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Abstract: In this upcoming Common Agricultural Policy (CAP) reform, the use of satellite imagery is
taking an increasing role for improving the Integrated Administration and Control System (IACS).
Considering the operational aspect of the CAP monitoring process, the use of Sentinel-1 SAR (Syn-
thetic Aperture Radar) images is highly relevant, especially in regions with a frequent cloud cover,
such as Belgium. Indeed, SAR imagery does not depend on sunlight and is barely affected by the
presence of clouds. Moreover, the SAR signal is particularly sensitive to the geometry and the water
content of the target. Crop identification is often a pre-requisite to monitor agriculture at parcel level
(ploughing, harvest, grassland mowing, intercropping, etc.) The main goal of this study is to assess
the performances and constraints of a SAR-based crop classification in an operational large-scale
application. The Random Forest object-oriented classification model is built on Sentinel-1 time series
from January to August 2020 only. It can identify crops in the Walloon Region (south part of Belgium)
with high performance: 93.4% of well-classified area, representing 88.4% of the parcels. Among the
48 crop groups, the six most represented ones get a F1-score higher or equal to 84%. Additionally, this
research documents how the classification performance is affected by different parameters: the SAR
orbit, the size of the training dataset, the use of different internal buffers on parcel polygons before
signal extraction, the set of explanatory variables, and the period of the time series. In an operational
context, this allows to choose the right balance between classification accuracy and model complexity.
A key result is that using a training dataset containing only 3.2% of the total number of parcels allows
to correctly classify 91.7% of the agricultural area. The impact of rain and snow is also discussed.
Finally, this research analyses how the classification accuracy depends on some characteristics of the
parcels like their shape or size. This allows to assess the relevance of the classification depending on
those characteristics, as well as to identify a subset of parcels for which the global accuracy is higher.

Keywords: Sentinel-1; SAR; multitemporal analysis; crop identification; parcel-based classification;
remote sensing; Common Agricultural Policy

1. Introduction

As part of the upcoming reform of the Common Agricultural Policy (CAP) to be
implemented from 1 January 2023, the European Commission (EC) has adopted new rules
that will allow to increase the use of modern technologies during verifications related to
the area-based CAP payments. The legal and technical framework to make use of the ad-
vantages of Earth Observation data in the context of CAP controls was provided in 2018 by
the EC. In particular, this covers data coming from the EU’s Copernicus Sentinel satellites.

The actual On-the-Spot-Checks (OTSC) control system is based on a yearly verification
done by each EU Member State, who must carry out controls on at least 5% of the farms
applying for subsidies. The OTSC are fulfilled either by visiting farms, by interpreting
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Remote Sensing images or combining both methods (RS imagery and rapid field visits
on farms). This system will be replaced by a new monitoring approach (Area Monitoring
System—AMS), which is a procedure of regular observation, tracking, and assessment of
all eligibility criteria, commitments, and other obligations which can be monitored in a
continuous way (for instance by using mainly Copernicus Sentinel satellites images).

This allows to move from an a posteriori control to a continuous assessment of a
parcel eligibility. The goal is to warn the farmers in due time about a possible detected
discrepancy, in order to avoid penalties. For example, in the case of an activity that must
be completed before a given date (such as grass mowing), if it has not been performed
approaching the deadline, the farmer could be informed that he should ensure compliance
before the deadline to avoid a sanction. This will guarantee that farmers are able to carry
out their environmental and other obligations in due time and avoid penalties for non-
compliance with CAP rules. Reducing the number of farm visits will also significantly
decrease the time spent by farmers with inspectors in the field. This new approach also
aims at encouraging farmers to benefit from digital technologies, such as crop monitoring
at parcel level, to improve agronomic performances while reducing fertilizer costs and
environmental impacts.

In this context of agriculture monitoring by remote sensing, accurate and up-to-date
crop type maps are a prerequisite for agriculture practices analyses, such as ploughing or
harvest detection. Moreover, identification of land cover types provides basic information
for generation of other thematic maps and establishes a baseline for monitoring activities.

High temporal and high spatial resolution remote sensing imagery provides a major
asset to monitor agriculture and identify crop types. Satellite image crop classifications
are mostly obtained from optical imagery [1–7]. Indeed, surface reflectances are often
key explanatory variables for land cover classification [8,9] as well as indices derived
from reflectance data, such as the NDVI, NDWI, and Brightness [8,10–13]. Temporal
metrics derived from time series indices have also been used in several studies [8,11,14–16].
However, clouds and cloud shadows remain a major challenge for optical time series, as
they lead to gaps and missing data. Furthermore, the reliance of operational applications on
cloud-free optical images is a critical issue when precise timeliness is strictly required. The
cropland mapping methods applied to time series images have proven to perform better
than single-date mapping methods [17]. Indeed, as the phenological status of different
crop types evolves differently with time, having information over time allows to better
discriminate the crops. Therefore, the use of optical data over large and cloudy areas
involves working with composite images (including sometimes spatiotemporal context
for residual missing pixels in composite images [18,19]), linearly temporally gap-filled
images [20], or pixel-wise weighted least-squares smoothing of the values over time [21,22].

The advantages of SAR images allow meeting the rigid data requirements of opera-
tional crop monitoring in the CAP policy context. Unlike optical data, SAR images are not
affected by the presence of clouds or haze. The SAR sensors can obtain data during both
day and night [23]. As a result, temporal series of high spatial resolution can be regularly
and reliably recorded throughout a growing season, whereas optical acquisition is never
guaranteed. Agricultural crop mapping performs better with regular information during
the whole growing season. Another reason to use microwaves is that they can penetrate
more deeply into vegetation than optical wavelengths. SAR signal is very sensitive to
plant water content. Polarized microwaves respond differently to shapes and orientations
of scattering elements of the plant canopy. Such interactions lead to differences both in
the backscattered power in those different polarizations and in the degree of penetration
through the canopy. Moreover, the Sentinel-1 sensors present a high temporal resolution
and a dual-polarization mode.

Before the launch of Sentinel-1, a number of research works have been carried out to
use satellite radar images for crop classification, with different bands of acquisition—L-
band [24,25], C-band [24,26,27] (and different polarizations), VV, HH, and HV [27]. The
C-band Sentinel-1 SAR data have been analyzed temporally to recognize which agricultural
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crops grow in fields [28–34]. In [32], the authors classified 14 crop types in Denmark from
SAR Sentinel-1 data time series with an average pixel-base accuracy of 86%.

Studies combining both optical and SAR sensors showed that the synergistic use of
radar and optical data for crop classification led to richer information increasing classifica-
tion accuracies compared to optical-only classification [22,35–38]. In [39], the authors used
a deep learning-based architecture for crop classification using Landsat-8 and Sentinel-1
data and obtained accuracies of more than 85% for five major crops.

While other initiatives already used Sentinel-1 data to classify crops, the main inno-
vation of this research is to highlight which choices lead to the crop map with the highest
quality, while discussing the constraints associated to them (e.g., using a longer period
implies that the crop map is only available later in the year). This allows to choose the
right balance between classification accuracy and the operational interest of keeping the
model simple. More specifically, this study documents the effects on the classification
performance of different choices that can be made for five parameters: the SAR orbit(related
to Ascending or Descending modes), the set of explanatory variables, the quality and size
of the training sample, the use of different internal buffers on parcel polygons before SAR
signal extraction, and the selected period of the time series.

In order to compare the different models, a statistical analysis is conducted to assess
whether the performance differences are significant or solely due to the random fluctuations
in the results.

The presence of rain or snow during SAR acquisitions, which is a major constraint of
using a SAR dataset, is also discussed. Finally, this research analyses how the classification
accuracy depends on some characteristics of the parcels such as their size, shape, and
classification confidence level. This allows to assess whether the classification of a parcel
is relevant depending on that characteristic (e.g., is the classification relevant for small
parcels). Furthermore, considering a threshold on those characteristics allows to identify a
subset of the parcels for which the global classification accuracy is higher.

2. Materials and Methods

The study is carried out in the context of the preparation by the Walloon region of
their implementation of the Area Monitoring System. The cloud frequency in Belgium
is quite significant, and the availability of cloud free image time series over the growing
season can be a challenge.

This section first presents the study area and the data used for this research. The data
used include the Land Parcel Identification System (LPIS) and the Sentinel-1 images. Then,
the method is developed.

2.1. Study Area

The Walloon Region (WR) is located in the south part of Belgium (in grey on Figure 1)
and covers 16,901 square kilometers.
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Figure 1. Walloon Region (South part of Belgium) and the Sentinel-1 orbits covering the biggest parts
of the Walloon Region.

In this region, agricultural land represents about half of the total area. As shown on
Figure 1, the WR is covered by several Sentinel-1 orbits (see below for details), out of which
only two will be used in the present study: 37—Descending and 161—Ascending.

Because those two orbits will be compared and used together, only the part of the WR
that is covered by both orbits is considered in the study. It corresponds to the hatched part
on Figure 1, which is our study area.

2.2. Data
2.2.1. Land Parcel Identification System (LPIS)

The Land Parcel Identification System (LPIS) was designed as the main instrument
for the implementation of the CAP’s first pillar, whereby direct payments are made to the
farmer once the land and area eligible for payments have been identified and quantified.

The Walloon LPIS is maintained and updated each year using aerial orthoimages
with a spatial resolution of 25 cm. In the context of the CAP, applicants use the LPIS and
available RS image to indicate the location of the parcels and the total area under cultivation
of a particular crop. In the WR, the farmers do the applications online. The LPIS includes
a shapefile with polygons representing the delineation of the parcels as declared by the
farmers each year. The declared crop must correspond to the crop type present on field on
the 31st of May of each delineated plot. In this study, the 2020 LPIS is used.

At the WR level, the farmers 2020 declarations contain 285,776 parcels, which cover a
total area of approximately 764,000 hectares. Only 269,278 parcels, referred as “agricultural
field” used for food or feed production and covering 742,173 ha, are considered. Among
the discarded parcels, one finds for instance fields that are managed for horticulture or
environmental concern only, such as ornamental crops or 6 m wide grassed headlands
along watercourses. For this study we considered the part of the WR covered by both
orbits 37 and 161, which contains 211,875 agricultural fields and covers 617,077 hectares.

The crop types of the same family (e.g., grain maize and fodder maize) are clustered
into different crop groups. These groups were defined by the Walloon authorities in the
context of the greening of the CAP in 2013. The selected parcels located in the study area
represent 48 crop groups. These 48 crop groups exclude the crop groups with less than
7 occurrences (as consequence 18 agricultural fields with exceedingly rare crop types were
not included).

The most represented agricultural groups in our study area are grassland, winter
wheat, maize, potato, and sugar beet, as detailed on Table 1.
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Table 1. Most represented agricultural groups, with their relative appearance in terms of number of
fields and of area.

Agricultural Group % of Number of Fields % of Area

Grassland 55.7% 46.8%
Winter wheat 11.31% 17.1%

Maize 9.9% 8.5%
Potato 3.8% 5.9%

Sugar beet 3.6% 5.4%

2.2.2. Sentinel-1 Images-Backscattering Coefficient Time Series (8 Months from January
until August 2020)

The Sentinel-1 mission is composed of a constellation of two identical satellites per-
forming C-band Synthetic Aperture Radar (SAR) imaging at 5.6 GHz (5.4 cm wavelength),
with an effective revisit time of 12 days (6 days considering both satellites).

Interferometric Wide Swath (IW) Mode is the main operational mode over land and
features a 5-by-20-metre spatial resolution and a 250 km swath. The level 1 products made
up of Single Look Complex (SLC) and Ground Range-Detected (GRD) outputs in single
(HH or VV) or double (HH + HV or VV + VH) polarization.

Four different Sentinel-1 orbits (two descending and two ascending) are covering
the majority of the WR area. The hours of acquisition are around 5:30 p.m. and 6:00 a.m.
(UTC) for Ascending and Descending orbits, respectively. In order to quantify the impact
of different local incidence angle and acquisition time for this study, we considered only
data coming from one Ascending orbit (161) and one Descending orbit (37).

GRD products (resolution of 20 × 22 m) are pre-processed to obtain calibrated, geo-
coded backscattering coefficients sigma nought (σ0) using the European Space Agency’s
SNAP Sentinel-1 toolbox software. The GRD SAR data pre-processing chain include
geometric and radiometric calibration, with correction for the local incidence angle, using
the Shuttle Radar Topography Mission (STRM 90) digital elevation model (DEM). The
images are interpolated at a 6.5 × 6.5 m pixel size during the projection in the UTM-31N
coordinate system. The 6.5 m pixel size was considered in order to include in our data set a
maximum of small fields, with tiny shapes.

Time series of GRD Sentinel-1 data acquired during the considered period, from Jan-
uary until August 2020, are used to extract explanatory variables for the crop classification
of this study. The considered period begins in January as crops are in place in more than
half of the parcels, i.e., in grasslands and winter crops, at this time of the year. It ends in
August when the winter crops are already harvested but not the spring crops. The reason
to end the period no later than August is that, in the operational context of the CAP, a crop
map is needed by the Paying Agencies in early autumn to pay the famers. For each orbit,
using both Sentinel-1 satellites, one acquisition is available every 6 days. The first available
acquisition for orbit 161 is on 12 January 2020 (the 6 January acquisition is missing because
of a technical problem on a Sentinel satellite). Since the study aims at comparing orbits
37 and 161, the first acquisition of orbit 37 is taken to be the closest one to the first orbit
161 acquisition, which is on 10 January. For the same reason of keeping similar acquisition
dates for the two orbits, the orbit 161 acquisition on 2 September is also used (however,
we still refer to the period as extending from January to August). In total, this gives 40
acquisition dates per orbit.

2.3. Methodology
2.3.1. Methodology Overview

This research describes the effect on the classification performance of 5 parameters: the
set of explanatory variables, the SAR orbit (related to local incidence angle and acquisition
time), the period of the year covered by the time series, the use of different internal buffers
on parcel polygons before SAR signal extraction, and the training set characteristics (size
of the set and specific parcels kept in the set). To this aim, several scenarios are defined,
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each corresponding to a different set of choices made for each of those parameters. For all
the scenarios, the classification model is chosen to be a random forest. The idea is then to
compare the accuracy of the classification model of each scenario using cross-validation. In
order to take into account the random fluctuations of the performances due to the inherent
randomness of the model calibration and the calibration/validation sampling, 10 random
forest models are built for each scenario providing 10 different results. A statistical analysis
is conducted to test the significance of the score differences.

In the following, the parameters defining the scenarios are first detailed. Then, the
classification model is presented, together with the training and validation procedure.
Finally, the statistical analysis is explained.

2.3.2. Parameters and Scenarios

Here follow the possible choices made for the 5 parameters, which define the differ-
ent scenarios.

Parameter 1: the SAR input dataset

The explanatory variables used to build the classification model are computed from
data coming either from the orbit 37 only, or from the orbit 161 only, or from both orbits
37 and 161. This impacts the number of images used during a considered period and the
acquisition time of the images.

Comparing the results obtained from both orbits and from a single one allows to know
if a higher temporal resolution (by doubling the number of acquisitions for a considered
period) improves the quality of the crop type identification.

Images are acquired at different times depending on the orbit: early in the morning or
late in the afternoon. The interest of testing each orbit separately is also to assess whether
the acquisition time is important. For instance, images acquired early in the morning could
be affected by dew.

Parameter 2: the explanatory variables

The starting idea is that the different crop types can be distinguished using temporal
profiles of spectral features extracted from the SAR signal, these features are the explanatory
variables of the model to be calibrated. Object-based features are preferred over pixel-
based features because of the speckle effect, which needs to be filtered out or averaged
out by working at object level. In the context of this study, this is possible since the parcel
boundaries are known, and this is also true in each member states in the context of the CAP.

In this study, we have used the per-field mean backscattering coefficient (σ0), which is
extracted for each parcel and each available date. The mean is computed as the average
over the pixels whose center falls inside the parcel polygons after internal buffer application.
Notice that all computations are done in linear units. This is done for both VV and VH
polarizations. For each parcel, this gives two time series per orbit, which are used in
all scenarios.

In addition to VV and VH, the effect of adding a third time series per orbit, called VRAT,
is considered. It is defined as the ratio VH/VV. Indeed, in [40], the authors recommend
using VH/VV to separate maize, soybean, and sunflower, which could be applied to other
crop types. This quantity is also considered as a variable sensitive to crop growth in several
other studies [41–43] and thus seems to be possibly a variable of interest for our purpose of
crops classification.

Finally, the effect of adding some static variables is studied. For each orbit, the per-
field mean of the local incidence angle is computed, together with its standard deviation.
This is motivated by the fact that all types of cultural practices—that differ depending on
the crop type—cannot be carried on in steep parcels and inhomogeneous reliefs. Hence,
the local incidence angle and its intra-field variation could be correlated to the crop type
cultivated in a parcel. Since the incidence angle is an almost constant value in time, we
take it at a unique date only, which is on 3 May 2020 for orbit 37 and on 29 April 2020 for
orbit 161. Some temporal statistics are also added: the mean, the minimum, the maximum,
the range, the standard deviation, and the variance are computed for each of the VV, VH,
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and VRAT time series. For each orbit, there are thus 6 static variables for each time series
and 2 for the local incidence angle.

The results obtained with and without these additional variables are compared in order
to assess whether they are worth the additional model complexity and data preparation.

Parameter 3: the buffer size

The noise in the time series caused by heterogeneous pixels on the borders of parcels
might be reduced by introducing an internal buffer before computing the per-field mean
of the backscattering coefficient, thus keeping only clean pixels to represent the parcel. In
some cases, it might also mitigate the negative effect of the imperfect geometric accuracy
of the image. As was suggested in [44] in the context of a Sentinel-2 analysis, a buffer
size of −5 m is chosen in the present study. Another possible source of noise is the fact
that the edges of the fields are sometimes managed differently from the central part of the
fields (different machines passage orientation or inputs interdiction for example), which
causes heterogeneity in the parcel signal. From that point of view, a bigger buffer size of
−15 m might ensure a higher probability of having homogeneous pixels for a given parcel.
However, a bigger buffer size implies that less pixels are used to average the parcel signal,
which is less efficient to filter out the speckle. Therefore, the three following buffer sizes
are tested in this study: 0 m (no buffer), −5 m and −15 m. In the −5 m scenario, no buffer
is used on the parcels whose polygon after the buffer application is either empty or too
thin to contain any pixel (1% of the parcels). In the −15 m scenario, for the parcels whose
polygon after the −15 m buffer application is either empty or too thin to contain any pixel,
the polygon from the −5 m buffer scenario is used (−5 m buffer for 7% of the parcels and
no buffer for 1%). Notice that even when no buffer is applied, some parcels are too thin to
contain the center of a SAR pixel, which implies that no signal can be extracted (0.007%
of the parcels). Moreover, notice that, because of the “cascading” buffer application, the
use of a buffer is more computationally demanding. Indeed, the extractions must be done
for the buffer for all the parcels, then the extractions must be done for all smaller buffers
for subsets of the parcels, since the number of pixels contained in a parcel is only known
after the extraction. The percentage of parcels corresponding to each buffer is summarized
in Table 2.

Table 2. Total number of parcels and percentage of parcels for which a buffer of 0 m, −5 m, and
−15 m is applied for each buffer scenario.

Scenario N_tot %_buf00 %_buf05 %_buf15 No Data

Buffer 0 m 211,875 100% - - 0.007%

Buffer −5 m 211,875 1% 99 % - 0.007%

Buffer −15 m 211,875 1% 7% 92% 0.007%

Parameter 4: training set

The set of all parcels is split in two disjoint halves, one being used to train the model
and the other to score it. In order to improve the model quality, it is trained only on a subset
of the training parcels, considered as having a good signal quality. For instance, small
parcels are discarded since, because of the statistical uncertainties encountered in the SAR
signal due to speckle, [45] recommends averaging the signal over a certain number of pixels.
Therefore, a ‘clean’ training dataset is built by selecting only the training parcels which
contain at least 200 pixels for all dates after applying the buffer. Notice that in preliminary
exploratory studies, some other criteria were considered. For instance, oddly shaped
parcels were discarded based on the value of the ratio perimeter over square root of the
area. Moreover, the parcel homogeneity was quantified in terms of the per-field standard
deviation of the SAR sigma nought. However, these criteria were not retained since they
did not seem to lead to significant improvements. The clean dataset contains 64.5% of the
parcels in the full training set, and it is used in all the scenarios, unless otherwise specified.
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To assess the effect of using such a strict screening, a specific scenario is considered that
uses the full training dataset to check if the score is then indeed lower.

On another vein, in some situations, only a very small training dataset might be
available. In order to investigate the impact on the classification accuracy of a drastically
limited training dataset, another scenario is considered where the model is trained using
only 10% of the clean dataset. This leads to 3.2% of the full dataset and corresponds to
about 6850 parcels. Such a calibration dataset is of the order of magnitude of a large field
campaign feasible on the ground.

Parameter 5: the period of SAR acquisitions

This study compares different periods of the year for the time series used by the
classification model. First, four periods are defined as starting in January and having
different lengths: until May (5 months), June (6 months), July (7 months), or August
(8 months). In this case, a shorter period would have the operational advantage of providing
classification results earlier in the year, before the harvest time. In addition, 7 periods are
defined as ending in August and beginning on different months: from February (7 months)
to August (1 month). In this case, the operational advantage of a shorter period would be
to deal with a smaller amount of data, which eases the procedure.

Scenarios

Table 3 gives a summary of all the scenarios that are considered, listing the corre-
sponding choices made for each parameter.

Table 3. Values of the parameters for the different scenarios.

Orbits Expl. Var. Period Buffer Training
Set

Dates per
Orbit Nfeatures %cal %val

1 (reference) 37 + 161 all Jan–Aug −5 m clean 40 280 32% 50%

2 37 all Jan–Aug −5 m clean 40 140 32% 50%
3 161 all Jan–Aug −5 m clean 40 140 32% 50%

4 37 + 161 all Jan–Aug 0 m clean 40 280 32% 50%
5 37 + 161 all Jan–Aug −15 m clean 40 280 32% 50%

6 37 + 161 VV + VH + VRAT Jan–Aug −5 m clean 40 240 32% 50%
7 37 + 161 VV + VH + static Jan–Aug −5 m clean 40 188 32% 50%

8 37 + 161 all Jan–Aug −5 m full 40 280 50% 50%
9 37 + 161 all Jan–Aug −5 m 10% clean 40 280 3.20% 50%

10 37 + 161 all Jan–May −5 m clean 24 184 32% 50%
11 37 + 161 all Jan–Jun −5 m clean 29 214 32% 50%
12 37 + 161 all Jan–Jul −5 m clean 34 244 32% 50%
13 37 + 161 all Feb–Aug −5m clean 36 256 32% 50%
14 37 + 161 all Mar–Aug −5m clean 31 226 32% 50%
15 37 + 161 all Apr–Aug −5m clean 26 196 32% 50%
16 37 + 161 all May–Aug −5 m clean 21 166 32% 50%
17 37 + 161 all Jun–Aug −5 m clean 16 136 32% 50%
18 37 + 161 all Jul–Aug −5 m clean 11 106 32% 50%
19 37 + 161 all Aug–Aug −5 m clean 6 76 32% 50%

In the training set column, “full” means that the full calibration set is used, without
any quality filtering, and “10% clean” means that only 10% of the clean parcels are used.
The number of acquisition dates for each orbit is also given. Nfeatures is the resulting
number of features (i.e., explanatory variables) attached to each parcel that will feed the
classification model. For instance, in the reference scenario, for each orbit (37 and 161),
there are 2 features for the local incidence angle, plus, for each time series (VV, VH, and
VRAT), 40 SAR images and 6 temporal statistics (mean, min, max, std, var, and range). This
gives a total of 2*(2 + 3*(40 + 6)) = 280 features. The last two columns give the relative size
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of the calibration and validation sets compared to the total number (211,875) of considered
parcels in the study area.

2.3.3. Classification Model

For our purpose, supervised machine learning is a natural choice since a lot of reference
data are available from the farmers’ declaration. Dealing with a large input dataset and a
big number of features (but not big enough to require neural networks), a random forest
(RF) classifier is chosen as the classification model. Moreover, previous experience carried
out in the benchmarking of Support Vector Machine (SVM), decision trees, gradient boosted
trees, and RF models in the context of crop classification [20] showed that RF performs
generally better, even if SVM is expected to provide better classification results in the
specific case of classes with few calibration samples.

The RF is implemented and trained using the python scikit-learn package. Because
the goal of this study is not to optimize the machine learning model itself, the default
hyper-parameters are kept. Exception is made on the number of trees, which is fixed to 250
in order to reduce the training time without significant performance drop.

Cross-validation is used to assess the model’s performance (full details are given in
Section 2.3.4). As previously mentioned, the set of considered parcels consists in those
agricultural fields of the LPIS that are located under both orbits 37 and 161. When training
a RF model, this set is randomly split in two disjoint equally sized subsets, a validation
dataset and a training dataset. The splitting is stratified, that is, each crop group is equally
represented in both datasets.

The training dataset is used to calibrate the RF model and is totally independent of
the validation dataset.

The validation dataset is used to compute two overall performance scores for the RF:
OAnum, the overall accuracy based on the number of parcels (percentage of well-classified
parcels compared to the total number of parcels), and OAarea, the overall accuracy based
on the area (percentage of well-classified hectares).

In addition, the F1-score of each crop group is used. In this multi-class classification
context, it is defined as the harmonic mean of the group precision and recall (whose
definitions are standard):

F1(group = g) = 2
Precision(group = g) ∗ Recall(group = g)
Precision(group = g) + Recall(group = g)

. (1)

For each classified parcel, a confidence level is also assigned to the predicted class. It
corresponds to the percentage of trees in the RF that predict the given class.

Notice that the few parcels for which no signal can be extracted because they are too
small (see Table 2) are considered as misclassified in the validation set. However, this has a
negligeable effect on the scores since they represent 0.007% of the parcels (0.0001% in terms
of area).

2.3.4. Test of Statistical Significance

There are several sources of randomness in the building of the RF classification model
corresponding to each scenario: the training/validation split and several random choices
in the RF initialization and training. This leads to some randomness in their performance
scores, and therefore, the best scenario for a given training/validation split might not be
the same for another split. This is especially true given that, as will be seen in the next
section, the scores are sometimes very close. A test of statistical significance is therefore
conducted in order to assess whether the difference in score for two scenarios is significant
or if it might just be due to a random fluctuation.

The idea is to define several pairs of training/validation datasets and, for each scenario,
to build several RFs, one for each pair. This gives an insight on how strongly the score
of each scenario fluctuates. However, naively estimating the variance by computing
the standard deviation of the scores is not recommended because the latter are strongly



Remote Sens. 2021, 13, 2785 10 of 29

correlated (typically, the training datasets of each pair overlap and are thus not independent
(same for the validation datasets)). Using a very high number of pairs would lead to an
underestimated variance. This is therefore a complex question, to which many answers
are proposed in the literature, some of them being summarized and compared in [46].
Given the situation encountered in this paper, the 5 × 2 cross-validation F-test introduced
in [47] is chosen—which is a slight modification of the popular 5 × 2 cross-validation
t-test originally defined in [48]. Here is a quick overview of the procedure. As previously
mentioned, the goal is to repeat the training/validation several times for each scenario
to estimate the score fluctuations, while finding a right balance between having a high
number of repetitions, lowering the overlapping between all the training datasets (same
for the validation datasets), and keeping enough data in each set. First, the full dataset is
randomly split in two equally sized stratified parts, and this is independently repeated 5
times. This leads to 5 pairs of 50–50% disjoint subsets of the full dataset. Then, for each
scenario and each pair, two classification models are built: the first one using one part as
the training set and the other part as the validation set, and the second one by switching
the role of each subset. For each scenario, this gives thus 10 performance scores. When
comparing two scenarios, a standard hypothesis test is conducted, taking as null hypothesis
that they both lead to the same score. From the 20 scores, a number t is computed—its
exact definition can be found in [47]—and the author argues that its statistic approximately
follows a F-distribution, allowing to compute the corresponding p-value. If this p-value
is higher than a chosen threshold α, the null hypothesis that the scenario scores are equal
can be rejected at the corresponding confidence level. Now, the fact that several scenarios
are compared has to be taken into account in order to get the expected p-value for the
multiple comparisons altogether. The Bonferroni correction is chosen, which suggests using
α divided by the total number of comparisons as the p-value threshold of each individual
comparison. In this study, α is fixed to 0.05.

Since the goal of this study is to evaluate the effect on the classification performance of
each parameter separately, there is no need to compare all the scenarios together. Instead,
in order to reduce the number of comparisons, a reference scenario is chosen, against which
all the other ones are compared. It corresponds to the scenario with both orbits 37 and 161
considered, all the explanatory variables (VV, VH, and VRAT time series + static variables),
the 8 months period, a −5 m buffer, and the clean training set.

As a final note, it should be reminded that all these statistical tests are based on
approximate hypotheses and that the numbers should therefore not be blindly taken as an
absolute truth.

3. Results

This section first includes a general overview of the results in terms of the overall
accuracies. A deeper analysis is then given in terms of the F1-scores of each crop groups.
Finally, the classification performance is analyzed considering the scenario’s parameters
described in the previous section.

3.1. General Results of the Classifications Using SAR Data

Table 4 summarizes the performance scores for each scenario. For each of them, the
values of the parameters described in the previous section are given. The scenario 1 is the
reference scenario mentioned earlier. The overall accuracies (OA) correspond to the mean
of the OAs of each of the 10 models and are supplemented by their standard deviation. Two
kinds of Overall Accuracies are computed: the OAarea which is equal to the percentage of
well classified area and the OAnum which is equal to the percentage of the number of well
classified fields. This gives two different points of view when comparing the scenarios. In
the following, OAarea is generally used, unless when OAnum is more relevant.
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Table 4. Results of the classifications using different SAR datasets, different sizes for the internal buffer applied to the parcels geometry, different sets of explanatory variables, different
numbers of parcels in the training set, and different periods of SAR data acquisition. (The significance includes a Bonferroni correction.)

Scenario Orbits Expl. Var. Period Buffer Training Set OAarea (%) p-Value Significance OAnum (%)

1 (reference) 37 + 161 All Jan–Aug −5 m clean 93.43 ± 0.06 88.4 ± 0.03

2 37 All Jan–Aug −5 m clean 92.76 ± 0.07 5.89 × 10−5 TRUE 88.03 ± 0.05

3 161 All Jan–Aug −5 m clean 92.8 ± 0.07 4.86 × 10−5 TRUE 87.66 ± 0.04

4 37 + 161 All Jan–Aug 0 m clean 93.16 ± 0.06 7.49 × 10−4 TRUE 88.52 ± 0.03

5 37 + 161 All Jan–Aug −15 m clean 93.42 ± 0.07 6.56 × 10−1 FALSE 87.56 ± 0.06

6 37 + 161 VV + VH + VRAT Jan–Aug −5 m clean 93.46 ± 0.04 3.77 × 10−1 FALSE 89.33 ± 0.04

7 37 + 161 VV + VH + static Jan–Aug −5 m clean 92.97 ± 0.05 1.60 × 10−4 TRUE 87.35 ± 0.05

8 37 + 161 All Jan–Aug −5 m full 93.08 ± 0.09 4.41 × 10−4 TRUE 89.24 ± 0.05

9 37 + 161 All Jan–Aug −5 m 10% clean 91.65 ± 0.13 7.53 × 10−6 TRUE 86.83 ± 0.14

10 37 + 161 All Jan–May −5 m clean 88.2 ± 0.10 2.90 × 10−8 TRUE 84.04 ± 0.08
11 37 + 161 All Jan–Jun −5 m clean 91.52 ± 0.07 2.06 × 10−6 TRUE 86.93 ± 0.06
12 37 + 161 All Jan–Jul −5 m clean 93.16 ± 0.06 4.46 × 10−5 TRUE 88.27 ± 0.06
13 37 + 161 All Feb–Aug −5 m clean 93.48 ± 0.07 1.12 × 10−1 FALSE 88.24 ± 0.05
14 37 + 161 All Mar–Aug −5 m clean 93.54 ± 0.05 9.93 × 10−3 FALSE 87.94 ± 0.06
15 37 + 161 All Apr–Aug −5 m clean 93.53 ± 0.06 8.31 × 10−2 FALSE 87.21 ± 0.12
16 37 + 161 All May–Aug −5 m clean 93.32 ± 0.07 7.82 × 10−2 FALSE 87.17 ± 0.08
17 37 + 161 All Jun–Aug −5 m clean 92.56 ± 0.07 4.13 × 10−5 TRUE 85.47 ± 0.05
18 37 + 161 All Jul–Aug −5 m clean 90.76 ± 0.08 1.09 × 10−6 TRUE 83.1 ± 0.09
19 37 + 161 All Aug–Aug −5 m clean 84.34 ± 0.06 2.69 × 10−9 TRUE 77.93 ± 0.05
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A first key finding of this study shows that for most scenarios, the scores are very
close, which is the motivation to investigate whether the score differences are statistically
significant. In the tables, the p-value corresponds to the aforementioned hypothesis testing
that the scenario score (OAarea) is different than the reference one. The significance column
indicates whether that p-value is lower than the chosen Bonferroni corrected threshold,
i.e., 0.05/18 (18 being the number of comparisons made).

OAarea is always higher than 90% except for the two worst scenarios. For the reference
scenario, OAarea reaches 93.43% (both orbits are used, the longest period is considered,
all the explanatory variables are included, the clean training set is used, and an internal
buffer of −5 m is applied). This is the best score, together with the other six top scores as
they are not statistically different from the reference’s one. These scores correspond to the
scenarios 5 (−15 m buffer and all variables) and 6 (−5 m buffer and all variables excepted
static variables) and to the four scenarios whose period begins in February, March, April,
and May.

This method reaches high performance compared to other studies. Indeed, in the
optical domain, in [49], the authors reach an overall accuracy of 83% using a random forest
classifier for 14 classes from Landsat surface reflectance in Yolo County, California. In [3],
the authors discriminated the 5 main crops in three entire countries with overall accuracies
higher than 80% using Sentinel-2 and Landsat time series. In the SAR domain, in [32], the
authors classified 14 crop types (including grasslands) in Denmark (over 254 thousand
hectares) from SAR Sentinel-1 data time series with an average pixel-base accuracy of 86%.
In [22], the authors predicted 8 crop types with a maximum accuracy of 82% (OAnum)
with a pixel-based random forest classifier and Sentinel-1 and Sentinel-2 dataset over
Belgium’s agricultural land that covers more than 1,300,000 hectares. In [39], the authors
reach an overall accuracy of 94.6% using 2-d CNNs model for classifying land cover into
11 classes including 8 agricultural classes in Ukraine from LandSAT and Sentinel-1A images.
However, regarding their high score, it must be noticed that this study discriminates less
classes of crop types and does not focus only on agricultural classes. It includes the classes
“water” and “forest”, whose User and Producer Accuracies are very high (near 100). This
pushes the overall accuracy higher than if only agricultural crop types were considered.

A first look at the numbers indicates that the four parameters that give some notice-
able performance differences are the orbit, the period, the presence of the VRAT in the
explanatory variables, and the training sample. Further comments will be made later in
the “Impact of the scenarios’ parameters” subsection.

3.2. F1-Scores of the Crop Groups

Table 5 shows the F1-scores (in terms of the number of parcels, not the area) for
each crop group, sorted by their prevalence. The prevalence is both given as the per-
centage of the number of parcels of the group in the validation dataset (Num) and as
the percentage of the area covered by the parcels of the group (Area). Recall that, for
each scenario, 10 classification models are computed, corresponding to different pairs of
training/validation datasets. The prevalence is (almost) the same for all of them, but the
F1-score does vary. The F1-score given in the table is the mean of the F1-scores corre-
sponding to each model. Some crop groups, although present in the validation dataset, are
never predicted by some models, and their F1-scores are then set to ‘NaN’. The column ‘no
grasslands’ will be described later.

In the reference scenario, the 6 most represented crop groups have an F1-score higher
than 84%. It is actually higher than 90%, except for “Maize”. In that case, its recall is
high, but its F1-score is lowered by its low precision. This is because a large proportion of
mis-classified parcels are classified as Maize (this is also the case for the grasslands, but
it does not impact their precision as much because of their higher prevalence). Nine crop
groups get F1-scores higher than 84%, and they represent 89.5% of the parcels (91.6% of
the area).
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Table 5 shows that “sugar beet” has the highest F1-score, which is equal to 95.52%.
Moreover, F1-scores tend to be higher for the most represented crop groups, always
higher than or equal to 83.97% for the six most represented groups. For the groups with
lower prevalence, there is no clear relation between the prevalence and the F1-score. It
is interesting to notice that three crop groups with a low prevalence get a high F1-score:
winter rape, spring pea, and chicory. Figure 2 shows the temporal evolution of the mean of
the backscattering coefficient over all winter rape parcels (in red), in comparison with the
same profile evolution for all the other agricultural parcels (in grey). This figure highlights
a specific behavior of VH for the winter rape during the end of the spring. The winter
rape is indeed different from the other winter crops at this period. The end of the spring
corresponds to the end of the flowering, the steam elongation and branching, and the pod
and seed (fruit) development and ripening of winter rape. The specific geometry of the
winter rape with a high stem and a lot of branches at this period certainly explains the
higher VH signal since this crop exhibits more non vertical elements compared to the other
winter crops.

Figure 2. Evolution of the mean and interval between percentiles 5 and 95 of the backscattering coefficient for winter rape
(in red) and all the crops (in grey).

Now let us look at some low F1-scores. The first three groups which get a low or
no F1-score are “Alfalfa”, “Fallows”, and “Others”. These groups are often classified
as grasslands: 86%, 64%, and 55% of the parcels for “Alfalfa”, “Fallows”, and “Others”,
respectively. This can be explained by the fact that, although these groups are considered
as distinct in the farmers’ declarations, the reality on the field is very similar between
these three groups. First, the group “Others” includes fodder crops (56% of the parcels
of the group) that can be grasslands. Secondly, an alfalfa grassland can be claimed by the
farmer either as alfalfa or as temporary grassland. Thirdly, the “Fallows” group includes
herbaceous fallows that, on the field, are crop cover similar to grasslands, even if their
management differs.

Regarding the bad score of the group “Others”, it should also be noticed that it
includes 13 different crop types, sometimes very dissimilar such as greenhouse vegetables,
oleaginous or proteaginous crops. Therefore, that group does not really makes sense from
an EO point of view. In light of the previous remark on grasslands, it is therefore interesting
to notice that this bad score is in fact due to a strength of the classification model: its ability
to recognize grasslands within a group of parcels of heterogeneous crop types.
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Table 5. F1-score obtained per crop group when considering all crop groups, including grasslands (left), and when
considering arable lands only (excluding grasslands) in the training and validation datasets (right).

Crop Groups

F1-Scores (%)

Prevalence (%) Scenario 1

Num. Area All Groups No Grasslands

Grassland 55.7 46.8 94.51 N–
Winter wheat 11.3 17.1 90.3 90.66

Maize 9.9 8.5 83.97 88.49
Potato 3.8 5.9 93.24 93.97

Sugar beet 3.6 5.4 95.52 96.43
Winter barley 2.9 3.8 92.38 94.18

Spelt 2.1 2.2 49.13 51.19
Others 1.8 0.9 1.11 30.01

Mixed cereals 1.3 1.2 40.61 46.48
Fallows 1 0.2 NaN 0.16

Winter rape 0.8 1.2 92.6 95.99
Spring pea 0.8 1.6 91.24 91.52

Alfalfa 0.8 0.5 2 51.12
Chicory 0.7 1.2 87.44 87.43

Spring oats 0.7 0.5 61.34 67.02
Permanent crop 0.6 0.5 32.65 45.77
Winter triticale 0.4 0.5 39.7 42.84
Spring barley 0.4 0.4 66.23 70.29
Spring wheat 0.2 0.2 19.67 24.78

Bean 0.2 0.3 76.67 79.58
Trefoil 0.1 0.1 NaN NaN
Carrot 0.1 0.2 59.6 59.82
Bulb 0.1 0.2 69.98 69.11

Strawberry 0.1 0.02 NaN 0
Winter oats 0.1 0.1 3.45 4.55

Spring fava bean 0.1 0.1 20.36 18.53
Winter rye 0.1 0.1 5.33 7.82
Sorghum 0.1 0.03 NaN NaN

Spring triticale 0.04 0.04 NaN 4.17
Angelic 0.03 0.03 6.29 6.33
Cabbage 0.02 0.02 NaN NaN
Spinach 0.02 0.04 23.77 27.99

Courgette 0.02 0.01 NaN NaN
Buckwheat 0.02 0.01 NaN NaN

Winter fava bean 0.01 0.01 NaN NaN
Sunflower 0.01 0.005 NaN NaN

Flax 0.01 0.02 22.73 23.45
Spring rape 0.01 0.01 NaN NaN

Lupin 0.01 0.01 NaN NaN
Soybean 0.01 0.01 NaN NaN
Tomato 0.01 0.0002 NaN NaN

Winter pea 0.01 0.01 26.45 26.2
Quinoa 0.01 0.01 NaN NaN

Butternut 0.01 0.002 NaN NaN
Hemp 0.01 0.004 NaN NaN

Spring rye 0.004 0.005 NaN NaN
Parsley 0.004 0.003 NaN NaN
Nettle 0.003 0.003 NaN NaN

Nevertheless, this illustrates a weakness of using the LPIS as a training set for crop
classification. Indeed, the declaration of the farmers can be ambiguous for some crop types,
which can confuse the random forest classifier.

Analysis excluding the grasslands
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Since the high overall accuracies are driven by the large proportion of grasslands
(more than half of the number of parcels), which get a high F1-score, the classification is
also done for arable land only, excluding the grasslands. This represents 93,832 parcels,
from which 50% are kept as a validation dataset, and 36% are used in the calibration dataset
(half of the agricultural parcels excluding grasslands that contains more than 200 pixels
after applying the buffer). The other parameters are the same than those used in the
reference scenario 1. As for the other scenarios, 10 classification models are computed,
corresponding to different random splits of training/validation datasets. OAarea, the
percentage of well-classified area, equals 90.44%, which is 3% lower than for our reference
scenario 1. Nevertheless, these results give globally better F1-scores for the arable land
than the results obtained when the grasslands are included (see Table 5—right column),
especially for the groups “alfalfa” and “other” (the latter being the 6th most prevalent
crop group). Indeed, as was mentioned earlier, the parcels in these two groups are often
grassland in reality, and when grasslands are included in the training sample, these parcels
are often classed as grasslands, which is not a real error but an error due to the claim system
that permits to a farmer to claim an alfalfa parcel as grassland or alfalfa. The F1-score
of “permanent crop” also increases. In scenario 1, 50% of such parcels are classified as
grasslands, which can be explained by the fact that fruit tree crops mainly represent this
group (92% of the parcels). Hence, they can be mixed up with wooded grasslands. For the
other crop groups, which are groups more different from the grasslands on the ground, the
F1-score does not change drastically.

3.3. Impact of the Scenarios’ Parameters

In this section, the classification results are further analyzed considering the varia-
tion of the five parameters described in the “Methodology” section: the SAR orbit, the
explanatory variables set, the period of the time series used for signal extraction, the use of
different internal buffers on parcel polygons before SAR signal extraction, and the quality
and size of the training sample.

3.3.1. Impact of the SAR Orbit on the Classification Performance

The effect of using different SAR orbits to compute the explanatory variables is
described hereafter.

The considered orbits are orbit 161 and orbit 37. They differ by their hours of
acquisition—which are around 5:30 p.m. and 6:00 a.m. (UTC)—and their orbit orien-
tation: ascending and descending tracks respectively. The time of acquisition has a global
impact on the signal because of the presence of dew during the morning that can enhance
the signal [50]. The orbit track orientation also has an impact on the signal at the parcel
level since the local incidence angle is different and the relative azimuth angle between the
SAR beam and the plant rows differs as well (considering the crops cultivated in rows such
as maize, potato and sugar beet).

The results first compare the classification performance corresponding to three differ-
ent SAR datasets:

- SAR data acquired on both orbits 37 and 161 (reference scenario 1),
- SAR data acquired on orbit 37 (scenario 2),
- SAR data acquired on orbit 161 (scenario 3).

The results show that the higher number of explanatory variables given by combining
the two orbits leads to a better overall accuracy (both in terms of area and of number of
parcels), but the computing cost is doubled. When using only a single orbit, the score
drops by less than 1%. This is a small difference, but the significance test shows that it is
not due to random fluctuations. In the specific case of determining the crop type in the
context of the CAP, the best accuracy is needed in order to reduce the number of fields
visits. Indeed, for 100,000 parcels to monitor by a Member State, a drop of 1% of OAnum
leads to 1000 additional misclassified parcels, increasing the required number of fields
visits. However, a lower score might be perfectly adequate for other applications such as
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regional scale agricultural statistics or yield prediction for the main crops, where reducing
the computational cost might be more important.

3.3.2. Impact of the Set of Explanatory Variables on the Classification Performance

In all the scenarios, the VV and VH polarizations are used as explanatory variables.
The effect of using three additional kinds of explanatory variables is here analyzed: the
ratio VH/VV, local incidence angle per-field statistics, and temporal statistics.

In addition to the time series corresponding to the VV and VH polarizations, a third
one corresponding to the ratio VH/VV, called VRAT, is added to the explanatory variables.
In scenario 7, the ratio VH/VV (called VRAT) is excluded. This decreases the OAarea, by
0.46%, and the significance test shows that the difference is significative from a statistical
point of view. Regarding OAnum, the performance drops by 1%. This shows that VRAT
contains some useful information that the RF cannot extract solely from the values of VV
and VH. However, depending on the application, the additional model complexity and
computer processing time might not be worth the performance improvement.

The influence of including some static variables has also been studied. These static
variables include, for each orbit, the per-field mean of the local incidence angle, together
with its standard deviation. They also include some temporal statistics: the mean, the
minimum, the maximum, the range, the standard deviation, and the variance are computed
for each of the VV, VH, and VRAT time series and each orbit. This gives 2+36 additional
variables per orbit. In order to assess whether these variables are useful, scenario 8 tests the
performances of the classification without including them to the explanatory variables. The
results show that removing them does not change the classification performance. Looking
at the OAnum, one can even see that it even gets better for that scenario.

3.3.3. Impact of the Buffer Size on the Classification Performance

As was explained earlier, applying an internal buffer to the parcel polygons before
averaging the pixel values of the SAR signal might help reducing the signal noise. This
section compares the use of three different buffer sizes (scenarios 1, 4, and 5): no buffer,
−5 m, and −15 m.

Besides removing mixed pixels along the parcel borders, using a higher buffer size
might remove noise introduced by different agricultural practices at the edges of the parcel.
On the other hand, the application of a higher buffer size reduces the number of pixels
considered to compute the per field mean, which might be in contradiction to the necessity
of averaging over many pixels to increase the signal consistency regarding the speckle
present in the SAR signal. Since the results show no difference between applying a buffer of
−5 or −15 m, these two effects seem to either be negligible or to counterbalance themselves.
A high buffer should be preferred in some specific cases: poor geometric quality of the
polygons or misalignment of images.

Regarding the effect of applying a buffer at all, the results show a statistically signifi-
cant difference between applying a −5 m buffer and using no buffer. However, because the
improvement due to the buffer is very small (0.27% in terms of area), the added complexity
might not be worth it, depending on the application.

3.3.4. Impact of the Quality and Size of the Training Sample on the Classification Performance

One of the keys to building a good model is to have a good and big enough ground
truth dataset for the training sample.

Comparison of the scenarios 1 and 8 focuses on the quality of the training dataset.
Recall that it has been chosen to train the model using a ‘clean’ dataset, which contains only
parcels containing at least 200 pixels, since they are considered to have a cleaner signal.
Such parcels represent 64% of the parcels; thus, the training dataset contains 32% of the
whole number of parcels. In order to assess whether such selection is useful, in scenario 8,
no filtering is done, and the calibration dataset counts thus 50% of the whole number of
parcels. The results show that the cleaning of the training set leads to slightly better results,
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increasing the OAarea by 0.35%. As this cleaning is easy to perform and also allows to
reduce the processing time, it is thus advisable to apply it to the calibration dataset before
training the model. However, it must be noticed that when considering OAnum, using
the full calibration dataset leads to a better score. This is more deeply discussed in the
“Discussion” section of this paper.

In another vein, to assess the impact of the size of the training dataset, scenario 9 uses
a smaller training dataset. From the clean dataset used in scenario 1, only 10% of the parcels
are used to train the model, which is about 6850 parcels, i.e., 3.2% of the whole number of
parcels. When reducing the training sample size in such a drastic way, the OAarea drops
by 1.78% only, from 93.43% to 91.65%.

The high OAarea obtained in each case presents very promising results for regions
where poor ground data are available and field surveys are required. Moreover, considering
that the declaration of the farmers can be ambiguous for certain crop types (for instance,
the confusion between fodder, grasslands, and alfalfa which was mentioned earlier) or
erroneous; a field visit of 6850 parcels could, at the Walloon Region scale, be considered to
improve the training dataset quality.

3.3.5. Impact of the Period of the SAR Time Series on the Classification Performance

One of the significant changes to be considered for the next CAP reform is to provide
Near Real Time information to the farmers all along the year concerning their agricultural
practices and changes observed by remote sensing images. To assess this issue, the evo-
lution of crop identification quality over time is also analyzed by comparing scenarios 1,
10, 11, and 12. From the results of Table 6, one can see that the overall accuracies increase
with the length of the period of the SAR time series, both in terms of area and number of
parcels. To have a better insight of the impact of the period length on each crop group,
Table 6 gives the F1-scores of each crop group for the 4 different periods. The F1-score of
grasslands reaches more than 93.7% for all considered periods. Regarding the two most
represented winter crops, which are harvested in July, they are classified with a F1-score of
at least 0.86% already since the end of May, but the F1-scores increase by at least 3% if the
considered period includes the whole winter crops season up to the harvest. Regarding
the main spring crops, the F1-scores increase strongly between the first two considered
periods and then increase more slightly. The spring crops are harvested in September or
October. The present analysis shows that 5 of the 6 most represented crop groups can be
recognized before their harvesting dates with a F1-score higher than 89%. The maize does
not reach such high score and its F1-score equals 84% about 2 months before its harvest. As
explained before, the lower F1-score of maize is due to the fact that a large proportion of the
mis-classified parcels are classified as maize, which lowers its precision score. As before,
some crop groups are never predicted by some models, in which case their F1-scores are
set to ‘NaN’.

Since three of the most represented crop groups (maize, potato, and sugar beet) are
spring crops which are sown from March to May, the classification has also been tested for
periods beginning later in the season. Indeed, the information derived from time series
before their sowing date can bring noise for these crops as different field practices are
encountered on these parcels before the sowing (presence of different types of catch crops
or absence of catch crop for instance). Considering OAarea, the results in Table 7 do not
show any significant score differences whether the classification starts in May or before.
However, it should be noticed that from the point of view of OAnum, there appears to be a
noticeable decrease in the performance. A higher decrease of the score is met if the three
first months including March are excluded from the time series.

As before, the F1-scores of each crop group for the different periods are listed in
Table 7. This gives a deeper insight on the performances in terms of the percentage of
parcels. It also allows to see whether beginning later in the season might be beneficial for
some crops by removing some noise coming from irrelevant months.
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Table 6. Overall Accuracies and crop group F1-scores considering different periods for the SAR time series, beginning in
January and ending in May up to August.

Period of the Time Series

Jan–May
(Scenario 10)

Jan–June
(Scenario 11)

Jan–July
(Scenario 12)

Jan–August
(Scenario 1)

OA_area (%) 88.2 91.52 93.16 93.43

OA_num (%) 84.04 86.93 88.27 88.4

Crop Groups Prevalence (%) F1-Scores (%)

Grassland 55.7 93.77 94.18 94.48 94.51
Winter wheat 11.3 87.52 89.01 90.34 90.3

Maize (spring crop) 9.9 74.48 81.28 84.36 83.97
Potato (spring crop) 3.8 71.28 90.1 93.08 93.24

Sugar beet (spring crop) 3.6 84.77 92.21 95.08 95.52
Winter barley 2.9 86.47 91.29 91.89 92.38

Spelt 2.1 32.95 42.88 50.05 49.13
Others 1.8 0.1 0.34 0.8 1.11

Mixed cereals 1.3 31.19 36.81 38.36 40.61
Fallows 1 NaN NaN NaN NaN

Winter rape 0.8 77.49 87.9 87.33 92.6
Spring pea 0.8 62.63 86.28 91.12 91.24

Alfalfa 0.8 1.04 2.97 2.31 2
Chicory 0.7 58.14 67.99 83.32 87.44

Spring oats 0.7 45.19 52.28 59.57 61.34
Permanent crop 0.6 25.98 27.98 31.99 32.65
Winter triticale 0.4 10.16 34.09 40.54 39.7
Spring barley 0.4 36.99 58.33 66.39 66.23
Spring wheat 0.2 2.78 4.18 16.89 19.67

Bean 0.2 2.49 35.58 65.99 76.67
Trefoil 0.1 NaN NaN NaN NaN
Carrot 0.1 8.56 37.14 54.24 59.6
Bulb 0.1 4.87 20.46 62.87 69.98

Strawberry 0.1 1.87 NaN NaN NaN
Winter oats 0.1 NaN NaN 4.54 3.45

Spring fava bean 0.1 0 7.66 15.54 20.36
Winter rye 0.1 5.68 7.77 10.39 5.33
Sorghum 0.1 NaN NaN NaN NaN

Spring triticale 0.04 NaN NaN 4.17 NaN
Angelic 0.03 6.4 NaN NaN 6.29
Cabbage 0.02 NaN NaN NaN NaN
Spinach 0.02 3.17 21.33 26.18 23.77

Courgette 0.02 NaN NaN NaN NaN
Buckwheat 0.02 NaN NaN NaN NaN

Winter fava bean 0.01 NaN NaN NaN NaN
Sunflower 0.01 NaN NaN NaN NaN

Flax 0.01 17.42 14.86 20.54 22.73
Spring rape 0.01 NaN NaN NaN NaN

Lupin 0.01 NaN NaN NaN NaN
Soybean 0.01 NaN NaN NaN NaN
Tomato 0.01 NaN NaN NaN NaN

Winter pea 0.01 26.94 29.49 25.16 26.45
Quinoa 0.01 NaN NaN NaN NaN

Butternut 0.01 NaN NaN NaN NaN
Hemp 0.01 NaN NaN NaN NaN

Spring rye 0.004 NaN NaN 40 NaN
Parsley 0.004 NaN NaN NaN NaN
Nettle 0.003 NaN NaN NaN NaN
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Table 7. Overall Accuracies and crop group F1-scores considering different periods for the SAR time series (beginning from January up to August 2020).

Period of the Time Series

Jan–Aug Feb–Aug Mar–Aug Apr–Aug May–Aug Jun–Aug Jul–Aug August

OA_area (%) 93.43 93.48 93.54 93.53 93.32 92.56 90.76 84.34

OA_num (%) 88.4 88.24 87.94 87.21 87.17 85.47 83.1 77.93

Crop Group Prevalence (%) F1-Scores (%)

Grassland 55.7 94.51 94.37 94.16 93.57 93.57 92.43 91.44 89.78
Winter wheat 11.3 90.3 90.11 89.87 89.54 89.66 87.75 86.37 74.08

Maize (spring crop) 9.9 83.97 83.7 82.76 81.2 81.89 78.53 75.1 68.7
Potato (spring crop) 3.8 93.24 93.32 93.35 93.54 93.65 90.04 87.53 79.46

Sugar beet (spring crop) 3.6 95.52 95.47 95.47 95.3 93.53 92.08 93.41 90.36
Winter barley 2.9 92.38 92.7 92.84 92.85 92.02 85.11 69.23 48.27

Spelt 2.1 49.13 49.7 51.51 51.88 48.02 46.24 39.72 18.74
Others 1.8 1.11 1.23 1.31 1.47 1.14 0.97 0.66 0.09

Mixed cereals 1.3 40.61 39.41 38.31 35.68 34.93 31.36 18.81 4.56
Fallows 1 NaN NaN NaN 0 NaN NaN 0 NaN

Winter rape 0.8 92.6 91.25 91.63 92.52 95.2 95.65 74.09 21.78
Spring pea 0.8 91.24 91.17 91.1 91.32 90.93 87.87 76.53 44.22

Alfalfa 0.8 2 2.67 3.19 3.07 3.11 2.15 0.94 1.73
Chicory 0.7 87.44 87.76 87.52 87.09 86 84.12 79.76 69.17

Spring oats 0.7 61.34 62.31 63.82 62.69 56.33 50.02 43.13 33.09
Permanent crop 0.6 32.65 33.12 33.17 32.36 32.84 26.88 17.2 7.27
Winter triticale 0.4 39.7 40.98 43.17 44.45 45.08 38.25 11.55 0.55
Spring barley 0.4 66.23 66.59 67.13 67.67 65.93 49.18 39.95 2.64
Spring wheat 0.2 19.67 23.09 29.78 32.94 29.33 1.7 2.96 NaN

Bean 0.2 76.67 77.97 78.75 79.11 80.15 80.87 75.29 54.14
Trefoil 0.1 NaN NaN NaN NaN NaN NaN NaN NaN
Carrot 0.1 59.6 60.08 59.5 55.69 54.2 45.93 34.76 6.47
Bulb 0.1 69.98 70.21 70.59 71.65 69.39 68.04 69.44 29.94

Strawberry 0.1 NaN NaN 0 NaN NaN NaN NaN NaN
Winter oats 0.1 3.45 3.03 6.68 10.95 13.16 3.21 2.33 NaN

Spring fava bean 0.1 20.36 19.74 22.44 28.69 29.4 17.63 3.15 1.43
Winter rye 0.1 5.33 7.76 11.1 8.58 10.93 4.69 2.9 NaN
Sorghum 0.1 NaN NaN NaN NaN NaN NaN NaN NaN



Remote Sens. 2021, 13, 2785 20 of 29

Table 7. Cont.

Period of the Time Series

Jan–Aug Feb–Aug Mar–Aug Apr–Aug May–Aug Jun–Aug Jul–Aug August

OA_area (%) 93.43 93.48 93.54 93.53 93.32 92.56 90.76 84.34

OA_num (%) 88.4 88.24 87.94 87.21 87.17 85.47 83.1 77.93

Crop Group Prevalence (%) F1-Scores (%)

Spring triticale 0.04 NaN 2.78 2.78 3.12 4.17 NaN NaN NaN
Angelic 0.03 6.29 6.32 6.32 7.86 7.08 7.08 NaN NaN
Cabbage 0.02 NaN NaN NaN NaN NaN NaN NaN NaN
Spinach 0.02 23.77 21.27 25.13 28.13 20.32 18.76 10.5 7.19

Courgette 0.02 NaN NaN NaN 10.53 NaN NaN NaN NaN
Buckwheat 0.02 NaN NaN NaN NaN NaN NaN NaN NaN

Winter fava bean 0.01 NaN NaN NaN NaN NaN NaN NaN NaN
Sunflower 0.01 NaN NaN NaN NaN NaN NaN NaN NaN

Flax 0.01 22.73 28.5 28.51 29.33 31.92 19.77 17.32 NaN
Spring rape 0.01 NaN NaN NaN NaN NaN NaN NaN NaN

Lupin 0.01 NaN NaN NaN NaN NaN NaN NaN NaN
Soybean 0.01 NaN NaN NaN NaN NaN NaN NaN NaN
Tomato 0.01 NaN NaN NaN NaN NaN NaN NaN NaN

Winter pea 0.01 26.45 30.9 22.33 23.61 NaN NaN NaN NaN
Quinoa 0.01 NaN NaN NaN NaN NaN NaN NaN NaN

Butternut 0.01 NaN NaN NaN NaN NaN NaN NaN NaN
Hemp 0.01 NaN NaN NaN NaN NaN NaN NaN NaN

Spring rye 0.004 NaN NaN NaN NaN NaN NaN NaN NaN
Parsley 0.004 NaN NaN NaN NaN NaN NaN NaN NaN
Nettle 0.003 NaN NaN NaN NaN NaN NaN NaN NaN



Remote Sens. 2021, 13, 2785 21 of 29

The best F1-scores for each crop group are highlighted in bold black in Table 7. One
could have expected that the period giving the best results for a given crop would depend
on when the crop is in place. For grasslands and winter crops (the latter being mainly
sewed in Autumn and harvested in July), this would correspond to the longest period,
from January to August. For crops starting later in the season (like maize, potato and sugar
beet which are sewed mainly in April and harvested in Autumn), one could think that the
first months of the year would be irrelevant. However, the present results show that reality
is more complex. Among the most represented crops that are in place during the beginning
of the season, only grasslands and winter wheat get a higher score if the whole period is
used. For the 2nd and 3rd most represented winter crops (winter barley and spelt), the
best F1-scores are reached when the considered SAR time series begins in April. Regarding
the spring crops, the conclusions are also diverse. Contrary to the previous hypothesis,
maize gets a significantly better score when starting in January rather than in April or May.
The January score is also better for sugar beet, although the scores are similar up to April
(but lower starting from May). For potato, the best score is reached when starting in May,
although longest periods show similar results.

Thus, the considered period may be adapted to the user’s goal. Depending on whether
the aim is to obtain an early map of the crop types, or to more accurately recognize crops
appearing later in the season, a different ending month for the time series can be chosen.
For some specific crops, using a times series starting later in the season can be beneficial.
Subsequent classifications could thus be performed to first discriminate some crops and
then the other ones.

4. Discussion

This section first addresses a major constraint linked to the use of SAR images: the
presence of rain or snow that affects the SAR signal. The robustness of the classification
regarding that aspect is discussed in Section 4.1.

Secondly, the discussion analyses how the classification accuracy depends on some
characteristics of the parcels: their classification confidence level, their size, and their shape.
The objective is two-fold. First, this allows to understand whether the classification is
relevant on the whole range of that characteristic (for instance, is the classification accurate
for oddly shaped parcels?). Furthermore, considering a threshold on those characteristics
allows to identify a subset of the parcels for which the global classification accuracy
is higher.

4.1. Impact of Rain and Snow on the SAR Signal

The SAR signal is not affected by the presence of clouds, but it is sensitive to rain
and to the water drops on the vegetation. The presence of rain or water drops during
the time acquisition of the SAR data used in the present study can be assessed thanks
to ground truth meteorological data. The PAMESEB meteorological stations provide in
situ precipitation measures recorded on an hourly basis at 30 locations in the WR (Source:
CRA-W/Pameseb network—www.agromet.be—2 February 2021).

On the 80 selected SAR Sentinel-1 acquisitions on tracks 37 and 161 between 10 January
2020 and 02 September 2020, 52 images were acquired less than 2 h after or during a rainfall
in at least one of the PAMESEB stations located in our study area. The average number of
images from all Pameseb stations acquired just before or during a rainfall at the station is
five. Thus, on average, the number of rain-free SAR images at a station is 75.

Comparatively, out of the 95 optical Sentinel-2 acquisitions over the T31UFR tile
during the same period of eight months, only 24 acquisitions are useable (i.e., cloud-free)
on average at the agricultural parcel level.

Moreover, the presence of snow also affects the SAR signal. On the 80 SAR Sentinel-1
acquisitions on tracks 37 and 161, 11 images were acquired when the presence of snow was
recorded by the Royal Meteorological Institute of Belgium.

www.agromet.be
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Despite the inclusion in the dataset of these images acquired when rain and snow
occurred, the combination of the high number of acquisitions and the automatic selection
of the most meaningful explanatory variables by the random forest seems to overcome
the problem.

4.2. Evolution of the Classification Performance in Terms of the Classification Confidence Level

To the class assigned to a parcel by the classification model is linked a confidence
level of belonging to this class (percentage of the trees in the forest that predict the given
class). Figure 3 shows the evolution of the overall accuracy in function of a threshold on
the confidence level. For each value of the threshold, the corresponding OA is computed
only on the parcels of the validation dataset which are classified with a confidence level
higher than the given threshold. Recall that 10 models are trained for each scenario: the
represented OA is, as before, the mean of the 10 corresponding overall accuracies. On the
left graph, the OA is computed in terms of the area (OAarea), while on the right, in terms
of the number of parcels (OAnum). The OA (black dots on the graph) increases with the
confidence level threshold. However, this must be balanced by the fact that less parcels
are classified since the number of parcels meeting the threshold criterion decreases. This is
shown by the bars on the graph, which represent the proportion of parcels in the validation
dataset which satisfy the confidence level threshold. For OAarea, this proportion is given
as the percentage of the area covered by these parcels, and for OAnum, as the percentage of
the number of parcels. These bars also represent the proportion of well- and mis-classified
parcels (green and red bars, respectively).

Figure 3. Evolution of the overall accuracy considering only the parcels in the validation dataset whose confidence level is
above a given threshold (for scenario 1). (Left): OA in terms of the area. (Right): OA in terms of the number of parcels.

Considering a threshold on the confidence level allows to identify a subset of parcels
on which the global accuracy is higher. For instance, considering only the subset of parcels
classified with a confidence level higher than 92%, OAarea reaches 99.03%. However, the
downside is that this subset covers only 64.7% of the total area of the validation dataset.
This kind of analysis allows to choose the best compromise between the accuracy of the
classification and the area covered by the classification. In this case, a good compromise is
a threshold of 32% on the confidence level: it leads to an OAarea of 95% while still covering
97% of the area. In the case of OAnum, the decrease in the number of parcels is faster. If one
is more concerned about keeping a high number of parcels instead of a high covered area,
a threshold of 24% is therefore preferable: 95.7% of the parcels are classified and OAnum is
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90.9%. Figure 3 also shows that the confidence level is linked to the size of the parcel as
one can see that the parcels having a confidence level higher than 96% covers more than
half of the area of the WR while it concerns only about 33% of the number of parcels.

In the framework of the CAP, a progressive classification process could be imagined
over time. The classification could be done several times during the growing season and a
parcel would be considered as “well-classified” as soon as its confidence level reaches a
chosen threshold.

4.3. Evolution of the Classification Performance in Terms of the Parcels Size

In Table 4, the percentage of well classified area is always higher than the percentage
of well-classified number of fields. This can be explained by a worse capacity of the
classification model to classify small fields. Indeed, because of the statistical uncertainties
in the SAR signal, the SAR speckle has a strong effect on the signal when considering a
single pixel or an average over a small number of pixels. In order to analyze this constraint,
Figure 4 shows the evolution of the overall accuracy when considering a threshold on the
parcel size. For each value of the threshold, the corresponding overall accuracy is computed
only on the parcels of the validation dataset whose area is higher than the threshold. This
evolution of the OA is given for the reference scenario (black points) and the scenario 8
which includes all the parcels in the training dataset (black crosses). The bars on the graphs
show, for the reference scenario, the proportion of the parcels in the validation dataset (in
terms of the area on the left graph and of the number of parcels on the right graph) that
satisfy the size threshold. The green and red bars represent the proportion of well- and
mis-classified parcels, respectively.

Figure 4. Evolution of the overall accuracy when considering a threshold on the parcel area. (Left): OA in terms of the area.
(Right): OA in terms of the number of parcels.

The overall accuracy increases with the parcel size threshold, but at the same time,
the number of fields for which a class is obtained decreases. When all the parcels in the
validation dataset are included (as in Table 4), OAnum reaches 88.4%. At the other extreme,
OAnum reaches 93.8% if only the parcels in the validation sample that are bigger than
three hectares are considered, which represents 32.3% of the parcels. The steepest increase
of OAnum happens in the range from 0 to 0.5 hectares. Over 1 ha, the increase is not yet
significant. This clearly illustrates the difficulty of working at pixel level or with pixels
averaging for a small number of pixels with SAR data due to the speckle.
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Recall that in the reference scenario, only the ‘clean’ parcels (i.e., covering a minimum
number of pixels) are included in the training dataset. Scenario 8 includes all the parcels
in the training dataset, and it could be supposed that such scenario would be better at
classifying small parcels (since the model is also trained with similar parcel sizes). To
quantify this, the black crosses on Figure 4 show the evolution of OAnum for that scenario.
One can see that, for small thresholds, the percentage of well classified parcels is indeed
higher for scenario 8. However, for a threshold of 0.2 hectare or higher, scenario 1 is better.
Notice that the same comparison can be made in terms of OAarea, and in that case, scenario
1 is always better.

Figure 5 shows the value of the F1-score of four different crop categories for five areas
ranges. The crop categories are: the main spring crops (maize, potato, and sugar beet,
representing 17.3% of the number of parcels and 20% of the area), the main winter crops
(winter wheat and winter barley, representing 14.2% of the number of parcels and 21% of
the area), the grasslands (55.7% of the parcels, 47% of the area), and the other crops (12.8%
of the parcels, 12% of the area). For each of these categories, the F1-score is computed on
the subsets of parcels whose size is contained in ranges of one hectare. Notice that we
consider ranges here and not a threshold as before. The steepest increase of the F1-score
is met for the main spring crops and for the other crops. For the main spring crops, the
F1-score is significantly lower for parcels smaller than one hectare, which represent about
24% of the parcels in that category. Except for the other crops, beyond one hectare, the
increase of the area has no significant impact on the F1-score anymore.

Figure 5. F1-scores of four crop categories computed on five subsets of parcels regrouped by
their area.
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In landscapes such as Belgian landscape where the agriculture is mainly intensive,
the size of the parcel is not an excessively big challenge for working with Sentinel-1 data
(the mean of the parcel areas is equal to three hectares). Nevertheless, in other regions,
either the use of higher spatial resolution images or the aggregation of adjacent parcels
considered as Feature of Interest (i.e., homogeneous areas covered by the same crop,
uniformly managed) should be investigated. In [51], the authors demonstrated that the
classification performance is much more dependent on the type of cropping systems
(including the fields size) than on the classification method.

4.4. Evolution of the Classification Performance in Terms of the Parcels Shape

Other parcels can have very few numbers of pixels inside their polygons, despite
having an honorable size: the oddly shaped parcels. For instance, a very long and thin
parcel might have a big area but still contain very few pixels. A way to quantify this is
to consider the shape index: the ratio between the perimeter of the parcel and the square
root of its area. The smaller the shape index, the closer the parcel looks to a nice circle.
In the LPIS, the shape index ranges from 3.7 to 57.1, and 99.9% of the parcels (99.98% of
the area) have a shape index lower than 20. In order to analyze this constraint, Figure 6
shows the evolution of the overall accuracy in function of a threshold on the shape index.
Only the parcels in the validation dataset whose shape index is under the given threshold
are considered in the OA computation. On the left, the overall accuracy is computed in
terms of the area of the parcels, and on the right, in terms of the number of parcels. As
before, the bars represent the proportion of parcels in the validation dataset which meet
the threshold criterion (in terms of the area on the left, and on the right, in terms of the
number of parcels). The green and red bars correspond to the well- and mis-classified
parcels, respectively.

Figure 6. Evolution of the overall accuracy considering a threshold on the shape index. (Left): OA in terms of the area.
(Right): OA in terms of the number of parcels.

When considering OAarea, the threshold does not lead to any significant score im-
provement. When considering OAnum, a slight score improvement can be observed, but
it must be put in balance with the drop in the number of classified parcels. For instance,
a threshold of 8 gives an overall accuracy of 89.2% on the subset of parcels meeting that
threshold (instead of 88.4% when all parcels are considered), but this subset only counts
95% of the parcels.
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5. Conclusions and Perspectives

In the particular context of the CAP crop monitoring, there is much interest in improv-
ing the performances of the crop classification, since it leads to less field visits, i.e., less
work for the Paying Agencies.

Moreover, since the availability of optical images is often a problem in region with a
frequent cloud cover, such as Belgium, Sentinel-1 SAR images give very promising results
to identify the agricultural crop groups. Indeed, this study shows that the combination
of the high number of acquisitions and the automatic selection of the most meaningful
explanatory variables by the random forest seems to overcome the negative impact of rain
and snow on the SAR signal. Using an object-level random forest classifier, 48 crop groups
could be classified with an overall accuracy of 93.4% of well-classified area, which is a
very nice result compared to the literature. The F1-scores of the six most represented crop
groups are always higher than or equal to 84%.

Furthermore, one of the significant changes to be considered for the next CAP reform
is the regular information to be provided to the farmers along the season about their agri-
cultural practices. In this respect, the results show that five of the six most represented crop
groups can be recognized before their harvesting dates with a F1-score higher than 89%.

Given the several kinds of information that can be extracted for one parcel from
Sentinel-1 sensor, one of this study’s aim is to define which are the most relevant explana-
tory variables that have to be used to improve the classification results quality while not
unnecessarily increasing the model’s complexity. The goal is to get the easiest and best
performing model. The results show that the addition of the VHσ0/VVσ0 ratio in the
explanatory variables and the use of information derived from two orbits (one ascending
and one descending) increase the performances. The most relevant period of the time series
to consider starts at the beginning of the spring crops growing season until the month after
the harvest of the winter crops.

Other choices can improve the classification performances: the use of an internal buffer
on the parcel polygons before signal extraction, the selection of the parcels containing more
than 200 pixels for the signal extraction in the training sample.

In another vein, this study shows how the classification accuracy depends on some
characteristics of the parcels. It is shown that small parcels are still difficult to classify.
Indeed, the classification performance is significantly lower for parcels smaller than one
hectare. On the other hand, considering a threshold on such a characteristic allows to
identify a subset of parcels for which the global accuracy is higher. This kind of analysis
helps to choose the best compromise between accuracy and the proportion of parcels that
are still taken into account, depending on the user’s need.

This study also addresses the main challenge of have good ground truth data to
calibrate a model. Our results show that using a small training dataset (containing 3.2%
of the total number of the fields, i.e., about 6850 parcels) leads to an overall accuracy of
91.65% of well-classified area. This is a promising result for regions where poor ground
data are available but also in our region since it allows to improve the training dataset with
a limited number of field visits.

Here are some perspectives to go beyond the present analysis.
In addition to the per-field mean of the SAR data, the intra-field heterogeneity might

be relevant to the classification. The use of time series of, for instance, the intra-field
standard deviation, should be investigated.

Moreover, other kinds of explanatory variables computed from the remote sensing
data could be used (date of maximum/minimum backscattering coefficient, highest slope
of the backscattering coefficient, period during which the backscattering coefficient is
higher/lower than a threshold, etc.).

As mentioned earlier, subsequent classifications, using different time periods, could
be performed in order to classify the crops one after the others, depending on when they
are best recognized. Indeed, in the case of the Walloon crop calendar, a first classification
could differentiate grasslands and orchards from other agricultural lands using a period
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covering autumn and winter since these crops would already be in place during that period.
Then, winter crops could be separated from the spring and summer crops using the end of
autumn, winter, and beginning of spring periods.

Beyond the improvement of the classification accuracy, the possibility of transferring
the model calibration to subsequent crop seasons should be analyzed. On that respect, it
should be mentioned that the analyses done in this paper have also been conducted on the
2019 data and that the results and conclusions are similar. However, this is different than
using a model calibrated on one season and validated on the next growing season, which
might be useful from an operational point of view.
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