVI2 
2.5

(B8 − B4)

B8 + 2.4B4 + 1  
Sentinel Hub  

EVI Enhanced Vegetation Index EVI8a 2.5
B8A − B4

B8A + 6B4 − 7.5B2 + 1  
Vina et al., 2011 Huete et al., 1996 

GEMI Global Environment Monitoring 
Vegetation Index 

GEMI 2(B2
8A − B2

4) + 1.5B8A + 0.5B4

B8A + B4 + 0.5  
Radoux et al., 2016 Pinty and Verstraete, 1992 

GI Greenness Index GI B3/B4 Radoux et al., 2016 le Maire et al., 2004 
GNDVI73 Green Normalized Difference 

Vegetation Index 
GNDVI73 (B7 − B3)/(B7 + B3) Frampton et al., 2013 Gitelson et al. (1996) 

GNDVI Green-NDVI GNDVI83 (B8 − B3)/(B8 + B3) Wang et al., 2016; 
Prabhakara et al., 2014 

Gitelson et al., 1996 

gNDVI Green normalized difference 
vegetation index 

GNDVI8a3 (B8A − B3)/(B8A + B3) Radoux et al., 2016 Gitelson et al., 1996 

GR Green minus Red GR B3 − B4 Prabhakara et al., 2014  
GRVI1  GRVI1 (B4 − B3)/(B4 + B3) Sentinel Hub  
IRECI Inverted Red-Edge Chlorophyll Index IRECI (B7 − B4)/(B5/B6) Frampton et al., 2013 Frampton et al., 2013 
LAI.SAVI  LAI_SAVI − log(0.371 + 1.5(B8 − B4)/(B8 + B4 + 0.5))/ 

2.4 
Sentinel Hub  

MCARI Modified Chlorophyl Absorption in 
Reflectance Index 

MCARI ((B5 − B4) − 0.2(B5 − B3))(B5 − B4) Frampton et al., 2013 Daughtry et al. (2000) 

MSAVI2  MSAVI2 
(B8 + 1) − 0.5

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2B8 − 1)2
+ 8B4

√ Sentinel Hub  

MSI Moisture stress index MSI B11/B8A Radoux et al., 2016 Rock, B.N. et al., 1985 
MSR Modified Simple Ratio Index MSR (B8/B4 − 1)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B8/B4 + 1

√ Wang et al., 2016 Chen, 1996 

MTCI MERIS Terrestrial Chlorophyll Index MTCI (B6 − B5)/(B5 − B4) Frampton et al., 2013 Dash and Curran (2004) 
MTCI2 MERIS Terrestrial Chlorophyll Index MTCI8a (B8A − B5)/(B5 − B4) Vina et al., 2011 Dash and Curran, 2004 
MTVI2 Modified Triangular Vegetation Index 

2 
MTVI2 

1.5
1.2(B8 − B3) − 2.5(B4 − B3)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2B8 + 12 − 6B8 + 5

̅̅̅̅̅̅
B4

√√
− 0.5  

Wang et al., 2016 Haboudane et al., 2004 

NAOC Normalized Area Over the reflectance 
Curve 

NAOC 1 − (40(B4 + B5)/2 +35(B5 + B6)/2 +43 
(B6 + B7)/2)/(118B7) 

Delegido et al., 2011  

NDReSw Normalized Difference of Red-edge 
and SWIR2 

NDReSw (B6 − B12)/(B6 + B12) Radoux et al., 2016  

NDTI Normalized Difference Tillage Index NDTI (B11 − B12)/(B11 + B12) Radoux et al., 2016 Van Deventer et al., 1997 
NDVI.Gr  NDVI_Gr B3(B8 − B4)/(B8 + B4) Sentinel Hub  
NDI45 Normalized Difference Vegetation 

Index optimum for S2 
NDVI5 (B5 − B4)/(B5 + B4) Frampton et al., 2013; 

Delegido et al., 2011 
Delegido et al. (2011b) 

NDI Normalized Difference Index NDVI6 (B6 − B4)/(B6 + B4) Prabhakara et al., 2014; 
Delegido et al., 2011 

Gitelson and Merzlyak, 
1994 

NDVI Normalized Difference Vegetation 
Index 

NDVI7 (B7 − B4)/(B7 + B4) Frampton et al., 2013; 
Sharma et al., 2015; 
Delegido et al., 2011 

Rouse et al. (1973) 

NDVI Normalized Difference Vegetation 
Index 

NDVI8 (B8 − B4)/(B8 + B4) Wang et al., 2016; 
Prabhakara et al., 2014; 
Delegido et al., 2011 

Rouse et al., 1974 

NDVI Normalized Difference Vegetation 
Index 

NDVI8a (B8A − B4)/(B8A + B4) Vina et al., 2011; Radoux 
et al., 2016; Delegido 
et al., 2011 

Rouse et al., 1974 

NDWI1 Normalized Difference Water Index 1 NDWI1 (B8A − B11)/(B8A + B11) Radoux et al., 2016 Gao, 1996 
NDWI2 Normalized Difference Water Index 2 NDWI2 (B3 − B8A)/(B3 + B8A) Radoux et al., 2016 Mcfeeters, 1996 
NGRDI Normalized Green Red Difference 

Index 
NGRDI (B3 − B4)/(B3 + B4) Prabhakara et al., 2014; 

Wang et al., 2016 
Tucker, 1979 

NHI Normalized Humidity Index NHI (B11 − B3)/(B11 + B3) Radoux et al., 2016 Lacaux, 2007 
NLI Nonlinear Vegetation Index NLI (B2

8 − B4)/(B2
8 + B4) Wang et al., 2016 Goel and Qin, 1994 

OSAVI Optimized Soil-Adjusted Vegetation 
Index 

OSAVI 1.16(B8 − B4)/(B8 + B4 + 1.6) Wang et al., 2016 Rondeaux et al., 1996 

PSRI Plant Senescence Reflectance Index PSRI (B4 − B2)/B8 Wang et al., 2016 Merzlyak et al., 1999 
RDVI Re-normalized Difference Vegetation 

Index 
RDVI (B8 − B4)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
B8 + B4

√ Wang et al., 2016 Wang et al., 1998 

RedSWIR1 Bands difference RedSWIR1 B4 − B11 Radoux et al., 2016 Jacques et al., 2014 
NDI Normalized Difference Index RENDVI65 (B6 − B5)/(B6 + B5) Delegido et al., 2011  
RENDVI Red-Edge Normalized Difference 

Vegetation Index 
RENDVI75 (B7 − B5)/(B7 + B5) Sharma et al., 2015; 

Delegido et al., 2011  
RENDVI Red-Edge Normalized Difference 

Vegetation Index 
RENDVI76 (B7 − B6)/(B7 + B6) Sharma et al., 2015; 

Delegido et al., 2011  
NDI Normalized Difference Index RENDVI85 (B8 − B5)/(B8 + B5) Delegido et al., 2011  

(continued on next page) 
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