
ABSTRACT

At the individual cow level, sub-optimum fertility, 
mastitis, negative energy balance and ketosis are major 
issues in dairy farming. These problems are widespread 
on dairy farms and have an important economic impact. 
The objectives of this study were: 1) to assess the poten-

tial of milk Mid Infrared (MIR) spectra to predict key 
biomarkers of energy deficit (citrate, isocitrate, glucose-
6P, free glucose), ketosis (BHB and acetone), mastitis 
(NAGase and LDH), and fertility (progesterone); 2) to 
test alternative methodologies to partial least square 
regression (PLS) to better account for the specific 
asymmetric distribution of the biomarkers; and 3) to 
create robust models by merging large data sets from 5 
international or national projects. Benefiting from this 
international collaboration, the data set comprised a 
total of 9,143 milk samples from 3,758 cows located in 
589 herds across 10 countries and represented 7 breeds. 
The samples were analyzed by reference chemistry for 
biomarker contents while the MIR analyses were per-
formed on 30 instruments from different models and 
brands, with spectra harmonized into a common for-
mat. Four quantitative methodologies were evaluated 
to address the strongly skewed distribution of some 
biomarkers. PLS was used as the reference basis, and 
compared with a random modification of distribution 
associated with PLS (Random-downsampling-PLS), 
an optimized modification of distribution associated 
with PLS (KennardStone-downsampling-PLS) and 
Support Vector Machine (SVM). When the ability of 
MIR to predict biomarkers was too low for quantifica-
tion, different qualitative methodologies were tested to 
discriminate low vs high values of biomarkers. For each 
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biomarker, 20% of the herds were randomly removed 
within all countries to be used as the validation data 
set. The remaining 80% of herds were used as the cali-
bration data set. In calibration, the 3 alternative meth-
odologies outperform the PLS performances for the 
majority of biomarkers. However, in the external herd 
validation, PLS provided the best results for isocitrate, 
glucose-6P, free glucose and LDH (R2v = 0.48, 0.58, 
0.28, and 0.24). For other molecules, PLS-Random-
downsampling and PLS-KennardStone-downsampling 
outperformed PLS in the majority of cases, but the 
best results were provided by SVM for citrate, BHB, 
acetone, NAGase and progesterone (R2v = 0.94, 0.58, 
0.76, 0.68, and 0.15). Hence, PLS and SVM based on 
the entire data set provided the best results for normal 
and skewed distributions, respectively. Complementary 
to the quantitative methods, the qualitative discrimi-
nant models enabled the discrimination of high and low 
values for BHB, acetone, and NAGase with a global 
accuracy around 90%, and glucose-6P with an accuracy 
of 83%. In conclusion, MIR spectra of milk can en-
able quantitative screening of citrate as a biomarker 
of energy deficit and discrimination of low and high 
values of BHB, acetone, and NAGase, as biomarkers 
of ketosis and mastitis. Finally, progesterone could not 
be predicted with sufficient accuracy from milk MIR 
spectra to be further considered. Consequently, MIR 
spectrometry can bring valuable information regarding 
the occurrence of energy deficit, ketosis and mastitis 
in dairy cows, which in turn have major influences on 
their fertility and survival.
Keywords: Fourier transform mid-infrared spectrometry, 
ketosis, negative energy balance, mastitis, fertility

INTRODUCTION

At the individual cow level, sub-optimum fertil-
ity, mastitis, negative energy balance, and associated 
metabolic diseases are major issues in dairy farming. 
These problems have widespread incidence and have 
an important economic impact. Energy deficit can be 
considered as a central issue as almost all dairy cows 
experience a period of negative energy balance after 
calving. This is associated with immunosuppression 
and depending of the intensity of this deficit, between 
30% and 50% of dairy cows suffer from associated met-
abolic and infectious diseases (Leblanc, 2010; Wathes 
et al., 2021). Among the associated diseases, ketosis is 
particularly damaging. McArt et al. (2012) reported 
an average incidence of subclinical and clinical keto-
sis of 43%, while economic losses per cow may range 
from 188 to 347€ (McArt et al., 2015; Gohary et al., 
2016). Mastitis is also a major challenge in dairy herds, 
with Riekerink et al. (2008) estimating the incidence 

of clinical mastitis at 23%, while the associated cost 
per cow per year are estimated between 356 and 716€ 
(Puerto et al., 2021). Finally, fertility problems such as 
delayed resumption of cyclicity, prolonged luteal phase, 
fertilization failure or failure to sustain pregnancy are 
also important issues affecting particularly high yield-
ing dairy cow (Leroy et al., 2008) and is leading to 
increase of inter-calving interval, ratio of insemination 
to conception while decreasing rate to first insemina-
tion (Roche et al., 2011).

Having relevant and frequent ‘indicators’ of these 
issues at the individual cow level, through associated 
milk biomarkers, could support herd management by 
proposing an early detection of subclinical or clini-
cal issues. Estimation of biomarkers in milk by Fou-
rier transform mid-infrared spectrometry (MIR) could 
meet this role. Indeed, milk is available daily without 
any invasive process and MIR analysis is now common 
place and accessible in many dairy regions.

Regarding energy deficit, citrate in milk has been 
highlighted by Bjerre-Harpøth et al. (2012), among 
various biomarkers, as having the greatest response 
during a period of negative energy balance. Citrate 
plays a central role in cellular energy metabolism, being 
an intermediate in the citric acid cycle and a central 
component in the de novo synthesis of fatty acids in the 
mammary glands (Garnsworthy et al., 2006; Akkerman 
et al., 2019). More recently, Billa et al. (2020) and Pires 
et al. (2022) also highlighted isocitrate, free glucose, 
and glucose-6 phosphate (glucose-6P) as relevant bio-
markers of energy balance. Krogh et al. (2020) observed 
that variation of these molecules was largely due to 
between-cow variation, which supports their use as bio-
markers at the individual cow level. Energy deficit and 
excessive body fat mobilization may cause subclinical 
or clinical ketosis when the supply of nonesterified fatty 
acids overloads the liver and their degradation products 
are diverted to ketone bodies (Ingvartsen, 2006; Es-
posito et al., 2014). Ketosis is already routinely moni-
tored through well-known milk biomarkers that are the 
major ketone bodies, i.e., β-hydroxybutyrate (BHB) 
and acetone (Enjalbert et al., 2001). For mastitis, so-
matic cell count (SCC) is the main milk biomarker. 
However, this measurement relies on flow cytometry, 
which is a complex and expensive methodology. There-
fore, some authors have suggested alternative indica-
tors to improve detection and diagnosis of mastitis. For 
example, Chagunda et al. (2006) and Hovinen et al. 
(2016) suggested N-acetyl-β-d-glucosaminidase activity 
(NAGase) as a relevant indicator because it reflects 
damage to epithelial cells rather than the counting of 
somatic cells, and may help in discriminating between 
minor and major pathogen infections. Alternatively, 
lactate dehydrogenase (LDH) is an enzyme that is 

Grelet et al.: MIR prediction of milk biomarkers



Journal of Dairy Science Vol. TBC No. TBC, TBC

part of the glycolytic pathway and is known to increase 
with mastitis, and shows high sensitivity to mastitis 
detection (Chagunda et al., 2006). Krogh et al. (2020) 
observed that NAGase and LDH were not heavily influ-
enced by herd factors and concluded that they could be 
considered as useful biomarkers for mastitis at cow level 
for precision livestock farming. Finally, measuring pro-
gesterone in milk would provide important information 
on the reproductive status of dairy cows, particularly 
for the detection of resumption of ovulation, pregnancy 
or atypical ovarian patterns due to delayed ovulation 
or presence of a persistent corpus luteum (Bulman and 
Lamming, 1978; Friggens and Chagunda, 2005; Crowe, 
2008)

However, the development of MIR models to predict 
these biomarkers raises several challenges or questions. 
First, although MIR models predicting citrate, acetone, 
and BHB already exist (De Roos et al., 2007; Grelet 
et al., 2016), to our knowledge this is the first study 
attempting to predict milk isocitrate, glucose-6P, free 
glucose, NAGase, LDH, and progesterone with MIR 
while predicting in routine these biomarkers could be 
of great interest. Moreover, concentrations of some of 
these molecules are far below the considered detection 
threshold of 100 ppm with MIR (Dardenne et al., 2015). 
Previous works have shown the possibility to get infor-
mation on totally indirect phenotypes, e.g., predicting 
body energy status of cows, or their methane emissions 
(McParland et al., 2011; Dehareng et al., 2012). These 
models rely on the global changes in milk composition 
and their associations with the phenotypes of interest, 
but the possibility to extract information from milk 
MIR spectra linked with isocitrate, glucose-6P, free 
glucose, NAGase, LDH, and progesterone is unknow. 
In addition, some molecules show a particular distribu-
tion, with most healthy cows having low content, while 
sick cows show an exponential increase of the biomarker 
of interest. The resulting positively skewed distribution 
is particularly difficult to model, as it goes beyond the 
linear relationship of milk molecules and spectral ab-
sorbance values. Other authors emphasis the lack of 
compatibility between the main modeling method with 
MIR, i.e., partial least square regression (PLS), with 
these asymmetric distributions of molecules, as well as 
the need for alternative modeling methodologies (Soy-
eurt et al., 2020; Kostensalo et al., 2023). Finally, to 
be used for large-scale phenotyping, MIR models must 
be robust (i.e., provide reliable predictions under all 
conditions) covering as much variability as possible to 
avoid extrapolation (Grelet et al., 2021).

Therefore, the objectives of this study were: 1) to 
evaluate the potential of milk MIR spectra to predict 
key biomarkers of energy deficit (citrate, isocitrate, glu-
cose-6P, free glucose), ketosis (BHB and acetone), mas-

titis (NAGase and LDH), and fertility (progesterone); 
2) to test alternative methodologies to PLS, Random-
downsampling-PLS and KennardStone-downsampling-
PLS, specifically designed to better account for the 
specific asymmetric distribution of biomarkers, and 
SVM, which is known for its capacity to handle non-
linear relationships; and 3) to create robust models by 
merging large data sets from 5 international or national 
projects, reaching a total number of 9143 samples.

MATERIALS AND METHODS

Projects and data

Data used in this study were collected in 3 interna-
tional and 2 national projects, allowing the merger of a 
total of 9,143 samples from 3,758 cows across 589 herds 
in 10 countries, collected from 2013 to 2020. Samples 
were collected in experimental and commercial herds 
within the frame of OptiMIR project (Interreg IVB 
NEW) and GplusE project (Genotype Plus Environ-
ment, FP7-Project, http: / / www .gpluse .eu) and in com-
mercial herds within IndiKuh project (IndiKuh, funding 
code: 2817905815), D4Dairy project (FFG comet with 
support of the Austrian government, project 872039, 
https: / / d4dairy .com/ ), and a Swiss national project 
(data provided by Qualitas). The main characteristics 
of each sampling (i.e., countries, breeds, number of 
samples…) are reported in Table 1. The merging of 
these data sets provided wide variability in terms of 
breeds, lactation stages, parities, diets, seasons, man-
agement practices, and geographical areas.

Milk analysis for biomarkers

All samples were collected following the guidelines 
edited by the International Committee for Animal Re-
cording (ICAR Dairy Cattle Milk Recording Working 
Group, 2017) and with ICAR approved milk samplers. 
Morning and evening samples were collected for MIR 
analysis and only morning samples were analyzed by 
reference analysis. Morning samples were therefore split 
in 2 aliquots, for both reference and MIR analysis. Ali-
quoting was realized directly in the milking room when 
milk was still at udder temperature to prevent from fat-
aqueous phasing and unperfect aliquoting. Aliquots for 
biomarkers analysis were store at 4°C right after sam-
pling, without preservative and were stored within 2 h 
at −18°C until shipping. Samples were sent frozen, with 
refrigerated delivery with dry ice or ice blocks to the re-
spective labs. Samples from the OptiMIR, IndiKuh and 
D4Dairy projects were analyzed at CRA-W (Belgium) 
for BHB, acetone and citrate. Analysis were performed 
with a continuous flow analyzer (Scan ++, Skalar, Bre-
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da, The Netherlands) following the procedure described 
by (De Roos et al., 2007; Grelet et al., 2016). All samples 
were analyzed twice, and samples with variation higher 
than 5% were re-analyzed. Samples from the GplusE 
project were analyzed at the Department of Animal 
and Veterinary Sciences, Aarhus University, Denmark, 
for isocitrate, glucose-6P, free glucose, BHB, NAGase, 
LDH, and progesterone. Fluorometric end-point analy-
ses were used to determine milk glucose and glucose-6P 
(Larsen, 2015), isocitrate (Larsen, 2014a) and BHB 
(Larsen and Nielsen, 2005). The indigenous enzymes 
LDH (EC. 1.1.1.27) and NAGase (EC 3.2.1.30) were 
analyzed by fluorometric assays according to Larsen 
(2005) and Larsen et al. (2010) to provide results in 
µmol product (4-MeU)/min*ml, but are later expressed 
in the document in Unit/L. For these molecules, in-
tra plate assay repeatability was below 4.5%CV and 
inter plate assay reproducibility was below 6.0%CV. 
Milk progesterone was determined using a commer-
cial ELISA assay (Ovucheck, Biovet, Canada), based 
on the competitive binding of unlabeled progesterone 
present in the standard or whole milk sample, and a 
fixed quantity of progesterone labeled with the enzyme 
alkaline phosphatase (AP), to binding sites on a limited 
amount of specific progesterone antibodies. After incu-
bation, all components other than those bound to the 
plate wells were washed away. The amount of bound 
AP-labeled progesterone remaining on the wells was 
inversely proportional to the concentration of the un-
labeled progesterone present in the sample. The bound 
labeled progesterone was then measured by reacting the 
AP with its substrate during a second incubation. The 
color produced was measured spectrophotometrically 
and the concentration of progesterone in the milk was 
determined from a standard curve. The recommenda-
tions given by the manufacturer were followed. Intra 
plate assay repeatability was 5.2%CV and inter plate 
assay reproducibility was 6.8%CV. Samples from the 
Swiss national project were analyzed for acetone with 
an AutoAnalyzer 3 (BRAN +LUEBBE). Not all 9 bio-
markers were analyzed in all projects or sub-projects. 
Of the 9,143 samples, the number of samples analyzed 
for each biomarker ranged from 600 for citrate to 7,166 
for BHB. Table 2 shows the number of analysis for each 
biomarker according to countries.

Milk samples analysis for MIR spectra

Aliquots for MIR analysis were stored at 4°C with 
0.02–0.03% bronopol until analysis. Analyses were per-
formed locally on a wide range of instruments with a 
total of 30 spectrometers used to analyze the samples: 
24 Foss instruments of models FT2, FT6000, FT+, and 
FT7 (Foss, Hillerød, Denmark), 5 Bentley FTS (Bent-

Grelet et al.: MIR prediction of milk biomarkers
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ley, Chaska, United States) and 1 Standard Lactoscope 
FT-MIR automatic (Delta Instruments, Drachten, The 
Netherlands). All the spectra from the different instru-
ments were standardized to be merged into a common 
data set following the procedure described in Grelet 
et al. (2015). Morning and evening samples were ana-
lyzed separately but merged into a daily spectrum, to 
be in line with milk recording 24H milk samples, by 
a weighted average considering the AM and PM milk 
yields.

Data editing and MIR models development

To avoid erroneous association between spectra and 
sample, as well as analytical issues during analysis, a 
local fat model was applied to the spectra and the gen-
erated predictions were compared with the predictions 
provided by the laboratories. Records with a differ-
ence above 0.3 g/100mL between local and laboratory 
predictions were discarded (n = 218 records deleted) 
to prevent of wrong association between spectra and 
samples, or other analytical errors. This threshold was 
highlighted in a study of Zhang et al. (2021). Spectra 
with a standardized Mahalanobis distance (GH) greater 
than 10 were eliminated (n = 54 records deleted). A 
high GH value was intentionally used as threshold as 
previous work shown that keeping large spectral vari-
ability in the data set was benefiting to the robustness 
of the developed model (Grelet et al., 2021). Addition-
ally, only records with DIM between 5 and 365 were 
retained (n = 88 records deleted) and reference values 
being under quantification thresholds were discarded. 
All these aforementioned edits eliminated 9% of the 
samples, and resulted in a data set of 8,783 records. 
In descriptive statistics, skewness of each variable was 
calculated as:

 Skewness N
N N

x mean
SD

i=
−( ) −( )

−
∑ ,

1 2

3

 

with N being the number of samples and xi the ith 
observation within each variable.

The MIR spectra were pretreated by a first deriva-
tive with a gap of 5 wavenumbers. The selected spectral 
area consisted of 212 wavenumbers from 968.1 to 1,577.5 
cm−1, 1,731.8 to 1,762.6 cm−1, 1,781.9 to 1,808.9 cm−1, 
and 2,831.0 to 2,966.0 cm−1 to exclude spectral areas 
not reproducible between instruments (Grelet et al., 
2021) and the absorbance values were mean-centered.

For each biomarker, a data set was constituted by 
keeping only the records with reference values and MIR 
spectra. Each data set was then split to create an exter-
nal herd validation data set, randomly removing 20% of 
the herds (i.e., 120 herds out of 589) across all countries 
to be used as the validation data set. The remaining 
80% were used as the calibration data set. The modi-
fications to the distribution described below were only 
performed in the calibration data set and the original 
distribution for each biomarker in the validation data 
set was kept unchanged, to be as close as possible to the 
real field application conditions. In both the calibration 
and validation data sets for each biomarker, all samples 
were retained without removing outliers.

As a basis for comparison, the first models were devel-
oped using partial least squares regression (PLS), this 
being the most commonly used method. The number 
of latent variables was set according to the breakpoint 
of the Root Means Square Error (RMSE) slope dur-
ing the cross-validation step. However, as mentioned 
by Soyeurt et al. (2020), PLS is not adapted to handle 
asymmetric distributions of molecules due to its linear 
structure. Therefore, to better take into account the 
strongly right skewed distributions of some molecules, 2 
methodologies of modification of the distribution were 
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Table 2. Number of samples used in models per biomarker and per country

 
Isocitrate 
(mmol/l)

Citrate 
(mmol/l)

Glucose6P 
(mmol/l)

Free glucose 
(mmol/l)

BHB 
(µmol/l)

Acetone 
(mmol/l)

NAGase 
(Unit/l)

LDH 
(Unit/l)

Progesterone 
(ng/ml)

Austria  98   99 86    
Belgium 594  594 594 617  594 594 291
Denmark 332  338 338 341  338 338 338
England 2,014  2,015 2,015 2,043  2,004 2,004  
France  316   681 149    
Germany 105 82 105 105 500 44 105 105 105
Ireland 1,145  1,139 1,112 1,164  1,143 1,142 156
Italy 439  439 439 650  439 439 439
Luxembourg  104   197 49    
Northern Ireland 874  872 873 874  874 874 651
Switzerland      1671    
Total 5,503 600 5,502 5,476 7,166 1,999 5,497 5,496 1,980

NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate dehydrogenase.
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specifically developed and tested to move toward a nor-
mal distribution. PLS regression was later applied on 
the modified data sets.

The first methodology was the one used in Grelet et 
al. (2016), randomly removing a portion of the low val-
ues to reduce the over-representation of low values in 
the data set. The thresholds for discriminating low and 
high values were obtained from the literature or were 
optimized during the cross-validation step regarding the 
model R2cv, and the proportion of low values to be re-
moved was calculated to balance equally the proportion 
of low and high values. The random elimination was 
performed by cyclic iterations. After down-sampling, 
the proportion of high values, and especially extreme 
high values, were still under-represented. Therefore, a 
logarithmic (10) transformation was applied to the ref-
erence values to be closer to a normal distribution. PLS 
was then applied to the reduced data set. This random 
modification of the distribution associated with PLS is 
later referred to as “Random-downsampling-PLS.”

However, the random elimination of samples, by dis-
carding samples of interest, inevitably leads to loss of 
variability and robustness of the models. Therefore, a 
second methodology was also tested for an optimized 
modification of the distribution to keep only the most 
informative samples in the data set while harmonizing 
the distribution of samples over the range of reference 
values. To do this, a 3-step methodology was applied 
which is schematically represented in Figure 1. The data 
set for each biomarker was first divided into 20 sub-sets 
of equal Y-interval across the Y range. In a second 
step, within each subset, a fixed number of samples 
(e.g., n = 100) was selected using the Kennard-Stone 
algorithm, which iteratively selects the 2 most spec-
trally different samples until the number of samples 
to be selected was reached. The number of samples to 
be selected was manually optimized between 50 and 
200. When the number of samples in the subset was 
lower than the number of samples to be selected (i.e., 
at the right end of the distribution containing samples 
with high content of biomarkers), all the samples were 
retained. In a third step, the selected samples among 
the 20 subsets were merged to compose a data set with 
a harmonized distribution along the Y range, but keep-
ing the most informative samples from the initial data 
set. Finally, a logarithmic (10) transformation was ap-
plied to the reference values and a PLS regression was 
applied to the data as the extreme values were still 
under-represented. This optimized modification of the 
distribution associated with PLS is later referred to as 
“KennardStone-downsampling-PLS.”

Support vector machines regression (SVM-R) was 
tested as an alternative quantitative methodology to 
overcome the specific distribution. SVM-R is a linear 

method adapted to nonlinear relationships due to its 
capacity to find a linear link in a space of higher dimen-
sion. In regression the support vectors are the ones in-
cluding a maximum of samples in the regression within 
an acceptable margin (Brereton and Lloyd, 2010). 
SVM-R was used after a PLS compression to reduce 
the dimension of the data set to 14 latent variables. The 
LIBSVM algorithm was used with the epsilon version 
and a radial basis function kernel. The gamma, cost 
and epsilon hyperparameters were optimized with a 
grid-search to minimize the RMSEcv. Due to its capac-
ity to handle nonlinear data, no Log-transformations 
were applied to biomarker contents.

Finally, when the ability of MIR to predict biomark-
ers was too low to enable rough quantitative screen-
ing (R2cv < 0.74; Grelet et al., 2021), a qualitative 
methodology was tested to assess the possibility of 
discriminating low vs high values of biomarkers. Dis-
criminant models were developed with partial least 
squares discriminant analysis (PLS-DA) using the 
full data set, the randomly balanced data set (Ran-
dom-downsampling-PLS-DA), or the optimized 
balanced data set (KennardStone-downsampling-
PLS-DA). Thresholds to discriminate low and high 
values came from the literature, 200 µmol/L for BHB 
(Denis-Robichaud et al., 2014), 150 mmol/L for ac-
etone (De Roos et al., 2007), 4.3 Unit/L for LDH 
(Chagunda et al., 2006), 5 ng/ml for progesterone 
(Roelofs et al., 2006), or from personal communica-
tion for NAGase (8 Unit/L; Torben Larsen, Aarhus 
University, Denmark, personal communication). No 
threshold could be found for 3 biomarkers of energy 
deficit, isocitrate, free glucose, and glucose-6P, there-
fore discriminant values for feed restrictions were 
visually estimated from published data; 0.15 mmol/L 
for isocitrate (Pires et al., 2022), 0.25 mmol/L for 
free glucose (Pires et al., 2022), and 0.3 mmol/L for 
glucose-6P (Billa et al., 2020).

The models were evaluated using the external herd 
validation set. When a logarithmic transformation was 
used, predictions were back-transformed (10prediction) to 
further evaluate model performance in a usual scale and 
for graphical representation. Model statistics, both in 
the calibration and validation steps, were expressed in 
terms of R2 (coefficient of determination), and RMSE. 
Ratio of RMSE/standard deviation of global data set 
(RPD) was not calculated as being not relevant for 
models with asymmetric distribution, for which SD 
does not describe correctly the spread of the popula-
tion (Bellon-Maurel et al., 2010). As a last step, final 
models were developed using all the data, calibration 
and validation, and internal cross-validation R2cv and 
RMSEcv (10 subsets constituted by cyclic iteration) are 
shown. Discriminant model statistics were expressed 

Grelet et al.: MIR prediction of milk biomarkers
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in terms of sensitivity (percentage of good classifica-
tion in the high content group), specificity (percentage 
of good classification in the low content group) and 

global accuracy (global percentage of correct classifica-
tion). Computations and models were carried out with 
programs developed in Matlab 2022 (The Mathworks, 

Grelet et al.: MIR prediction of milk biomarkers

Figure 1. Schematic representation of the modification of biomarkers distribution using Kennard-Stone algorithm to sub-data sets. Samples 
in red are selected to constitute the calibration data set.
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Inc., Natick, MA, USA) and the PLS toolbox v. 8.5.1 
(Eigenvector Research, Inc.,Wenatchee, WA, USA).

RESULTS AND DISCUSSION

Descriptive statistics of reference values

Descriptive statistics are shown in Table 3. The 
mean value for each biomarker was in the same order 
of magnitude as in previous studies, e.g., means of 0.179 
mmol isocitrate (Larsen, 2014a), 9.04 mmol/L citrate 
(Grelet et al., 2016), 0.081mmol/L glucose-6P and 
0.331 mmol/L free glucose (Larsen and Moyes, 2015), 
146 µmol/L BHB (De Roos et al., 2007) and 0.100 
mmol/L acetone (Denis-Robichaud et al., 2014), 2.7 
Unit/L NAGase and 2.4 Unit/L LDH (Åkerstedt et al., 
2011), and progesterone between 0.8 and 22.8 ng/ml 
(Ginther et al., 1976). However, it should be noted that 
glucose-6P is higher than in the above referenced study 
(+33%) while BHB, acetone and NAGase are consid-
erably lower, −62%, −47%, and −41% respectively. 
This could be explained by the over-representation of 
healthy cows in our data set, as most of the sampling 
did not focus on comparing healthy and sick cows, or 
by minor differences in the analytical process. Table 3 
also shows that both ketosis (BHB and acetone) and 
mastitis biomarkers (NAGase and LDH) have asym-
metric distributions with strong positive skewness. Fig-
ure 2 shows the distribution of each molecule according 
to sampling countries. It also particularly highlights the 
positive skewness of distribution of ketosis and mastitis 
biomarkers and their exponential increase in case of 
disorder.

The Pearson correlation table between biomarkers is 
shown in Table 4. As different projects analyzed different 
biomarkers, not all the correlations could be calculated. 
Isocitrate is derived from citrate during the Kreb’s cycle 
and both molecules were found to be positively cor-
related in Larsen (2014b). Citrate decreases with the 

increase of de novo fatty acids synthesis (Garnsworthy 
et al., 2006) and is mentioned as an early indicator of 
physiological imbalance of the animal (Bjerre-Harpøth 
et al., 2012b). In the current data set the correlation 
coefficients (r) between isocitrate and citrate could 
not be calculated, but both are weakly to moderately 
positively correlated with BHB (r = 0.24 and r = 0.45 
for isocitrate and citrate respectively). This moderate 
correlation with BHB may reflect that they are also as-
sociated with physiological imbalance but at a different 
degree of severity. A decrease of citrate has also been 
observed in case of mastitis (Hyvönen et al., 2010), how-
ever, in the present study a weak positive correlation 
is observed between isocitrate and NAGase and LDH, 
both of which increasing in cases of mastitis. Glucose is 
not synthetized in the mammary epithelial cells and is 
therefore directly dependent of blood glucose absorbed 
in the mammary gland (Larsen and Moyes, 2015). Free 
glucose was negatively correlated with both Glucose-6P 
and isocitrate as observed by (Pires et al., 2022). Free 
glucose is positively correlated with plasma glucose and 
milk lactose, and decreases in case of energy deficit 
(Larsen and Moyes, 2015; Pires et al., 2022). On the 
contrary, glucose-6P is negatively correlated with milk 
lactose and increases in case of energy deficit, probably 
due its role in the pentose phosphate cycle and as an in-
termediate in glycolysis (Larsen and Moyes, 2015; Pires 
et al., 2022). The 2 molecules were not correlated with 
BHB, reflecting their complementarity. Low glucose 
level associated with high BHB indicates an imbalanced 
cow, whereas high BHB associated with normal glucose 
may be associated to a false ketosis diagnistic. Both 
glucose-6P and free glucose were moderately correlated 
with NAGase and LDH, which is probably explained by 
the damaging effect of mastitis on mammary epithelial 
cells. The 2 biomarkers of ketosis (BHB and acetone) 
were strongly correlated, with an r = 0.69. A similar re-
lationship (r = 0.71) was observed between the mastitis 
biomarkers, NAGase and LDH.

Grelet et al.: MIR prediction of milk biomarkers

Table 3. Descriptive statistics of the chemical analysis results for the 9 biomarkers

 Minimum Maximum Mean Standard deviation Skewness

Isocitrate (mmol/l) 0.016 0.447 0.156 0.053 0.86
Citrate (mmol/l) 3.88 16.12 8.90 2.19 0.33
Glucose-6P (mmol/l) 0.001 0.808 0.121 0.075 1.52
Free Glucose (mmol/l) 0.001 0.998 0.284 0.120 0.62
BHB (µmol/l) 20 1989 90 102 5.88
Acetone (mmol/l) 0.005 3.355 0.070 0.148 11.49
NAGase (Unit/l) 0.00 25.10 1.91 1.61 4.52
LDH (Unit/l) 0.00 45.96 2.53 2.70 5.99
Progesterone (ng/ml) 0.50 22.44 5.28 2.76 1.21

NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate dehydrogenase.
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Quantitative MIR models

Table 5 shows the performance of the 4 different 
modeling methodologies with the 9 biomarkers during 
the calibration step with 80% of herds. The results are 
shown in terms of calibration RMSE (RMSEc) and coef-
ficient of determination (R2c). The 3 alternative meth-
odologies to PLS seemed to outperform PLS for most of 
biomarkers. PLS-Random-downsampling provided the 
best results for acetone, PLS-KennardStone-downsam-

pling the best results for isocitrate and progesterone, 
while SVM-R the best results for citrate, glucose-6P, 
Free Glucose, BHB, NAGase, and LDH, suggesting 
a better ability to take into account the specificities 
of the distributions. However, as the distribution is 
modified in PLS-Random-downsampling and PLS-
KennardStone-downsampling, the RMSEc is artificially 
inflated due to the elimination of low values which are 
better predicted than high values. Alternatively, the re-
moving of low samples inflates the R2 which is directly 

Grelet et al.: MIR prediction of milk biomarkers

Figure 2. Distribution of each biomarker according to the sampling country.
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affected by a better distribution over the range (Davies 
and Fearn, 2006). Finally, in the calibration step some 
methodologies may overfit the hyperparameters to this 
particular data set. Therefore, the calibration statistics 
does not allow to compare the methods on a common 
basis and the results should be considered with caution 
and in an informative way. Consequently, for the selec-
tion of best model, the external validation statistics are 
to be considered only.

Table 6 shows the performance of models in external 
herd validation, by applying the models to the 25% 
excluded herds across countries. Looking at the R2v 
and RMSEv, the best models in calibration were not 
necessarily the best in the validation step. Indeed, PLS 
provided the best results for isocitrate, glucose-6P, free 
glucose and LDH. SVM-R provided the best results 
for citrate, BHB, acetone, NAGase, and rogesterone. 
PLS-Random-downsampling and PLS-KennardStone-
downsampling provided better results than PLS for 
some biomarkers (glucose-6P, BHB, acetone, LDH, 
and progesterone for PLS-Random-downsampling and 
BHB, acetone, and progesterone for PLS-Kennard-
Stone-downsampling). These molecules were the ones 
with highly skewed distributions. However, for these 
molecules, the best models were obtained using SVM-
R. Therefore, although these 2 methodologies might 
provide some improvement compared with PLS, SVM-
R seems to be the best strategy to take into account 
non-linearity, i.e., the exponential increase of minor 
molecules not associated with exponential changes in 
the main components. Therefore, with the current data 
set, it is worth using a method adapted to non-linearity 
rather than modifying the distribution to approach 
normality. Additionally, SVM-R provides better results 
with the entire data set than when associated with 
modification of distribution (results not shown), which 
enables keeping all the variability of the calibration 
data set and provides a higher robustness to the mod-
els, leading to better results in the external validation. 
Therefore, classical PLS and SVM-R based on the full 
data set provided the best results for the normal and 
skewed distributions, respectively. The results also indi-
cate that retaining the full variability of the calibration 
data set increases the robustness of the model and the 
quality of predictions when applied to external data. 
This demonstrates the benefits of expanding data sets 
through collaborations.

As a final step, the calibration and validation data 
sets were merged to develop final models across the 
entire data set, covering a maximum of variability. 
These final models were developed with the best meth-
odologies highlighted for each molecule during the herd 
validation step, i.e., PLS for isocitrate, glucose-6P, Free 
Glucose, and LDH an SVM-R for citrate, BHB, ac-

Grelet et al.: MIR prediction of milk biomarkers
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etone, NAGase, and progesterone. These models could 
only be validated in cross-validation, with 10 subsets 
constituted by cyclic iteration. Figure 3 shows these 
final models, with measured versus predicted values. 
Energy balance biomarkers were predicted with R2cv 
of 0.50, 0.88, 0.59, and 0.40 and RMSEcv of 0.037, 
0.76, 0.048, and 0.093 mmol/L for isocitrate, citrate, 
glucose-6P and free glucose respectively. Biomarkers 
of ketosis were predicted with R2cv of 0.61 and 0.60, 
and RMSEcv of 64.6 µmol/L and 0.094 mmol/L for 
BHB and acetone respectively, which is comparable to 
results obtained by De Roos et al. (2007), with RMSE 
of 65µmol/L and 0.070mmol/L for BHB and acetone 
and shows a lower error than obtained by Heuer et al. 
(2001), with error of 0.210 mmol for acetone. Mastitis 
biomarkers were predicted with R2cv of 0.42 and 0.29, 
and RMSEcv of 1.23 and 2.28 unit/L for NAGase and 
LDH respectively. Finally, progesterone as an indicator 
of the reproductive status of dairy cows, was predicted 
with a R2cv of 0.13 and a RMSEcv of 2.57 ng/ml, which 
is not surprising knowing than mean progesterone was 
approximately 5ppb in milk, and than other changes 
associated to fertility status in milk composition are 
probably insignificant compared with the detection 
threshold of 100ppm with MIR in milk.

Regarding the possibility of using MIR to predict 
biomarkers of energy balance, citrate was very well pre-
dicted, with a R2v of 0.94 and a relative error lower than 
10%, which means that accurate quantitative screening 
can be considered with this model. The glucose-6P 
model shows a R2v of 0.58 but a very high relative er-
ror (RMSE/mean) of 41%, indicating that the model is 
very inaccurate and should only be considered to detect 
extreme values (Grelet et al., 2021). Therefore, it is 
more reliable to focus on citrate predictions to obtain 
information on cow status. It is recommended not to 
use isocitrate and free glucose prediction models, due 
to low R2v of 0.48 and 0.28, respectively.

Regarding biomarkers of ketosis, BHB models have 
similar performances in cross-validation and valida-
tion, while the final acetone model shows a R2cv of 
0.6, which is lower than the R2 in external validation 
(0.76). Therefore, the R2v is probably too optimistic, 
due to the random exclusion of herds that were likely 
well predicted in the validation data set, and it seems 
more relevant to consider the R2cv (0.6) as a quality 
indicator of the acetone model. Therefore, BHB and 
acetone models show similar performances, with both 
a R2v or R2cv of approximately 0.6 and a very large 
relative RMSE. This performance is similar to previous 
findings (Grelet et al., 2016), and confirms that these 
models should be used with caution due to their high 
inaccuracy, and can only be used to detect extreme val-
ues. This is nevertheless potentially sufficient to detect 

cows suffering from sub-clinical and clinical ketosis. In 
the case where BHB and acetone information would 
be redundant in practical use, it is recommended to 
focus on BHB as it is based on 7,166 records compared 
with 1,999 for acetone. This large number, which is 
associated with a better coverage of countries and lo-
cal conditions, should bring a better robustness to the 
model by limiting extrapolation to unknown conditions 
when using with real field data as shown in Grelet et al. 
(2021). Furthermore, the inconsistency between valida-
tion results and cross-validation based on the whole 
data set shows that the acetone model is dependent on 
a few extreme high points, indicating that the model is 
not yet sufficiently robust.

Regarding mastitis biomarker models, as for Acetone, 
the NAGase R2v is probably too optimistic, due to the 
random exclusion of herds that were likely well pre-
dicted in the validation data set. The NAGase model 
shows a more realistic R2 in cross validation than in 
validation, and R2cv should be considered rather than 
R2v. NAGase is predicted with a R2cv of 0.42 and a high 
relative error (42%), which is not precise enough to be 
used for individual cow monitoring. Performance of the 
LDH model, with R2v of 0.24 and a high relative error 
(76%) is also too low to be considered for use. Finally, 
the progesterone prediction model, with an extremely 
low R2v (0.15) and a high relative error (53%), cannot 
be used for cow management.

Qualitative MIR models

When the ability of MIR to predict biomarkers was 
too low to enable approximate quantitative screen-
ing (R2cv < 0.74; (Grelet et al., 2021)), a qualitative 
methodology was tested to assess the possibility of 
discriminating low vs high values for all biomarkers 
except citrate. Discriminant models were developed 
using different methodologies associating PLS-DA and 
under-sampling or not. The best results obtained dur-
ing the external herd validation are shown in Table 7. 
PLS-DA on the full data set provided the best clas-
sification results for isocitrate, free glucose, acetone, 
and progesterone, while PLS-DA associated with 
random under-sampling provided the best results for 
BHB and LDH, while PLS-DA associated with Ken-
nardStone under-sampling provided the best results for 
glucose-6P and NAGase. The lack of consistency in the 
best methodology for both normally distributed and 
skewed molecules shows that no general conclusions can 
be drawn and that different methodologies should be 
tested for each biomarker. The results also show that 
under-sampling methods can be useful to balance the 
data set before discrimination. Three biomarkers were 
predicted with a very high percentage of correct clas-

Grelet et al.: MIR prediction of milk biomarkers
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sification, with global accuracy around 90% for BHB, 
acetone, and NAGase. This validates that MIR spec-
trometry can discriminate high and low values of BHB 
and acetone. It also indicates that, unlike quantitative 
models, qualitative discriminant models can discrimi-
nate low and high NAGase contents with good accuracy, 
which could help in the management and detection of 
mastitis. glucose-6P is predicted with a global accuracy 

of 83%. The added value of such accuracy needs to be 
tested in the field to evaluate a potential use of this 
model. Furthermore, (Billa et al., 2020) mentioned a 
breed effect on glucose-6P that should be taken into 
account in the use of raw predictions. Accuracy of other 
models was less than 75%, therefore it seems difficult to 
consider their use for herd management.

Grelet et al.: MIR prediction of milk biomarkers

Figure 3. Cross-validation performances of the final models developed on the full data sets. Plots showing measured biomarkers versus 
predicted biomarkers in the 10-fold cross-validation. The final models were developed with the best methodologies highlighted for each molecule 
during the herd validation step, i.e., PLS for isocitrate, glucose-6P, free glucose and LDH an SVM-R for citrate, BHB, acetone, NAGase and 
progesterone. RMSEc = root mean square error of calibration; RMSEcv = root mean square error of 10-folds cross-validation; R2cal = coefficient 
of determination of the calibration; R2cv = determination coefficient of 10-folds cross-validation; NAGase = N-acetyl-β-d-glucosaminidase; LDH 
= lactate dehydrogenase
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Perspectives and limitations

The objectives of this study were: 1) to evaluate the 
potential of MIR milk spectra to predict key biomark-
ers of energy deficit (citrate, isocitrate, glucose-6P, free 
glucose), ketosis (BHB and acetone), mastitis (NAGase 
and LDH), and fertility (progesterone), 2) to test alter-
native methodologies to PLS to better account for the 
specific asymmetric distribution of biomarkers, and 3) 
to create robust models by merging large data sets from 
international or national projects.

Milk citrate is predicted with sufficient accuracy to 
allow accurate quantitative screening of energy deficit 
of cows. Quantitative and qualitative models predicting 
BHB and acetone are able to discriminate high from low 
values, which seems sufficient to detect cows suffering 
from sub-clinical ketosis. The qualitative discriminant 
model predicting NAGase, showing a global accuracy 
of 88% of correct classification, also demonstrates an 
ability to discriminate high from low values. It could 
play a role in the detection of mastitis, especially if flow 
cytometry is not available to provide SCC information, 
e.g., if in future MIR instruments are miniaturized to 
be placed in farms. Models predicting progesterone 
were not good enough to contribute to cow fertility 
monitoring. However, mastitis, energy deficit and meta-
bolic disease are all major causes of subfertility in dairy 
cows, so their detection in early lactation will help to 
predict future fertility issues (Wathes, 2012; Lou et al., 
2022). Consequently, MIR spectrometry can provide 
valuable information in relation to 4 main factors lead-
ing to involuntary culling of dairy cows (De Vries and 
Marcondes, 2020; Dallago et al., 2021). Previous ver-
sions of the citrate, BHB and acetone models (Grelet et 
al., 2016) were already routinely used in the framework 
of milk recording in several European countries, but 
contained only a few hundreds of samples. The 3 up-
dated quantitative models should increase the quality 
of predictions due to the increased variability in the 
calibration data sets, which has been facilitated by the 
international collaboration.

However, the predicted raw values should not be con-
sidered as an end in themselves. Biomarker concentra-
tion may be highly dependent on days in milk, parity, 
breed and potentially other variables. Therefore, their 
use and the way information is disseminated at farm 
level must take these important aspects into account. 
For example, assessing the dynamics of biomarkers 
throughout the lactation stage, or comparing with ani-
mals of similar characteristics may be more appropriate 
than using the predicted raw value. These predicted 
biomarkers also come in addition to the wide range of 
already existing parameters, and their complementar-
ity, or marginal effect, should be considered. In par-
ticular, the possibility to predict NAGase content on 
such large scale is rather new, and its complementarity 
with the SCC, as well as its added values, should be 
investigated. For ketosis, energy deficit biomarkers re-
flecting plasma glucose may be highly complementary 
to ketosis biomarkers. Indeed, their combination may 
enable to screen cow with low glucose and high ketone 
bodies, which are the critical cases of ketosis to detect 
(Moyes et al., 2013; Foldager et al., 2020).

In terms of modeling methodologies, the results 
show that it is worth using methods adapted to non-
linearity rather than trying to modify the distribution 
to approach normality. In the present work, SVM-R 
has particularly shown good performances for skewed 
distributions. However, this method based on a higher 
dimension space and numerous hyperparameters to 
tune is extremely time consuming to calculate. Work-
ing with an elevated number of samples (e.g., several 
thousand samples) especially increases calculation time 
as the matrix dimension reduction is performed with 
XX’ (dimension n samples * n samples) instead of X’X 
(dimension p absorbances*p absorbances). Therefore, 
not all the potential algorithms and optimizations 
could be tested and further investigations, requiring 
higher computation power, may enable accuracy of 
current results to be improved. Additionally, not all the 
external herd validation combinations could be tested, 
which would be necessary to have a stable estimation of 

Grelet et al.: MIR prediction of milk biomarkers

Table 7. External herd validation results of the qualitative discrimination between low and high values for 8 biomarkers. Only the best 
methodology between PLS-DA, Random-downsampling-PLS-DA, and KennardStone-downsampling-PLS-DA is shown

Biomarker  Best method Threshold Sensitivity Specificity Accuracy

Isocitrate  PLS-DA 0.150 mmol/L 84% 60% 75%
Glucose-6P  KennardStone-downsampling-PLS-DA 0.3 mmol/L 83% 83% 83%
Free Glucose  PLS-DA 0.250 mmol/L 81% 57% 67%
BHB  Random-downsampling-PLS-DA 200 µmol/L 88% 92% 92%
Acetone  PLS-DA 0.15 mmol/L 81% 91% 91%
NAGase  KennardStone-downsampling-PLS-DA 8 Unit/L 85% 88% 88%
LDH  Random-downsampling-PLS-DA 4.3 Unit/L 75% 69% 70%
Progesterone  PLS-DA 5 ng/ml 49% 65% 56%

PLS-DA = partial least square discriminant analysis; NAGase = N-acetyl-β-d-glucosaminidase; LDH = lactate dehydrogenase.
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external herd validation performances. SVM-R is only 
one of the many methods adapted to non-linearity and 
future research should investigate the potential of other 
algorithms such as neural networks, kernel methods or 
weighted regressions.

In addition to herd management, predicted biomark-
ers can be valuable for genetic evaluations as proxies 
of dairy cow challenges. McParland et al. (2015) and 
Bonfatti et al. (2017) mentioned that models predicting 
phenotypes with low accuracy may successfully contrib-
ute in making genetic progress if genetic correlations 
exist with other traits of interest (e.g., direct health 
traits).

CONCLUSIONS

Thanks to international collaborations, the working 
data set consisted of a total of 9,143 records. PLS and 
SVM-R based on the full data set provided the best re-
sults for normal and skewed distributions, respectively. 
Regarding the ability of MIR to predict biomarkers of 
energy balance, citrate was very well predicted, which 
allowed for quantitative screening. Qualitative models 
indicate that MIR spectrometry can discriminate low 
and high values of BHB and acetone, as biomarkers 
of ketosis, with accuracy around 90%. A qualitative 
discriminant model can discriminate low and high NA-
Gase contents with good accuracy (88% good classifica-
tion), which could help in mastitis management and 
detection, especially if SCC through flow cytometry 
is not available, e.g., in farm measurements. Finally, 
progesterone could not be predicted with sufficient ac-
curacy to be further considered. Further investigations 
are needed, especially to evaluate the performances 
of models when used in routine with real field data. 
Consequently, MIR spectrometry can provide valuable 
information on energy deficit, ketosis and mastitis in 
dairy cows, all of which influence fertility.
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