

The analytical challenges of the future

Dr Ursula Vincent

Head of Unit F.5 – Food and Feed Compliance Unit

Joint Research Centre (JRC)

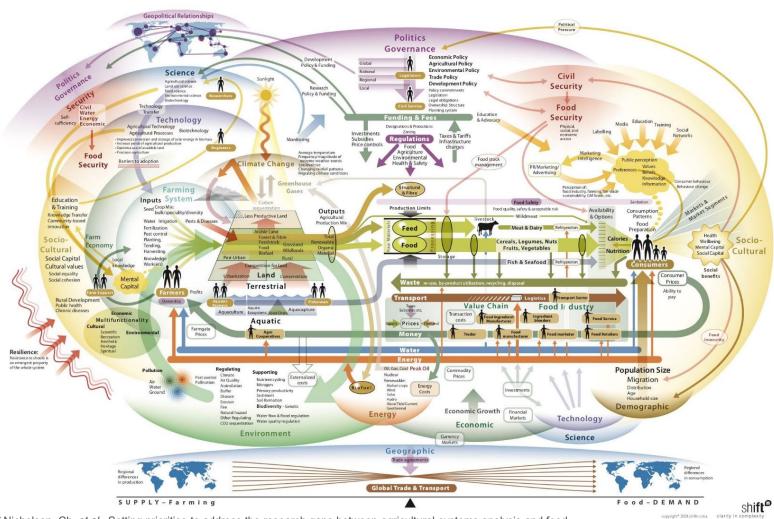
Séance académique: « Quelles perspectives pour la recherche agronomique publique? », 150 ans CRA-W, 24 novembre 2022, Gembloux, Belgique

European Commission - JRC

Providing scientific evidence throughout the whole policy cycle

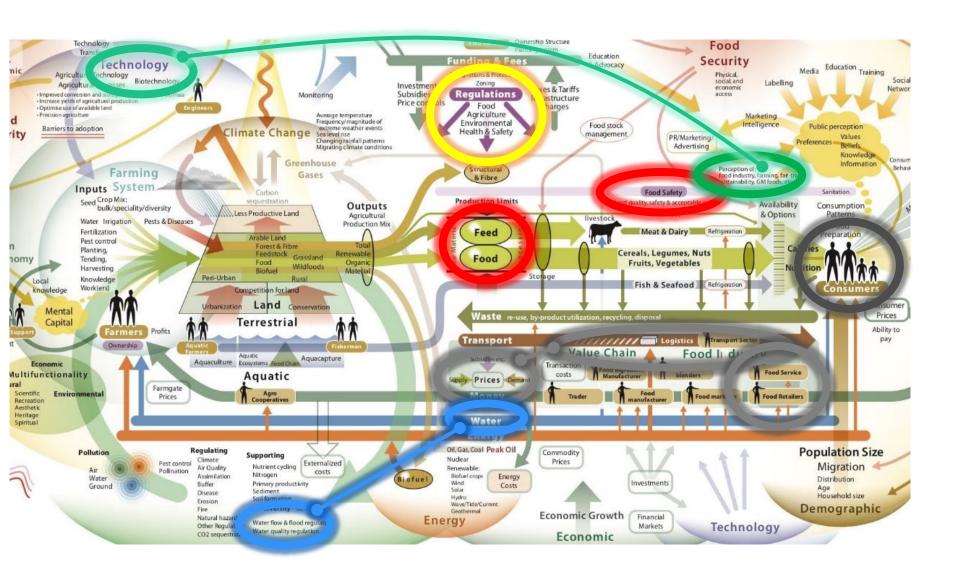
JRC – Food & Feed Compliance unit

Challenge for the future



JRC Priority # 5 Moving towards sustainable food systems

JRC Portfolio Transition to **Sustainable Food Systems** in a European and Global Context (**SFS**)



^{*} Nicholson, Ch. et al., Setting priorities to address the research gaps between agricultural systems analysis and food security - outcomes in low-and middle-income countries, 2019, doi: 10.13140/RG.2.2.32520.06404

Food Safety

Known facts:

- Sustainability needs food safety / food chain integrity Pre-requisites!
- Highest safety standards of the EU food and feed chain
- Food and feed safety (FFS) crises will continue to emerge

FS's contribution:

- Science data, robust methodologies and scientific advice
- Harmonised regulatory implementation, including enforcement
- Focus on food packaging materials Current and novel, more sustainable
- Food allergens information to consumers
- Support to standardisation

Project features – Food Safety

Food Contact Materials

Official controls
Enforcement
FCM Regulation revision

Food Allergens

European Network of Food Allergen Detection Laboratories

Support consumer choice (reliable FIC)

Safety of novel food

New proteins, traceability

Food crises response & Surveillance

Preparedness

Market Authorisations

Preconditions:

- Sustainability counts on food safety / food chain integrity Pre-requisites!
- Functioning of the EU single market, specifically for food and water supply
- Substances and materials to be placed safely on the single market
 ⇒ prior authorisation needed!

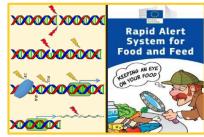
MA's contribution:

- Compliance to EU food and feed legislation: authorisations and official controls
- Regulatory science for a safe use of materials in drinking water distribution
- Support to standardisation

Project features – Market Authorisations

GMOs - GM Food & Feed

Pre-market authorisations and official controls


Feed Additives

Pre-market authorisations and official controls

Drinking Water Materials

Acceptance and surveillance

Biotechnologies (NGTs)

Detectability, traceability, IAs

Food crises response & Surveillance

Preparedness

Implementation – Market Authorisations – Food Safety

Skills

Analytical methods Validation for regulatory purposes

Robust science Proficiency testing RMs, Accreditation

Scientific advice in policy design and implementation

Standardisation

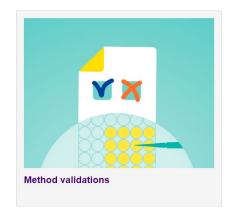
Facilities

Partners in the challenge at all levels

JRC

• EU: DG SANTE, DG ENV, EFSA, ECHA

 Europe: Close cooperation with Member States and EEA countries competent authorities (NRLs – OCLs)


Some concrete examples

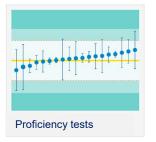
- GMOs and upcoming NGTs:
 - CRMs
 - Methods
- FAs: Authenticity and traceability
- Insects as alternative source of proteins:
 - Safety?
- Allergens: can we remove the "may contain..."?
- Standardisation

GMO analysis

1. Validated detection methods

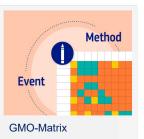
2. Certified Reference Material for the GM event

3. Official controls



What we also offer

What we do



Tools

Other information

GMO analysis *ctd*. Certified Reference Material (CRM)

 Analytical measurements require CRMs for calibration or as control materials to ensure reliability and comparability of the measurement results

- For **each GMO application**, the applicant needs a CRM (ISO 17034) produced by:
 - Joint Research Centre (JRC), BE (35 GMOs)
 - American Oil Chemists' Society, US (47 GMOs)

- In principle, CRM production is also possible for NGT products
 - Uncertainty: are CRM producers ready to face increasing demand?

GMO analysis *ctd.*EU food and feed control system

REGULATION (EU) 2017/625 applies among others to:

- (a) food and food safety, integrity and wholesomeness at any stage of production, processing and distribution of food;
- (b) deliberate release into the environment of Genetically Modified Organisms (GMOs) for the purpose of food and feed production;
- (c) feed and feed safety at any stage of production, processing and distribution of feed and the use of feed;

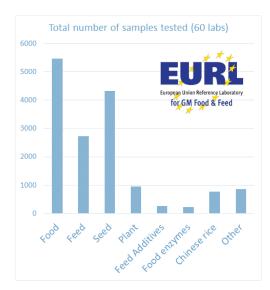
. . .

- (h) requirements for the placing on the market and use of plant protection products and the sustainable use of pesticides;
- (i) organic production and labelling of organic products;
- (j) use and labelling of protected designations of origin, etc.

The dual purpose of GMO analysis in the EU regulatory context

 To inform and give the consumer a choice in buying (safe) GMOcontaining products or not

2. To **identify** the presence of unauthorised GMOs which may potentially pose a safety risk for the consumer or the environment



GMO control analysis in the EU

37 National Reference
Laboratories and >100 official
laboratories perform GMO
analysis for law enforcement

Every year > **30.000** samples are analysed for GMOs, including food, feed, seed, plants, etc.

Twice as much **food** samples are analysed compared to *feed* samples

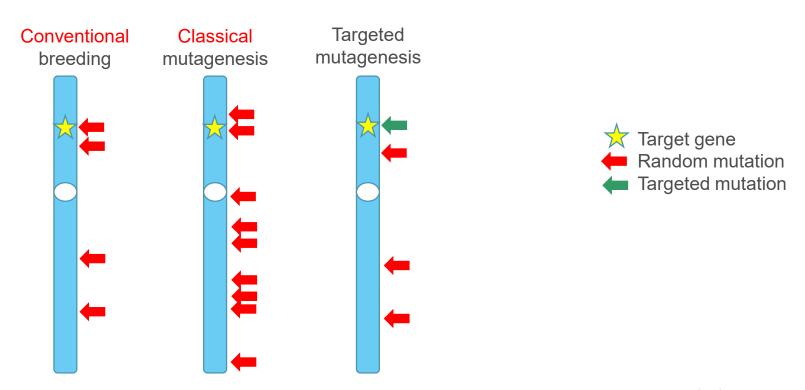
While the large majority of **food** samples tested are negative for GMOs, many of the *feed* samples contain GMOs and are correctly labelled as such, and occasionally unauthorised GMOs are detected.

Conclusion: the EU GMO control system works well

GMO analysis: fit for NGT products?

1. Validated detection methods

Certified Reference Material for the GM event


3. Official controls

Specificity of methods for NGT products

- NGTs create mutations in the genetic material, i.e. in the DNA
- Spontaneous alterations in nature and conventional breeding may create similar mutations in the genetic material

Validation of NGT products?

- An addendum to Minimum Performance Requirements guidance (MPR2) includes recommendations for the data requirements and validation of methods for the detection of NGT products (mainly if containing mutations of a few nucleotides)
 - Specificity tests: specifications on how to perform, on which materials, etc.
 - If more than one mutation: method for each mutation required
 - Technique update: MPR for digital PCR methods (before only for qPCR)

Remaining question:

What to conclude if same mutations already occur in nature?

What do we know so far?

- Validation of methods for the detection of plants obtained with NGT is possible, but perhaps not in all cases
- Demonstrating the specificity of such methods remains the major problem and is opt for court disputes when applied for enforcement
- GMO analysis in official control laboratories may be compromised by the significantly increased number of (event-specific) tests per sample for NGT products
- Unknown NGT products, e.g. entering the market through imports, cannot be detected in routine analysis
- In case of emergencies, in-depth investigations using NGS may help to identify suspicious products

Conclusions

- Main challenge for the future: ensuring food sustainability
- Main analytical challenges:
 - Continuous assessment of the fitness for purpose of the regulatory arsenal
 - Developing and validating analytical methods for emerging novel foods, novel feed additives, food contact materials, products obtained by new genomic techniques, allergens
- More than ever, networking, collaboration between organisations and use of robust techniques and data treatment necessary

