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Abstract: Cows can live for over 20 years, but their productive lifespan averages only around 3 years
after first calving. Liver dysfunction can reduce lifespan by increasing the risk of metabolic and
infectious disease. This study investigated the changes in hepatic global transcriptomic profiles
in early lactation Holstein cows in different lactations. Cows from five herds were grouped as
primiparous (lactation number 1, PP, 534.7 ± 6.9 kg, n = 41), or multiparous with lactation numbers
2–3 (MP2–3, 634.5 ± 7.5 kg, n = 87) or 4–7 (MP4–7, 686.6 ± 11.4 kg, n = 40). Liver biopsies were
collected at around 14 days after calving for RNA sequencing. Blood metabolites and milk yields
were measured, and energy balance was calculated. There were extensive differences in hepatic gene
expression between MP and PP cows, with 568 differentially expressed genes (DEGs) between MP2–3
and PP cows, and 719 DEGs between MP4–7 and PP cows, with downregulated DEGs predominating
in MP cows. The differences between the two age groups of MP cows were moderate (82 DEGs).
The gene expression differences suggested that MP cows had reduced immune functions compared
with the PP cows. MP cows had increased gluconeogenesis but also evidence of impaired liver
functionality. The MP cows had dysregulated protein synthesis and glycerophospholipid metabolism,
and impaired genome and RNA stability and nutrient transport (22 differentially expressed solute
carrier transporters). The genes associated with cell cycle arrest, apoptosis, and the production
of antimicrobial peptides were upregulated. More surprisingly, evidence of hepatic inflammation
leading to fibrosis was present in the primiparous cows as they started their first lactation. This study
has therefore shown that the ageing process in the livers of dairy cows is accelerated by successive
lactations and increasing milk yields. This was associated with evidence of metabolic and immune
disorders together with hepatic dysfunction. These problems are likely to increase involuntary culling,
thus reducing the average longevity in dairy herds.

Keywords: liver; ageing; cellular senescence; transcriptome; immunity; metabolism; lactation;
age; cows
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1. Introduction

The profitability of dairy enterprises increases with greater cow longevity, associated
with a higher proportion of total lifetime spent in milk production [1]. To optimise economic
performance, heifers are expected to have their first calf at 24 months of age and continue to
calve at annual intervals until their fourth or fifth lactation [2]. However, genetic selection
in favour of high milk yields has led to the decreased fertility and lifespan of Holstein dairy
cows [3]. While cattle can live for over 20 years, in practice their lifespan is currently around
4.5–7 years, representing 2.5–5 lactations [1,4,5]. Around 25% of dairy cows are culled in
each lactation [6], with only around 40% of the herd surviving beyond their third lactation.
This is economically inefficient as it results in the loss of milk production and requires
keeping more animals for the same milk output. In addition, short lifespans result in more
methane emissions per cow, as their productive life after first calving is proportionately
less in relation to their total lifespan, thus having a negative environmental impact [7]. The
main causes of culling are poor fertility and milk production, mastitis, and lameness [8,9].

During the transition period, dairy cows undergo pregnancy, delivery, and lactogene-
sis, experience many endocrine changes that are associated with regulating these events,
and are prone to oxidative stress [10]. After calving, the increased energy demand for lacta-
tion necessitates extensive alterations in metabolism and energy supply [11,12]. Insufficient
feed intake or the excessive mobilisation of body lipids can lead to a period of postpartum
negative energy balance (NEB) [13,14]. Homeorhetic regulation involving the liver is cen-
tral in dealing with the increased nutrient need in early lactation. This includes increased
lipolysis and downregulating triacylglycerol synthesis in adipose tissue, and upregulating
fatty acid oxidation and gluconeogenesis [14–16]. This results in changes in circulating
metabolites, including increased concentrations of non-esterified fatty acids (NEFA) and
β-hydroxybutyrate (BHB), and decreased glucose concentrations, all of which contribute to
the reduced immune capacity at this time [17,18]. The liver also plays a co-ordinating role
in cholesterol homeostasis [19]. Excessive tissue mobilisation may lead to the development
of hepatic steatosis, which compromises glucose production and increases inflammatory
responses [10]. NEB is an important contributor to immunosuppression after calving [20].
Previous studies have shown that the cows with more severe postpartum NEB had reduced
milk yield and fertility [21], prolonged uterine remodelling and repair [22], and impaired
local and systemic immunity [23].

In addition to food digestion, detoxification, and metabolism, the liver synthesises
and secretes many inflammatory mediators [24]. The hepatic production of acute phase
proteins (APPs) is altered in response to inflammatory cytokines (such as IL1, IL6, and
TNFA), contributing to innate immune processes against invading microorganisms [25,26].
The liver is also the main source of insulin-like growth factor-1 (IGF-1) and its binding
proteins (IGFBPs) [27]. These are important for cellular metabolism and proliferation,
and also play roles in both innate and acquired immunity [28]. Furthermore, the liver
interacts with the reproductive system in a multifaceted fashion, and can modulate the
metabolism and transport of steroids to tissues via the altered secretion of sex hormone-
binding globulin [29].

The hallmarks of ageing in the liver, demonstrated in both human populations and
a variety of model organisms, include genome instability, telomere attrition, epigenome
alteration, loss of proteostasis, response to endoplasmic reticulum stress, deregulated
nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and
altered intercellular communication [30–32]. These changes cause a progressive impairment
in the ability of an organism to maintain homeostasis and are associated with increased
incidences of both hepatic and systemic diseases [33]. We previously compared circulating
leucocyte global transcriptomic profiles between cows with different lactation numbers,
finding changes in many genes and pathways that were comparable to those known to be
associated with ageing in humans and model organisms. In addition, alterations in energy
utilisation and immune response in the leucocytes of older cows were observed [34].
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There is currently a lack of information regarding hepatic changes during the ageing
process in dairy cows. In the present study the hepatic transcriptomic gene expression
profiles in early lactation between young (lactation number 1), medium (lactations 2–3),
and older cows (lactations 4–7) were compared using next generation sequencing and
bioinformatics approaches. This approach sheds light on the changes in genes and path-
ways involved in age-related symptoms and diseases arising during the different phases
of a cow’s life. Our hypothesis was that this would show a decreasing ability of the older
animals to cope with the postpartum changes in metabolism and immunity, thus acting as
an important determinant of their lifespan.

2. Results
2.1. Blood Metabolites and Animal Performance Traits between the Three Lactation Groups

Table 1 shows the results of blood metabolites, feed intake, milk yield and composition,
body weight (BW), body condition score (BCS), energy corrected milk (ECM), and energy
balance (EBAL) between the three lactation groups at around 14 days in milk (DIM). Circu-
lating glucose and IGF-1 concentrations were both significantly reduced as the lactation
number increased (PP > MP2–3 > MP4–7, p < 0.01). Circulating NEFA concentrations
were higher in MP4–7 than in PP cows (p < 0.01) or MP2–3 (p < 0.05) but did not differ
significantly between PP and MP2–3 cows. There was also a trend (p = 0.07) for increased
concentrations of BHB with age. Both MP groups had significantly higher cholesterol
concentrations (p < 0.05) and daily dry matter intakes (DMI) (p < 0.0001) than the PP cows.
BW, milk yield (MY), and ECM all increased with lactation number (MP4–7 > MP2–3 > PP,
p < 0.01), whereas the BCS was greater at day 14 in the PP cows than in either MP group
(p < 0.05). MP4–7 cows had a more negative EBAL than the younger cows (p < 0.01),
whereas the difference between the PP and MP2–3 groups was not significant. The overall
incidence of health conditions diagnosed in the first 14 days in milk (i.e., preceding hepatic
biopsy collection) increased from 9.7% in PP cows to 13.8% in MP2–3 cows and 32.5% in
MP4–7 cows (Supplementary file Table S1A).

Table 1. Blood metabolites, feed intake, bodyweight, body condition score, and milk parameters in
three lactation groups on day 14 after calving 1.

Parameters 2 PP Cows MP2–3 Cows MP4–7 Cows

N 41 87 40
Glucose (mmol/L) 3.81 ± 0.06 a 3.44 ± 0.05 b 3.28 ± 0.07 c

Urea (mmol/L) 3.04 ± 0.14 3.10 ± 0.15 2.71 ± 0.17
BHB mmol/L) 0.59 ± 0.07 0.70 ± 0.06 0.82 ± 0.11
NEFA (mmol/L) 623.9 ± 74.4 b 697.7 ± 48.7 b 881.2 ± 73.1 a

IGF1 (ng/mL) 162.5 ± 13.0 a 92.3 ± 5.7 b 61.4 ± 7.0 c

Cholesterol (mmol/L) 2.65 ± 0.08 b 3.04 ± 0.07 a 3.02 ± 0.11 a

Total DMI (kg/d) 14.90 ± 0.39 b 19.20 ± 0.43 a 19.80 ± 0.67 a

BW (kg) 534.7 ± 6.9 c 634.5 ± 7.5 b 686.6 ± 11.4 a

BCS 3.10 ± 0.05 a 2.83 ± 0.04 b 2.86 ± 0.08 b

MY (kg/d) 3 23.2 ± 0.9 c 35.2 ± 0.7 b 37.4 ± 0.9 a

Milk fat (%) 3 4.33 ± 0.13 4.37 ± 0.08 4.53 ± 0.12
Milk protein (%) 3 3.28 ± 0.05 3.25 ± 0.03 3.23 ± 0.05
ECM (kg/d) 3 24.0 ± 0.8 c 36.0 ± 0.8 b 39.5 ± 0.9 a

EBAL (MJ/d) 3 −2.6 ± 0.9 a −5.5 ± 0.8 a −8.4 ± 1.0 b

1 Values are expressed as mean ± SE. a > b > c, p < 0.05 to p < 0.0001. 2 BHB: beta-hydroxybutyrate, NEFA: non-
esterified fatty acid, DMI: dry matter intake, BW: body weight, BCS: body condition score (measured at both
14 and 35 days in milk), ECM: energy corrected milk, EBAL: energy balance. 3 Values are the average of the
records over 12–16 days in milk.

2.2. Hepatic Gene Expression Profiles between the Three Lactation Groups

The reference genome of Bos taurus ARS-UCD 1.2 contains 35,158 genes, of which
19,591 were mapped and quantifiable in the samples, with the maximum group value of
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29,255 RPKM for ALB. Volcano plots showing the differential gene expression between the
three lactation groups are given in Figure 1. A Venn diagram showing the DEGs derived
from the three comparisons is presented in Figure 2. While there were only 10 common
DEGs (Supplementary file Table S1B) between all three comparisons, the DEGs derived
from the comparisons of MP4–7 with the PP group included most of the DEGs generated
in the three comparisons.
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Figure 1. Volcano plots showing the gene expression profiles (A) between the MP2–3 (n = 87) and
PP (n = 41) cows; (B) between the MP4–7 (n = 40) and PP (n = 41) cows; and (C) between the MP
4–7 (n = 40) and MP2–3 (n = 41) cows. The reads were quantified as Reads Per Kilobase Million
(RPKM). The fold changes were log2-transformed, and the p-values were BH-adjusted to control the
FDR at level 0.05. The green dots indicate the downregulated genes with FDR (BH) p < 0.05 and fold
changes ≤ −log2 (1.25), and red dots indicate upregulated genes with FDR (BH) p < 0.05 and fold
changes ≥ log2 (1.25). The orange dots indicate the genes with FDR (BH) p < 0.05 but with absolute
fold changes < log2 (1.25).
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2.3. Comparison of Hepatic Gene Expression between MP Cows with 4–7 Lactations and the
PP Cows

The comparisons of hepatic gene expression between the MP4–7 and PP groups
generated 719 DEGs, with 260 being upregulated and 459 downregulated (Supplementary
file Table S2A). The top 20 upregulated DEGs ranked by FDR (BH) p-values, which were
expressed at higher levels in the older cows, are given in Supplementary file Table S2B.
These included six DEGs associated with protein metabolism (CCNB3, FBXW5, RARRES1)
and other metabolic processes (BARX2, DUSP3, MYOM1) and five involved in response
to a stimulus (DUSP3, HSPA6, MYOM1, RASL11B, TENM1). GRAMD4 encodes a protein
involved in cell cycle control and apoptosis. Several DEGs are involved in various binding
activities, such as a calcium ion binding/sensor (NCS1), protein binding (KLHDC7A,
SLC13A2), and DNA and histone binding (SPTY2D1).

The top 20 downregulated DEGs, with reduced expression in older cows, are given in
Supplementary file Table S2C. Half of these are involved in metabolic processes including
protein metabolism (ADAMTS12, AGTR2, COL1A1, COL3A1, COL4A5, DNAJC18, NBDY)
and other metabolic processes (IGF1, LRP3, MCOLN2, NFATC4). Five DEGs are associated
with the developmental process (COL1A1, COL3A1, LRP3, RTN4RL1, SPARC) and nine are
involved in the response to a stimulus (ADAMTS12, CCDC80, COL1A1, COL3A1, COL4A5,
IGF1, NFATC4, RTN4RL1, S100A16). Some of these genes encode proteins involved in
multiple biological processes. For example, IGF1 is associated with cellular proliferation,
response to stimulus and nutrient levels, and glucose metabolism. COL1A1 and COL3A1
play roles in metabolism, adhesion, locomotion, multicellular processes, response to stimuli,
development, and protein metabolism. IGF2BP3 binds to nucleic acid, promotes cell
adhesion, and is known to be involved in RNA synthesis and metabolism. RTL4 may
have a role in inflammation while GSTP1_2 belongs to a family of enzymes that play an
important role in detoxification.
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GO enrichment analysis was carried out to identify the biological functions involved.
The upregulated DEGs (260) between MP4–7 and PP cows were significantly enriched with
480 GO functions. The top 20 functions (Figure 3A) are associated with metabolism, the
transport of various chemicals, cell cycle control, and the maintenance of cellular home-
ostasis. The processes ‘regulation of programmed cell death’ and ‘regulation of cell death’
had an enrichment score (ES) > 8 and contained 25 upregulated DEGs (ANGPTL4, ARG2,
ATF3, BIRC5, CCL5, CCND1, CDK1, CLCF1, DDIAS, DYRK3, ECT2, GPNMB, LTF, MAD2L1,
MAGED1, MECOM, NOD1, PDK4, PRF1, PRLR, RPS6KA2, SIK1, SOX9, TGFB2, ZBTB16).
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When the 459 downregulated DEGs were used for GO enrichment analysis, 751 func-
tions were significantly enriched, with the top 20 presented in Figure 3B. Among them,
many were associated with the extracellular matrix, such as external encapsulating struc-
ture (22 DEGs), extracellular matrix (22 DEGs), collagen-containing extracellular matrix
(16 DEGs), etc. (Supplementary file Table S3A). Three biological processes (response to
bacterium, regulation of macrophage cytokine production, and positive regulation of
macrophage cytokine production) were associated with immunity. The GO biological
process of ‘regulation of biological quality’ contained 65 downregulated DEGs, playing
roles in the regulation of membrane lipid distribution, body fluid levels, the homeostatic
process, anatomical structure size, thermogenesis, and hormone levels (Figure 4A and
Supplementary file Table S3B).
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Figure 4. Gene Ontology biological process of regulation of biological quality associated with
the downregulated DEGs derived from (A) comparison of MP4–7 (n = 40) with PP (n = 41) cows,
(B) MP2–3 (n = 87) with PP cows, and (C) MP4–7 with MP2–3 cows.

All functions associated with both up- and downregulated DEGs were then sum-
marised with a GO browser. Seven categories of GO biological processes were significant,
most of which were associated with a large number of DEGs, which are listed in the
Supplementary files (See Table 2 for details). All categories were predominantly enriched
with the genes that were downregulated in the MP4–7 cows. The interspecies interaction
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between organisms was on the top, with 39 DEGs mainly involved in the immune defence
against microbial organisms. The multicellular organismal process was associated with
81 DEGs, with digestion on the top of the sub-biological functions (Figure 5A). The process
of biological regulation contained 309 DEGs, playing roles in the regulation of biological
quality, molecular function, and biological processes. The GO function ‘Localization’ in-
cludes any process in which a cell, a substance, or a cellular entity is transported, tethered
to, or otherwise maintained in a specific location. The only significant sub-function was
transport, which was associated with 68 downregulated and 29 upregulated DEGs playing
roles in the uptake and transport of a wide range of molecules (Figure 6A and Supplemen-
tary file Table S3I). Two significant roles were identified within the function ‘developmental
process’: anatomical structure morphogenesis and anatomical structure development.

Table 2. Summary of GO enrichment main functions of DEGs in the comparison between MP4–7
(n = 40) and PP cows (n = 41) in early lactation.

Functions Enrichment Score DEGs in the Function

Interspecies interaction
between organisms 8.6

Downregulated DEGs (27): ADIPOQ, ANPEP, CASP1, CCDC80, CHGA,
CHMP4A, CUBN, FCER2, GSDME, IFI44, IFI44L, IL22RA1, IRF4, JCHAIN,
LEAP2, NLRP6, NOD2, P2RX7, PLA2G1B, PNLIPRP2, PRKCD, PYCARD,
REG4, RIPK3, S100A14, SARM1, VIL1
Upregulated DEGs (12): ARG1, ARG2, HAMP, LRRC19, LTF, NOD1, OASL, PC,
PRF1, PRLR, PTX3, ZDHHC8

Developmental process 7.2

Downregulated DEGs (84): ADA, ADAM19, ADAMTS12, ADAMTS15,
ADAMTS2, ADIPOQ, AFF3, ANGPT1, ANPEP, ANXA2, ASB2, C1QTNF3, CA9,
CCL11, CCR9, CD109, CDHR2, CDKN1A, CDX2, CHI3L1, CNTNAP1, COL12A1,
COL1A1, COL1A2, COL3A1, COL5A1, COL5A2, CRISPLD2, DAPL1, EFEMP1,
ELN, EPCAM, FKBP10, FUT1, GAL3ST1, GCNT3, GIP, GLUL, GSDME, INHBA,
IRF4, ITGB4, KL, LGR5, LOX, LOXL2, MMP2, MYB, NANOS1, NFATC4,
NKX2–3, NPR3, NPY1R, ONECUT1, P2RX7, PDX1, PKDCC, PPARGC1B, PSPH,
RFLNB, RHOJ, RIPK3, RNF112, ROS1, RTN4RL1, SEMA3E, SERPINH1, SGCD,
SLC27A4, SLC7A11, SLC9A1, SRC, SULF2, TGFA, TGFB3, TGM2, TMEM176B,
TNC, TPPP3, VDR, VEGFC, VIL1, WNT5A, ZNF385A
Upregulated DEGs (38): ANGPTL4, ARG2, ATF3, ATP6V1B1, BARX2,
BHLHA15, CCND1, CDK1, CFTR, CLCF1, CYP1A2, DRGX, DYRK3, ECE2,
ECT2, EOMES, GGT1, HSPA2, INSIG1, JPH1, LTF, MEIS1, MFSD2A, MLLT3,
NEK2, PCDH19, PRLR, RFX2, SIK1, SLC1A2, SOX9, SP5, SPOCK1, TANC2,
TGFB2, TPBG, ZBTB16, ZCWPW1

Multicellular organismal
process 7.0

Downregulated DEGs (60): ADA, ADAMTS12, ADIPOQ, AHSG, ANGPT1,
ASAH2, ASB2, CCL11, CD109, CDX2, CEL, CEMIP, CLDN4, CNTNAP1,
COL1A1, COL3A1, CUX2, EDN3, EVC, FKBP10, FMO2, GCLC, GCNT3, GIP,
HTR1B, INHBA, JCHAIN, LGR5, LYZ2, LYZ3, MMP2, MMRN1, NFATC4, NOD2,
NPR3, NPY1R, OTOG, OTOGL, P2RX7, PI3, PKDCC, PNLIP, PPARGC1B,
PROCR, PSPH, SEMA3E, SLC1A4, SLC27A4, SLC5A1, SLC7A11, SRC, SULF2,
TGFB3, TGM2, TMPRSS15, TUSC3, VDR, VIL1, WNT5A, ZNF385A
Upregulated DEGs (21): ARG2, ATP6V0A4, ATP6V1B1, CFTR, CYP1A2, DRGX,
GRID1, HAMP, LTF, MEIS1, MFSD2A, MLLT3, PRLR, PRSS1, SLC1A2, SOX9,
TANC2, TGFB2, TPBG, ZBTB16, ZDHHC8

Metabolic process 6.6 Downregulated DEGs (133): See Supplementary file Table S3C
Upregulated DEGs (72): See Supplementary file Table S3D

Biomineralisation 5.3 Downregulated DEGs (6): ADA, ANXA2, COL1A1, COL1A2, LOX, PKDCC
Upregulated DEGs (1): SOX9

Biological regulation 4.7 Downregulated DEGs (195): See Supplementary file Table S3E.
Upregulated DEGs (114): See Supplementary file Table S3F.

Localisation 4.7 Downregulated DEGs (76): See Supplementary file Table S3G.
Upregulated DEGs (36): See Supplementary file Table S3H.
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KEGG pathway enrichment using all DEGs derived from the comparison of MP4–7
with PP cows identified 25 significantly altered pathways, of which 18 were predom-
inantly enriched with downregulated DEGs. These were mainly involved in aspects
of protein and lipid metabolism, and in various signalling pathways (Table 3). Eight
pathways included immune and inflammatory processes (amoebiasis, prostate cancer,
rheumatoid arthritis, relaxin, viral protein interaction with cytokine and cytokine receptor,
MARK signalling, AMPK signalling, and PI3K-Akt signalling). Some of these pathways
seemed unrelated to the liver or female animals (such as prostate cancer), but were associ-
ated with inflammatory processes and their related genes. In the older cows, there were
17 DEGs associated with protein digestion and absorption (CELA2A, CELA3B, COL12A1,
COL15A1, COL1A1, COL1A2, COL3A1, COL4A5, COL5A1, COL5A2, CPA1, CPB1, CTRB1,
ELN, MEP1B, SLC15A1, SLC3A1), six with fat digestion and absorption (CEL, NPC1L1,
PLA2G1B, PNLIP, PNLIPRP2, SLC27A4), and six with vitamin digestion and absorption
(CUBN, FOLH1B, PLB1, PNLIP, RBP2, SLC46A1). The other predominantly downregulated
pathways included extracellular matrix–receptor interaction (down, COL1A1, COL1A2,
COL4A5, GP1BA, ITGB4, LAMA2, TNC, TNXB: up HMMR) and the oestrogen signalling
pathway (down, CREB3L1, CREB5, GABBR2, GNAO1, KRT20, MMP2, PRKCD, SRC, TGFA:
up, HSPA1A, HSPA2, HSPA6).

Table 3. Significant pathways identified by KEGG pathway enrichment associated with differentially
expressed hepatic genes in MP4–7 (n = 40) compared with PP cows (n = 41).

Pathways Enrichment
FDR p-Value Number of DEGs

Protein digestion and absorption 2.85 × 10−6 19
Metabolic pathways 1.95 × 10−4 82
Pancreatic secretion 6.74 × 10−4 13
Glutathione metabolism 3.38 × 10−3 9
Vitamin digestion and absorption 4.25 × 10−3 6
Amoebiasis 7.01 × 10−3 12
Arachidonic acid metabolism 7.01 × 10−3 10
Prostate cancer 1.60 × 10−2 10
Oestrogen signalling pathway 1.85 × 10−2 12
AGE-RAGE signalling pathway in diabetic complications 1.85 × 10−2 10
Ether lipid metabolism 1.85 × 10−2 7
Rheumatoid arthritis 2.00 × 10−2 10
ECM–receptor interaction 2.00 × 10−2 9
Relaxin signalling pathway 2.59 × 10−2 11
Viral protein interaction with cytokine and cytokine receptor 2.59 × 10−2 9
Taurine and hypotaurine metabolism 2.59 × 10−2 4
Arginine and proline metabolism 3.28 × 10−2 6
MAPK signalling pathway 3.43 × 10−2 18
Proteoglycans in cancer 3.43 × 10−2 14
Glycerolipid metabolism 3.43 × 10−2 7
Fat digestion and absorption 3.43 × 10−2 6
AMPK signalling pathway 3.56 × 10−2 10
Biosynthesis of amino acids 4.64 × 10−2 7
PI3K-Akt signalling pathway 4.91 × 10−2 21
Linoleic acid metabolism 4.91 × 10−2 5

2.4. Comparison of Hepatic Gene Expression between the MP Cows with 2–3 Lactations and the
PP Cows

There were 568 DEGs in the comparison between MP2–3 and PP cows, with more
downregulated than upregulated (433 vs. 135) (Supplementary file Table S4A). Among
the top 20 upregulated DEGs (Supplementary file Table S4B), 8 were in common with the
top 20 DEGs in the MP4–7 vs. PP comparison (BARX2, COL27A1, DUSP3, KLHDC7A,
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MYOM1, NCS1, SLC13A2, TENM1). For the other DEGs, AMDHD1, CTSV, GPNMB,
DUSP26, SP5, and TRHDE are involved in metabolic processes. MFSD2A plays roles in
several biological processes, including metabolism, the multicellular organismal process,
response to stimulus, development, fatty acid and protein metabolism, and response to
nutrient levels, while IGFBP2 is involved in the regulation of growth and metabolism and
CTSV in immune processes.

Among the top 20 downregulated DEGs (Supplementary file Table S4C), there were
7 in common with the top 20 generated from the comparison between MP4–7 and PP
cows (CCDC80, DNAJC18, IGF2BP3, GIPC2, LRP3, TRPC5, XK). Other DEGs play roles in
protein metabolism (HOPX, INHBA, NOD2, TRIM31), other aspects of metabolism (AK4,
JCHAIN, LRP3, MGC138914, TNC), response to stimulus (ADM2, AK4, CCDC80, HOPX,
INHBA, JCHAIN, NOD2, TNC), and the developmental process (HOPX, IGF2BP3, INHBA,
LRP3, TNC). Several DEGs have multiple roles in biological processes. For example, HOPX,
INHBA, JCHAIN, NOD2, and TNC play roles in the processes of immunity, metabolism,
multicellular organism, and response to stimulus in which JCHAIN is also an antimicrobial
gene. DNAJC18 is involved in the cellular response to a misfolded protein, chaperone
cofactor-dependent protein refolding, and the ubiquitin-dependent ERAD pathway (endo-
plasmic reticulum-associated degradation).

The GO enrichment analysis showed that the upregulated DEGs were significantly
associated with 366 GO functions, with the top 20 given in Figure 3C. Fourteen of these
were associated with the metabolic and catabolic processes of various molecules. A greater
number of downregulated DEGs produced more significant functions (838), with higher
enrichment scores and more DEGs associated with each function. The top 20 functions are
illustrated in Figure 3D. The top function (ES = 17) was the ‘regulation of developmental
process’ with 60 downregulated DEGs, which play roles in the regulation of anatomical
structure morphogenesis, cell differentiation, and development. Five biological processes
are involved in immune defence, of which ‘response to bacterium’ came fourth with
ES = 15 and 17 associated DEGs (ADIPOQ, CASP1, CCDC80, CHGA, GZMA, IL22RA1,
JCHAIN, LCN2, LEAP2, LYPD8, NOD2, PLA2G1B, PNLIPRP2, PRKCD, PYCARD, REG4,
VIL1). These are involved in defence responses to Gram-negative bacteria (CASP1, CHGA,
IL22RA1, LYPD8, PYCARD), Gram-positive bacteria (CHGA, PLA2G1B, PYCARD), and the
antibacterial humoral response (JCHAIN, PLA2G1B). The biological process of regulation
of macrophage cytokine production was enriched with six DEGs playing roles in both the
positive (CASP1, NOD2, PYCARD, WNT5A) and negative (IRAK3, TGFB3) regulation of
cytokine production. The GO function ‘regulation of biological quality’ with an ES = 14
contained 66 DEGs which play various regulatory roles in body fluid levels, hormone
levels, homeostatic processes, anatomical structure size, and blood pressure (Figure 4B
and Supplementary file Table S5A). Several functions were related to the maintenance
of homeostasis, including the developmental process, multicellular organismal process,
digestive system process, and intestinal absorption.

The GO browser summarised the functions derived from both up- and downregulated
DEGs into nine significant GO categories (Table 4) which were associated with the mainte-
nance of homeostasis (biomineralisation, multicellular organismal process, developmental
process, biological regulation, and localisation) and immune defence (interspecies interac-
tion between organisms, immune system process, locomotion, and response to stimulus).
These were predominantly enriched with the downregulated DEGs. Transport was the
only significant sub-GO function within ‘localisation’, with mainly downregulated DEGs
playing significant roles in the transport of a wide variety of molecules (Figure 6B and
Supplementary file Table S5J). ‘Multicellular organismal process’ contained a number of sig-
nificant sub-functions, including ossification, digestion, system process, plasma lipoprotein
particle clearance, transcytosis, and the morphogenesis of a branching structure (Figure 5B).
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Table 4. Summary of GO enrichment main functions of DEGs in the comparison between MP2–3
(n = 87) and PP cows (n = 41) in early lactation.

Functions Enrichment Score DEGs in the Function

Biomineralisation 8.6
Downregulated DEGs (7): ADA, ANKH, COL1A1, COL1A2, LOX,
PKDCC, SLC24A3
Upregulated DEGs (1): SPP1

Interspecies interaction
between organisms 7.8

Downregulated DEGs (26): ADIPOQ, ANPEP, CASP1, CCDC80, CHGA, gzmA,
IL22RA1, IRF4, JCHAIN, LCN2, LEAP2, LYPD8, MST1R, NLRP1, NLRP6,
NOD2, PLA2G1B, PNLIPRP2, POU2AF1, PRKCD, PYCARD, REG4, RIPK3,
SARM1, SLC7A1, VIL1
Upregulated DEGs (5): ARG1, FER1L6, LTF, PRLR, VNN1

Multicellular organismal
process 6.8

Downregulated DEGs (55): ADA, ADAMTS12, ADIPOQ, AHSG, ANGPT1,
ANKS6, AQP3, ASAH2, CCL11, CCND2, CDX2, CEL, CELA1, CLDN4, COL1A1,
COL3A1, CUX2, FABP2, FOXS1, GCLC, GIP, HTR1B, INHBA, IQCB1, JCHAIN,
LYZ2, LYZ3, MYO1A, NFATC4, NOD2, NPR3, PI3, PIGR, PKDCC, PNLIP,
PPARGC1B, PROCR, PSPH, SEMA3E, SGPL1, SLC1A4, SLC5A1, SLC7A11, SRC,
STK39, TGFB3, TGM2, TIFAB, TMEM79, TMPRSS15, TUSC3, VDR, VIL1,
VLDLR, WNT5A
Upregulated DEGs (9): ATP6V1B1, CFTR, CYP1A2, FGF12, LTF, MFSD2A,
PRLR, SPP1, TPBG

Developmental process 6.6 Downregulated DEGs (79): See Supplementary file Table S5B.
Upregulated DEGs (16): See Supplementary file Table S5C.

Biological regulation 6.3 Downregulated DEGs (192): See Supplementary file Table S5D.
Upregulated DEGs (52): See Supplementary file Table S5E.

Localisation 5.1 Downregulated DEGs (77): See Supplementary file Table S5F.
Upregulated DEGs (12): See Supplementary file Table S5G.

Immune system process 4.7

Downregulated DEGs (28): ADA, CCL26, CCR9, CDH17, CHGA, CTSL, DPEP1,
ENPP3, FRK, IRAK3, IRF4, JCHAIN, LOC100139916, LOC504295, MCOLN2,
NLRP6, NOD2, PLA2G1B, POU2AF1, PRKCD, PSMB8, PSMB9, PYCARD,
RFTN1, RIPK3, SARM1, SRC, STK39
Upregulated DEGs (6): CD70, CLCF1, LTF, NLRP1, TNFSF9, VNN1

Locomotion 4.4
Downregulated DEGs (10): ANGPT1, ARHGEF16, CCL26, CHGA, DEFB13,
DPEP1, LOX, PRKCD, VEGFC, WNT5A
Upregulated DEGs (1): TPBG

Response to stimulus 4.1 Downregulated DEGs (91): See Supplementary file Table S5H.
Upregulated DEGs (21): See Supplementary file Table S5I.

Fifteen significant pathways were identified by KEGG pathway analysis (Table 5).
Among them, 13 were in common with the pathways derived from MP4–7 vs. PP compar-
isons (Table 3), but with smaller enrichment scores and fewer associated DEGs. Downregu-
lated DEGs again predominated. One additional pathway was cytokine–cytokine receptor
interaction, associated with 18 DEGs (down, CCL1, CCL24, CCL25, CCL26, CCR9, CTF1,
IL1RL1, IL22RA1, INHBA, INHBE, TGFB3, XCL2; up, CCR1, CD70, CLCF1, IL1R2, PRLR,
TNFSF9). The other was the metabolism of xenobiotics by cytochrome P450, which was
enriched with one downregulated (UGT1A6) and five upregulated DEGs (ADH4, CYP1A2,
GSTM2, GSTT2, MGC127133).

2.5. Comparison of Hepatic Gene Expression between the MP Cows with 4–7 and 2–3 Lactations

A comparison of the hepatic gene expression between the MP cows with 4–7 and
2–3 lactations generated 82 DEGs, of which 66 were expressed at a higher level in the older
age group (Supplementary file Table S6A). The top 20 upregulated and 16 downregulated
DEGs are listed in Supplementary files Table S6B,C. A number of both down- and up-
regulated DEGs were associated with immune defence (such as HSPA6, TRAT1, PTX3,
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LOC618565, CDKN2A, BCL6, IFI16 in the upregulated list and AGER, NFATC4, MCOLN2 in
the downregulated list).

Table 5. Significant pathways identified by KEGG pathway enrichment associated with differentially
expressed hepatic genes in MP2–3 (n = 87) compared with PP cows (n = 41).

Pathways Enrichment
FDR p-Value Number of DEGs

Protein digestion and absorption 4.19 × 10−4 14
Pancreatic secretion 4.19 × 10−4 12
Metabolic pathways 1.09 × 10−3 66
Relaxin signalling pathway 1.25 × 10−2 11
AMPK signalling pathway 2.15 × 10−2 10
Glycerolipid metabolism 2.15 × 10−2 7
Fat digestion and absorption 2.15 × 10−2 6
Cytokine–cytokine receptor interaction 2.43 × 10−2 18
Ether lipid metabolism 2.43 × 10−2 6
Oestrogen signalling pathway 2.49 × 10−2 10
Viral protein interaction with cytokine and cytokine receptor 2.49 × 10−2 8
Prostate cancer 2.59 × 10−2 8
Linoleic acid metabolism 2.61 × 10−2 5
PI3K-Akt signalling pathway 2.75 × 10−2 19
Metabolism of xenobiotics by cytochrome P450 3.79 × 10−2 6

The GO enrichment analysis showed that the upregulated DEGs were associated with
347 GO functions, with the top 20 listed in Supplementary file Table S7A. Protein folding
chaperone was on top (ES = 11) with four associated DEGs (DNAJB1, HSPA1A, HSPA6,
HSPH1), all of which are associated with ATP-dependent protein folding. There was also a
clear theme of the immune process, including responses to various stimuli and stressors.
The biological processes of positive regulation of immune defence, inflammatory responses,
and leucocyte migration were associated with eight DEGs (BCL6, CASP4, CCL24, CCL5,
CD247, IFI16, LBP, NOD1).

The sixteen downregulated DEGs were significantly enriched with 263 GO functions,
with the top 20 shown in Supplementary file Table S7B, in which 10 functions are related
to the regulation of various immune processes. The regulation of chemokine production
was on top (ES = 11) with three associated DEGs (AGER, MCOLN2, ZFPM1). Three DEGs
are involved in positive and/or negative regulation of the Wnt signalling pathway (LGR5,
NFATC4, NKD1). Four downregulated DEGs (AGER, IGF2BP3, LGALS2, NFATC4) were also
associated with the regulation of biological quality, which contained the sub-functions of
regulation of synaptic plasticity, RNA stability, and the homeostatic process. The regulation
of RNA stability was associated with IGF2BP3, which was downregulated by over twofold
in the MP4–7 cows.

The summarisation of the GO function with the GO browser for both up- and down-
regulated DEGs produced five significant GO functional categories (Table 6). They were as-
sociated with immunity (immune system process, interspecies interaction between species
and response to stimulus) and the maintenance of homeostasis (biological and cellular
process). Most of these functions were associated with the upregulated DEGs, indicating
that they were expressed at a higher level in the older cows.

The DEGs generated in the MP4–7 vs. MP2–3 comparison were associated with
16 significant KEGG pathways with diverse functions, each containing only 2–5 mostly
upregulated DEGs (Table 7). Six pathways were associated with immune/inflammatory
processes (viral protein interaction with cytokine and cytokine receptor, NOD-like receptor
signalling pathway, rheumatoid arthritis, influenza A, chemokine signalling pathway,
and antigen processing and presentation). Two pathways (viral protein interaction with
cytokine and cytokine receptor (containing CCL24, CCL5, CCL8) and oestrogen signalling
(containing FKBP5, HSPA1A, HSPA6)) were also identified from the other two comparisons
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of MP vs. PP cows. The pathway of protein processing in the endoplasmic reticulum
(DNAJB1, HSPA1A, HSPA6, HSPH1) and the NOD-like receptor signalling pathway (CASP4,
CCL5, IFI16, NOD1) each contained four upregulated DEGs.

Table 6. Summary of GO enrichment main functions of DEGs in the comparison between MP4–7
(n = 40) and MP2–3 cows (n = 87) in early lactation.

Functions Enrichment Score DEGs in the Function

Immune system process 7.4 Downregulated DEGs (3): AGER, LGALS2, MCOLN2
Upregulated DEGs (8): BCL6, CASP4, CD247, IFI16, LBP, NOD1, PTX3, TRAT1

Biological regulation 4.4

Downregulated DEGs (9): AGER, IGF2BP3, LGALS2, LGR5, MCOLN2, NFATC4,
NKD1, WFDC2, ZFPM1
Upregulated DEGs (34): ATF3, BCL6, BHLHA15, CASP4, CCL24, CCL5, CCL8,
CCNL1, CD247, CDKN2A, CHAC1, CHRM1, DNAJB1, FBXW5, HOPX, HSPA1A,
IFI16, LBP, MECOM, MICAL2, MYOM1, NOD1, PTX3, RAB20, RELL1, RFX2,
S100A1, SLCO4A1, SMAP2, SOCS3, SPIDR, STEAP4, TAGLN3, TRAT1

Cellular process 3.5

Downregulated DEGs (10): AGER, DNAAF3, DNER, LGALS2, LGR5, MCOLN2,
NFATC4, NKD1, SLC15A1, ZFPM1
Upregulated DEGs (38): AEN, ATF3, ATP6V0D2, ATP6V1C2, BCL6, BHLHA15,
CASP4, CCL24, CCL5, CCL8, CCNL1, CD247, CDKN2A, CHAC1, CHRM1,
DNAJB1, FBXW5, HOPX, HSPA1A, HSPA6, HSPH1, KRBA2, LBP, MICAL2,
MYOM1, NOD1, PTX3, RAB20, RFX2, SLC13A5, SLC5A8, SLCO4A1, SOCS3,
SPIDR, SRM, STEAP4, TBATA, UCHL1

Interspecies interaction
between organisms 3.2 Downregulated DEGs (0):

Upregulated DEGs (6): CASP4, CCL8, FKBP5, LBP, NOD1, PTX3

Response to stimulus 3.1

Downregulated DEGs (2): AGER, NFATC4
Upregulated DEGs (19): AEN, ATF3, BCL6, BHLHA15, CASP4, CHAC1,
CHRM1, DNAJB1, FKBP5, HSPA6, LBP, NOD1, PTX3, RAB20, SLC13A5, SOCS3,
SPIDR, SRM, TRAT1

Table 7. Significant pathways identified by KEGG pathway enrichment associated with differentially
expressed hepatic genes in MP4–7 (n = 40) compared with MP2–3 cows (n = 87).

Pathways Enrichment
FDR p-Value Number of DEGs

Lipid and atherosclerosis 3.43 × 10−3 5
Protein processing in endoplasmic reticulum 3.43 × 10−3 4
Collecting duct acid secretion 3.43 × 10−3 2
Viral protein interaction with cytokine and cytokine receptor 3.43 × 10−3 3
NOD-like receptor signalling pathway 3.43 × 10−3 4
Rheumatoid arthritis 3.43 × 10−3 3
Oestrogen signalling pathway 5.93 × 10−3 3
Legionellosis 5.93 × 10−3 2
Glutathione metabolism 5.93 × 10−3 2
Longevity regulating pathway—multiple species 5.93 × 10−3 2
Wnt signalling pathway 6.41 × 10−3 3
Chronic myeloid leukaemia 6.41 × 10−3 2
Influenza A 6.41 × 10−3 3
Synaptic vesicle cycle 6.41 × 10−3 2
Chemokine signalling pathway 6.41 × 10−3 3
Antigen processing and presentation 6.88 × 10−3 2

3. Discussion
3.1. Cow Longevity and Performance

Dairy cows can live over 20 years, but in practice most are culled before the end of their
natural lifespan. The decision to cull cows is often involuntary due to infertility or diseases
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such as mastitis and lameness, but it also has an economic element, as individuals must
remain profitable. The average productive lifespan in countries with high-producing dairy
cows is approximately 3 to 4 years after first calving [1,8]. Longevity has declined over the
past 50 years, a trend which is negatively correlated with the rise in milk yields achieved
over the same time period [1]. Although selection indices have been altered more recently
to increase the emphasis on health and survival traits [35], poor longevity still remains a
cause for concern. The exact ages of the cows used in this study were not recorded, but the
expectation would be for the PP cows to be between 2 and 2.5 years old, MP2–3 between
3.5 and 6 years, and MP4–7 between 6 and 10 years. Only 8 out of 168 cows available for
recruitment (4.8%) were in lactations 6 and 7, and none had reached their eighth lactation,
whereas over half of the cows were in lactations 2–3. Most cows entering these five herds
were therefore culled before they achieved their peak milk production potential, suggesting
that their optimum productive life was not achieved.

Comparing the three lactation groups, the average body weights for PP, MP2–3, and
MP 4–7 cows were 534, 634, and 686 kg, respectively. The PP and MP2–3 cows had therefore
reached around 78% and 92% of their mature weight, as there was little increase in BW
beyond 5 years of age [36]. As the PP cows were not yet physically mature, they required
energy and nutrients for their own continued growth during their first lactation [36,37].
Average milk yields at around 14 DIM also increased with age (PP, 23 kg/d; MP2–3,
35 kg/d; MP4–7, 37 kg/d), indicating that the greatest rise in yields occurred between the
first and second/third lactations. These differences were reflected in the concentrations of
metabolites measured. There were decreases in the concentrations of circulating glucose
and IGF-1 between the PP and MP cows, while the differences between the two MP age
groups were relatively small. This suggests that the milk yield capacity was not fully
developed in PP cows and there was less uncoupling of the somatotrophic axis, together
with reduced nutrient partitioning towards milk production [37,38]. The older cows had
higher concentrations of NEFAs and cholesterol, suggesting that they experienced more
severe mobilisation of body lipids after calving. Metabolic disorders are one of the major
risk factors causing the culling-related symptoms and diseases in dairy cows [11,14]. In
addition, metabolism and cellular senescence interact with each other: metabolic disorders
promote senescence, which in turn causes metabolic diseases [39]. The older cows in this
study did indeed experience more health issues in early lactation, including both infectious
(metritis, mastitis) and metabolic (milk fever, displaced abomasum) diseases; the overall
incidence rose from 9.7% in PP cows to 32.5% in MP4–7 cows.

These phenotypic differences agreed with the changes in hepatic transcriptomic pro-
files in terms of the numbers of DEGs. In the comparisons between the older and younger
cows (MP4–7 vs. PP, MP2–3 vs. PP and MP4–7 vs. MP2–3), 719, 568, and 82 DEGs were
identified, respectively. Most of the differences in gene expression profiles were, therefore,
found in the comparisons between the MP and PP cows. The ongoing competition be-
tween milk production, body maintenance, and other essential functions such as immune
protection is altered as cows age, and associated with a redistribution of available energy
and nutrient supplies between their cells, tissues, and organs. A better understanding of
the biology of ageing should help to elucidate the mechanisms underlining the relatively
short productive life of dairy cows. The liver is a major organ for filtration, digestion,
metabolism, detoxification, protein synthesis, and the storage of vitamins and minerals,
and plays important roles in body defence [40,41]. To our knowledge, this is the first study
to compare the hepatic global gene expression profiles in early lactation associated with
increasing lactation number.

3.2. Mechanisms Underlying the Ageing Process

The ageing process is characterised by many alterations at molecular, cellular, and
tissue levels, associated with a progressive loss of physiological integrity and increasing sus-
ceptibility to disease [32,42,43]. Gene transcription studies in both human populations [44]
and model organisms [45–47] have identified signatures of the ageing transcriptome which
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occur repeatedly across different tissue types [30,31]. Many aspects of immune function
alter during ageing, eventually leading to immunosenescence [31]. The baseline level of
systemic inflammation increases (termed “inflammaging”), driven by a number of mecha-
nisms including the accumulation of misfolded proteins, impaired clearance of senescent
cells, and obesity [48,49]. Previously identified genes associated with cellular ageing have
been classified into six main categories. In brief, these are the (i) downregulation of genes
encoding mitochondrial proteins; (ii) downregulation of the protein synthesis machinery
(including ribosome biogenesis); (iii) dysregulation of immune system genes; (iv) reduction
in growth factor signalling; (v) constitutive responses to stress and accumulated DNA
damage; and (vi) dysregulation of processes regulating gene expression and mRNA pro-
cessing (transcription and translation) [30,31]. However, these findings cannot simply be
extrapolated to dairy cows for two main reasons. Firstly, genetic selection for high milk
production has placed a great metabolic demand on the body, and secondly their lifespan
is also associated with their capacity to generate an economic profit.

Bovine leucocytes obtained in early lactation found evidence that many of the same
genes and pathways discovered in model organisms were associated with an increased
lactation number in dairy cows [34]. In humans, the deterioration of liver function is also
an important symptom of the ageing process [50]. The present study provides evidence
that age-related changes are also occurring in the bovine liver and are associated with
the high metabolic demands of lactation. About 42–52% of DEGs derived from all three
comparisons of the older cows with the younger ones were involved in the GO function of
biological regulation. The predominantly downregulated DEGs play roles in regulating
various important biological processes, as discussed below.

3.2.1. Digestion and Absorption Processes

Many pathways related to digestion and absorption were identified in the MP cows,
including those of proteins, lipids, short chain fatty acids, and vitamins, with genes in these
pathways being mainly downregulated in the older animals. The liver processes nutrients
absorbed from the small intestine and transported in the hepatic portal vein, while bile
secreted into the duodenum plays an important role in emulsifying lipids and digesting
some vitamins. The GO function of digestion topped the list of the multicellular organismal
process in both MP age groups, and contained four downregulated DEGs (ASAH2, LYZ2,
LYZ3, TMPRSS15). ASAH2 (N-acylsphingosine amidohydrolase 2) is essential for the in-
testinal degradation of sphingolipids [51], and TMPRSS15 (transmembrane serine protease
15) is responsible for initiating the activation of pancreatic proteolytic proenzymes (trypsin,
chymotrypsin, and carboxypeptidase A) [52]. Lysozyme (LYZ) facilitates the digestion
of bacteria and is recognised as an innate immune defence factor, providing protection
against bacteria, viruses, and fungi [53]. PRSS1, encoding serine protease 1 and the one
upregulated gene in this category, is involved in the production of cationic trypsinogen,
another digestive enzyme.

3.2.2. Protein Synthesis

The maintenance of the proteome is essential to enable cells to respond appropriately
to their environment. This requires the correct synthesis and assembly of proteins in
the endoplasmic reticulum, and is controlled by molecular chaperones and clearance
mechanisms that help to prevent protein misfolding and the associated accumulation of
toxic aggregates. The efficiency of this process declines with age, and has previously been
associated with both metabolic and immunological diseases [54,55]. Heat-shock proteins
(HSPs), which function as molecular chaperones, are upregulated under conditions of
stress in which the concentrations of aggregation-prone folding intermediates increase [56].
The present study showed that DNAJB1 (HSP40 member B1), HSPA1A, HSPA2, HSPA6,
and HSPH1 were all expressed at higher levels in the MP4–7 cows compared with the
PP cows, while DNAJC18 (HSP40 member C18) was expressed at a lower level. Previous
studies reported that the upregulation of HSPA1A, HSPA2, and HSPA6 was associated with
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mitochondrial damage [57,58]. FBXW5 was also upregulated in the MP4–7 cows. This
encodes F-box/WD repeat-containing protein 5, a member of the FBXW subclass of F-box
proteins, which functions in phosphorylation-dependent ubiquitination and may play a
role in autophagy. The differential expression of this gene was previously demonstrated
in the hepatic transcriptome of dairy cows, according to the type of forage fed [59]. An
alteration in protein maturation was identified in the GO enrichment analysis in both MP
cow groups compared with the PP group. This involved ten downregulated (ADAM19,
ADAMTS2, CASP1, GP1BA, NLRP6, P2RX7, PLAT, PYCARD, SERPINH1, TMPRSS15) and
two upregulated (ECE2, IL1R2) DEGs. Maturation is vital for a protein to attain its full
functional capacity. Its alteration may lead to the loss or dysfunction of proteostasis, which
is associated with the ageing process [60].

3.2.3. Metabolism

The liver is a major centre for nutrient metabolism, and the deterioration of liver
metabolic capability is an important symptom of the ageing process [50]. The GO biolog-
ical function of the metabolic process derived from the MP4–7 vs. PP comparison was
associated with over 200 DEGs playing roles in various metabolic processes involving
collagen, primary small molecules, organic substances, hormones, nitrogen compounds,
and NADH (the reduced form of nicotinamide adenine dinucleotide, important for cel-
lular energy production). Many GO functions associated with both the synthesis and
catabolism of various molecules were also enriched with upregulated DEGs (Figure 3A,C).
The primary metabolic process was altered by 121 downregulated and 61 upregulated
DEGs (Supplementary file Table S8A), playing roles in the processing of lipids, carbohy-
drates, proteins, and amino acids). KEGG pathway analysis similarly identified the
bta01100:Metabolic pathway as the most important in the comparisons of both MP4–7
(ES = 13 with 82 associated DEGs, Supplementary file Table S8B) and MP2–3 (ES = 10 with
66 associated DEGs, Supplementary file Table S8C) with PP cows.

A further analysis of these pathways showed that the DEGs identified under lipid
metabolism (ES = 7, associated with 28 downregulated and 12 upregulated DEGs,
Supplementary file Table S8D) were primarily involved in the metabolism of glycerophos-
pholipids (ENPP6, GAL3ST1, GLYCTK, GPAT3, LOC615045, PLA2G1B, PLA2G4F, PLB1,
PLD4), all of which were downregulated in the older cows. Glycerophospholipids form
the main lipid component of cell membranes, contributing to their stability, fluidity, and
permeability, and to the proper functioning of membrane proteins, receptors, and ion
channels [61]. Other DEGs encoding lipases and phospholipases are involved in fat di-
gestion (CEL, LPIN1, LOC615045, MGLL, PLA2G4F, PNLIP, PNLIPRP2), of which three
(CEL, PNLIP, PNLIPRP2) were more than 9-fold reduced in the MP4–7 cows. SLC27A4
(also downregulated) encodes a fatty acid transport protein, which translocates long-chain
fatty acids cross the plasma membrane. Previous studies have similarly illustrated that
dysregulated lipid metabolism is associated with ageing [62,63], and problems with lipid
metabolism are well known to compromise the health of periparturient cows [64].

Of the genes identified as having a role in carbohydrate metabolism (ES = 8, associ-
ated with 16 downregulated and 4 upregulated DEGs, Supplementary file Table S8E), PC
(encoding pyruvate carboxylase) and FBP2 (encoding fructose-bisphosphatase 2) were both
upregulated in the MP4–7 vs. the PP cows. When nutrient supply is limiting, as happens
when there is a large nutrient drain into milk production, hepatic pyruvate is primarily gen-
erated from lactate and alanine as opposed to glucose, and the pyruvate is then converted
to oxaloacetate by pyruvate carboxylase, the first step in gluconeogenesis. This switch
occurs primarily in response to an increase in free fatty acid oxidation [65]. FBP2 encodes
fructose-bisphosphatase 2, which catalyses the hydrolysis of fructose 1,6-bisphosphate to
fructose 6-phosphate. This acts at a key point in controlling the flux between glycolysis
and gluconeogenesis, and its expression was 5.1-fold higher in the MP4–7 than the PP
cows, which would favour gluconeogenesis. Conversely, two genes involved in glycogen
synthesis (PPP1R3, BPPP1R3C) were downregulated in the older cows. Two other inter-
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esting DEGs, which were both downregulated in the MP4–7 vs. PP cows, were PDX1 and
C1QTNF3. PDX1 encodes the transcriptional activator pancreatic and duodenal homeobox
1, the expression of which was 7.6-fold lower in the older cows. The encoded nuclear
protein regulates a number of key genes involved in glucose homeostasis including insulin,
somatostatin, glucokinase, and glucose transporter type 2, and it plays a major role in the
glucose-dependent regulation of insulin gene expression by the pancreas [66]. C1QTNF3
encodes C1q and TNF related 3, a secreted protein which has a glucose-lowering effect.
It was shown to act independently of insulin to regulate gluconeogenesis in hepatocytes
by suppressing the expression of two key gluconeogenic enzymes, glucose-6-phosphatase
and PEPCK, by activating the PKB/Akt signalling pathway [67]. These changes suggest a
differential hepatic control of energy metabolism as the cows’ milk production capacity
increases with age. Circulating glucose concentrations were significantly lower in the
older cows, and it appears from these results that this was driving the liver to increase
gluconeogenesis, although it should be noted that neither G6PC nor PEPCK expression
were themselves altered in the different lactation groups.

Protein metabolism (ES = 3, associated with 61 downregulated and 31 upregulated
DEGs, Supplementary file Table S8F) included some DEGs that encode enzymes having a
direct role in protein breakdown, and which are also produced in the pancreas, e.g., CELA2A,
CPA1, and PRSS1. A number of other DEGs are involved in the NOD-like receptor signalling
pathway, which is discussed below in the section on immune function. The catabolism
of most amino acids begins in the liver, and pathways of amino acid processing (ES = 9,
associated with 6 downregulated and 10 upregulated DEGs, Supplementary file Table S8G)
were also identified. Of these, ARG1 was upregulated in the MP4–7 cows. This encodes
arginase type 1, a cytosolic enzyme expressed predominantly in the liver that catalyses
the hydrolysis of arginine to ornithine and urea as the final component of the urea cycle.
ANDHD1, HAL, and HDC (all upregulated in the MP4–7 cows) encode enzymes that are
involved in the catabolism of histidine and its conversion to histamine, which is released
from mast cells. Hepatic mast cells are mainly associated with the connective tissue
surrounding the blood vessels and bile ducts; their number increases during hepatic injury
and fibrosis, suggesting that they play a role in liver disease [68].

The expression of GCLC, encoding the first rate-limiting enzyme of glutathione synthe-
sis, was 1.4-fold lower in the older animals, whereas GPX3, encoding glutathione peroxidase
3, was upregulated by 2.9-fold. Several genes encoding glutathione-S-transferases (GST)
were also differentially expressed, with GSTM1_2, GSTM2 and GSTM3 all being upreg-
ulated in the older cows, whereas GSTP1_2 was downregulated. LOC615514, encoding
glutathione S-transferase mu 1-like, was also upregulated in the MP cows and was one
of the DEGs which differed between all three age groups (Supplementary file Table S1).
Glutathione is an important antioxidant that exists in cells mainly in a reduced state (GSH).
Reactive oxygen species (ROS) are generated in mitochondria during lipid metabolism,
leading to lipid peroxidation, membrane damage, and ultimately cell death. Glutathione
peroxidase reduces hydrogen peroxide to water, using GSH as a cofactor, thus helping to
maintain membrane integrity and minimise ROS-incurred damage [69]. GSTs are a group
of phase II detoxification enzymes that metabolise a variety of substrates to form highly
hydrophilic and less chemically active compounds, which can then be excreted through
bile. Their expression can be upregulated by ROS and their abundance is considered as
an important factor in determining the sensitivity of cells to a range of toxins [70]. In
human populations, polymorphisms in GSTs have been associated with a number of liver
diseases [70]. Changes in the expression of these various glutathione-related enzymes
suggest that these important protective processes are altered in the livers of older cows.

3.2.4. Immune Function

The liver plays important roles in body immunity by providing a surveillance system
for pathogens, synthesising and secreting many inflammatory mediators. These include
complement, coagulation proteins, acute phase proteins, and inflammatory cytokines,
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which are all important components of non-specific innate immunity and play roles in
restoring homeostasis and host defence mechanisms against invading microorganisms
and inflammation [24,25,40,41]. Kupffer cells (KC), a population of resident macrophages,
comprise nearly one-third of non-parenchymal cells in the liver [71]. A wide variety of
lymphocyte populations are also transiently or permanently located in the liver, including
natural killer (NK) cells, and various types of T-cells and B-cells [72–74]. Hepatocytes and
liver sinusoidal endothelial cells also exhibit immunological functions [75,76].

As animals age, they experience a progressive loss of immune function which increases
their vulnerability to infection [42]. Notable age-related changes within the general immune
cell population include reduced cytokine signalling, diminished production of nitric oxide
and peroxide, decreased phagocytic ability, and reduced ability of dendritic cells to migrate
and process antigens [77,78]. Mounting an immune response requires an adequate supply of
glucose, various fatty acids, and cholesterol or oxysterols [16,79]. For cows in early lactation,
there is competition for the allocation of energy and nutrients between milk production and
immunity; this is exacerbated in older cows, as their increased milk production capacity
causes a greater drain on glucose availability [14,16]. In our previous study of circulating
leucocyte populations, we reported that those from PP cows showed an upregulation
of genes associated with T-cell development and function, while genes upregulated in
MP > 3 cows included those encoding proteins involved in combatting disease pathogens
through the activation of the innate immune system [34].

The present results from the liver also show differential immune responses associated
with lactation number. Both GO and pathway analyses indicated that genes involved in
the response to bacteria and regulation of cytokine production were expressed at a higher
level in the PP cows in comparison to the two MP groups. These included, for example,
IFI44, JCHAIN, LEAP2, LCN2, LYPD8, and REG4. Most genes associated with bta04621,
the NOD-like receptor (NLR) signalling pathway, were expressed at higher levels in PP
cows, including CASP1, NLRP6, P2RX7, PYCARD, PRKCD, and RIPK3, whereas NOD1
was upregulated in the older cows. The intracellular NLR family plays a pivotal role in
the recognition of intracellular ligands including bacterial peptidoglycan fragments, DNA,
and ssRNA viruses. This can drive the activation of NFκB and MAPK, leading to the
production of cytokines, chemokines, and antimicrobial peptides (AMPs). A different set
of NLRs induces caspase-1 activation through the assembly of multiprotein complexes
called inflammasomes, whose formation can be triggered by infections, tissue damage,
or metabolic imbalances. The activated caspase-1 regulates the maturation of the pro-
inflammatory cytokines IL-1B, IL-18, and drives cell death via pyroptosis. This signalling
system is known to be associated with hepatic inflammation [80].

Two other genes encoding lysozyme were highly downregulated in the comparison
between MP4–7 and PP cows (LYZ2 by 2.9-fold and LYZ3 by 6.4-fold). This enzyme is
produced by Kupffer cells within the bovine liver [81]. It breaks down bacterial cell walls
and is recognised as an innate immune defence factor, providing protection against bacteria,
viruses, and fungi [53]. The pathways of arachidonic acid and linoleic acid metabolism
were also differentially regulated in the MP4–7 cows. Of the DEGs identified, PLA2G1B
PLA2G4F, and PLB1 were all downregulated. These encode phospholipases that could
release arachidonic acid from the plasma membrane. LTC4 (downregulated) and GGT1
(upregulated) encode enzymes involved in the conversion of leukotriene C4 to leukotrienes
D4 and F4. These leukotrienes may potentially be involved in inflammatory responses in
mast cells [82].

On the other hand, some genes with pro-immune and inflammatory properties were
upregulated in the older cows compared with the younger ones. For example, in the
MP4–7 vs. MP2–3 comparison, the GO function of the immune system process was on the
top and was associated with eight upregulated DEGs, including NOD1, LBP (encoding
lipopolysaccharide binding protein), and PTX3 (Table 6). PTX3 encodes pentraxin 3, a
well-recognised biomarker for inflammatory conditions including liver disease, which
is involved in complement activation, angiogenesis, and tissue remodelling [83]. Two
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other important antimicrobial peptide genes (HAMP, LTF) were also upregulated in the
MP4–7 cows compared with PP cows. ARG1 and ARG2, encoding arginase 1 and 2, were
also upregulated. While arginase 1 is highly expressed in the liver and is involved in the
urea cycle, ARG1 expression is also a signature gene used to define alternatively activated
M2 macrophages, as opposed to classically activated M1 macrophages, which express
iNOS [84]. Another interesting difference is that M2-polarised cells exhibit enhanced
oxidative phosphorylation, and preferentially use glutamine and fatty acids as an energy
source in comparison to M1 macrophages, which rely on glucose [85]. M2 macrophages
produce immunosuppressive factors which inhibit the development and proliferation
of many types of immune cells, and reduce responsiveness to inflammatory mediators,
phenotypes associated with immunosenescence [78].

The downregulation of some aspects of hepatic immune function in cows from their
second lactation onwards suggests that their increase in milk production in early lactation
compromises immune function due to the competition for nutrients. This, in turn, would
predispose these older animals to mastitis and uterine disease [86–89], both major risk
factors leading to culling [9,90]. On the other hand, antimicrobial peptides were expressed
at a higher level in the older cows, possibly in response to such infections.

3.2.5. Growth Factor Signalling

After calving, most dairy cows experience a period of NEB that is associated with
insulin resistance, reduced hepatic growth hormone (GH) receptor expression, decreased
hepatic synthesis of IGF-1, and altered expression of most of the IGF binding proteins [27,91].
These changes act to prioritise the available glucose supply to the mammary gland for milk
synthesis at the expense of growth and tissue repair [16,92]. In accordance with this, hepatic
IGF1 and IGFALS mRNA expressions were both lower in MP4–7 vs. PP cows, while IGFBP2
mRNA was increased. These changes would reduce the bioavailability and increase the
clearance of IGF-1 from the circulation [27]. VEGFC expression was also lower in both MP
groups. This is a member of the platelet-derived growth factor/vascular endothelial growth
factor (PDGF/VEGF) family. The encoded protein promotes angiogenesis and endothelial
cell growth and can also affect the permeability of blood vessels. There is some evidence
that VEGFC could help to regulate the vascular supply to the hepatic biliary tree, which is
essential in supporting the secretory and absorptive functions of the biliary epithelium [93].

3.2.6. Responses to DNA Damage, Gene Expression, and mRNA Processing (Transcription
and Translation)

Genome instability is one of the hallmarks of ageing in the liver [33]. The MAPK
dual specific phosphatase (DUSP) modulates the nucleotide excision repair pathway and
cell cycle regulatory proteins to maintain genomic stability and cell proliferation [94]. It
is also involved in regulating T-cell senescence/exhaustion and chronic immune-related
disease [95]. In the present study, DUSP3 was in the top 10 list of most significantly
upregulated genes in both age groups of MP cows compared with PP cows. Its activation
suggests that the older cows experienced stress, affecting genome homeostasis.

Cellular senescence involves cell cycle arrest in damaged or aged cells, which can also
be triggered in normal cells in response to various intrinsic or extrinsic stimuli and devel-
opmental signals [96]. Cyclin-dependent kinases (CDKs) are the key enzymes regulating
cell proliferation through controlling cell cycle checkpoints and transcriptional events, and
their catalytic activity is regulated by their interaction with cyclins and CDK inhibitors [97].
CDKN2A encodes the CDK inhibitor p16INK4a which plays crucial mechanistic roles in
the implementation of the senescent programme, by halting the cell cycle through the
p16INK4a/Rb pathway, and has been widely used as a genetic marker of cellular senescence
in vivo [98,99]. In the present study, the expression of CDKN2A was upregulated in all
three comparisons of the older cows with the younger ones, indicating accelerating cellular
senescent processes in the older cows.
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Both IGF2BP2 and IGF2BP3 mRNA expression was downregulated in the older cows,
with IGF2BP3 being the most significant DEG in the comparisons of MP4–7 cows with
both the PP and MP2–3 groups. These genes both encode members of a family of mRNA
binding proteins that are involved in a spectrum of biological processes which play major
roles in maintaining RNA stability and post-transcriptional regulation, and are important
in coordinating nutrient stimulation with RNA life cycle control [100]. IGF2BP2 is asso-
ciated with impaired insulin secretion and human type 2 diabetes. Studies in mice have
shown that it regulates fatty acid oxidation through the post-transcriptional regulation
of gene expression across multiple tissues, including the liver; IGF2BP2-deficient mice
have improved glucose tolerance and insulin sensitivity, although their pancreatic islets
secrete less insulin than in control animals [100]. IGF2BP3 plays a role in controlling the
trans differentiation of hepatic stellate cells into myofibroblasts [101]. DNA replication was
inhibited in cells in which the IGF2BP3 gene was knocked down [102]. The present study
suggests that IGF2BP3 is a potential biomarker for hepatic ageing in dairy cows.

3.2.7. Hepatic Morphology

Regressive changes in tissue and cell morphology are one hallmark of the ageing
process, with cells potentially becoming enlarged, flat, multivacuolated, and/or multinu-
cleated [103,104]. Many morphological changes in hepatic cells were reported previously
in both human and model animals. These included increased polyploidy, the accumulation
of lipofuscin in the cytoplasm, a declining surface area of endoplasmic reticulum, and a
reduced number of mitochondria, all ultimately having a negative effect on hepatocyte
function [105,106]. The present study did not directly examine the morphology of the
liver samples, but the analysis showed that the expressions of many genes playing roles in
structure and morphology were altered. The GO enrichment analysis illustrated that 11 bi-
ological functions related to the extracellular matrix were in the top 20 list in the MP4–7
cows compared with the PP cows (Figure 3B), and involved 61 downregulated DEGs
(Supplementary file Table S3A). The GO browser summarised the function of the multicel-
lular organismal process, and also included the altered sub-function of morphogenesis of a
branching structure by the downregulated DEGs in both MP groups compared with the
PP cows.

Many key genes involved in collagen synthesis were expressed at a lower level in
MP4–7 compared with PP cows (ADAMTS2, COL1A1, COL1A2, COL3A1, COL4A5, COL5A1,
COL5A2, COL12A1, COL15A1, LOX, LOXL2, MMP2, PLOD2, SERPINH1), and most of
these were also significant in the MP2–3 vs. PP comparison. This implies that the PP cows
were developing hepatic fibrosis at the start of their first lactation, confirming our previous
report based on a smaller number of animals [107]. Studies in humans have indicated
that this process follows the activation of hepatic stellate cells (HSCs), which are mainly
responsible for remodelling the extracellular matrix [108,109], and this is usually preceded
by inflammation. The HSCs then differentiate into myofibroblasts (MFB), which synthesise
both fibrils, forming collagen, and a variety of other extra-cellular matrix proteins. TGFβ is
released from the latent TGF-β binding protein complex during fibrosis when linkages form
between the extracellular matrix and cytoskeleton, and this is considered to be a major factor
in hepatic stellate cell activation, thus accelerating liver fibrosis [110]. In this study, both
TGFA and TGFB3 were expressed at higher levels in the PP cows, although the expression
of TGFB2 was greater in the MP4–7 group. The liver has to undergo significant adaptation
at the start of lactation when both its metabolic activity and blood flow have been estimated
to double [111–113]. These changes might trigger hepatic collagen deposition at the start of
the first lactation, but it remains to be determined whether such a change is temporary or
permanent. As well as affecting tissue structure, collagen is also a long-established immune
enhancer involved in many immune/inflammatory processes [114].

Vitamin D is a pleiotropic hormone with regulatory functions in calcium homeostasis,
inflammation, and metabolism. Rodent models have shown that it can reduce hepatic
inflammation, oxidative stress, and insulin resistance, while in humans hepatic VDR expres-
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sion is inversely correlated with the severity of steatosis and inflammation. Furthermore,
vitamin D exerts anti-fibrotic activity by inhibiting the proliferation of hepatic stellate
cells, and it can also modulate intra-hepatic lipid accumulation [115]. In this study, VDR
expression was 2-fold higher in the PP cows, which may have contributed to their apparent
higher rate of collagen deposition.

3.2.8. Nutrient Transport

In the present study, the DEGs derived from all three comparisons of the higher
lactation number cows with the lower ones were associated with the GO term of transport
(97 in MP4–7 vs. PP, 81 in MP2–3 vs. PP and 15 in MP4–7 vs. MP2–3 comparisons,
(Supplementary files Tables S3I, S5J and S7C)). This term refers to the directed movement of
substances such as macromolecules, small molecules, and ions or cellular components (such
as complexes and organelles) into, out of, or within a cell or between cells. Fiore et al. [116]
previously reported an age-related change in the expression of the facilitated glucose
transporter SLC2A4, which was higher in the muscle of older dairy cows. The present
study identified 22 genes encoding solute carrier transporters (SLC), the majority of which
were downregulated in the livers of MP4–7 cows, including those for glucose (SLC5A10),
glucose-6-phosphate (SLC37A2), amino acids (SLC1A4, SLC3A1), peptides (SLC15A1),
fatty acids (SLC27A4), nucleosides (SLC28A1, SLC29A2), prostaglandins (SLCO2A1), folate
(SLC46A1), sulphates (SLC13A1), Na+/H+ (SLC9A1), and organic anions and cations
including toxins (SLC22A2, SLC22A7, SLCO4A1). A smaller number of transporters were
upregulated, for glutamate (SLC1A2), GABA (SLC6A11), metabolites such as citrate and
urate (SLC13A2, SLC13A5, SLC17A1), and organic anions (SLC29A2). This concurs with
previous studies, showing that the capability of sensing nutrients and transporting them to
their appropriate subcellular location decreased in senescent cells [117–119]. The expression
of three genes encoding vacuolar ATPases (ATP6V0A4, ATP6V1B1, ATP6V1C2) was higher
in MP4–7 than PP cows. These encode enzymes that mediate the acidification of intracellular
compartments. Four genes encoding potassium channels in the plasma membrane were also
differentially expressed: KCNH7 and KCNJ15 were upregulated in the older cows, whereas
KCNJ4 and KCNT2 were downregulated. Both intra- and extra-cellular ion transport also
play a major role in establishing senescence [120,121].

3.2.9. Oestrogen Signalling

The oestrogen signalling pathway was altered in all three comparisons of the older
cows with the younger ones. Classical oestrogen signalling occurs via nuclear receptors. In
the absence of a ligand, these require an association with chaperones to maintain proper
folding of the ligand-binding domain, and the heat shock protein 70 (HSP70) chaperone
machinery is essential for a proper response to steroids [122]. HSPA1A, HSPA2, and HSPA6,
which all encode for HSP70 members, were all upregulated in the older cows. The other
genes identified as contributing to the oestrogen signalling pathway (CREB3L1, CREB5,
GABBR2, GNAO1, KRT20, MMP2, PRKCD, SRC, TGFA) were all downregulated in the older
animals. Apart from TGFA, these participate in membrane-initiated signalling pathways,
and could therefore involve membrane rather than nuclear located oestrogen receptors.
Oestradiol can regulate the genes involved in hepatic lipid and glucose metabolism, and is
considered protective against liver disease in female mammals [29,123]. However, GABBR2
encodes a subunit of the GABA-B receptor subfamily and GNAO1 acts downstream of
this. There is evidence from rodent models that hepatic lipid accumulation favours GABA
production, and that its release is promoted by hepatocyte depolarisation, which is stimu-
lated by K+ efflux [124]. As just mentioned, the GABA transporter SLC6A11 and four genes
encoding potassium channel family members were all differentially expressed between
MMP4–7 and PP cows. In diabetic humans, GABA treatment can reduce circulating glucose
and improve insulin resistance [125].
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4. Materials and Methods
4.1. Animals and Blood Sampling

Holstein Friesian cows were recruited from five experimental dairy farms located
in different EU countries, including Agri-Food and Biosciences Institute Hillsborough
(n = 58, Northern Ireland, UK), Aarhus University (n = 34, Denmark), University College
Dublin (n = 38, Ireland), Leibniz Institute for Farm Animal Biology (n = 13, Germany), and
Walloon Agricultural Centre (n = 25, Belgium). All procedures, including the blood sample
collection and invasive collection of liver biopsy, had local ethical approval (See Section
“Institutional Review Board Statement” for more details) and complied with the relevant
national and EU legislation under European Union Directive 2010/63/EU.

All cows recruited in this study were regularly checked by the veterinarians and staff
on each farm, and the health status for each cow was recorded as described previously [126].
Calving ease was scored on a scale of 1 (easy calving, no help) to 5 (caesarean section). The
cows in two of the herds (Agri-Food and Biosciences Institute, UK and Aarhus University,
Denmark) received three contrasting diets, which were balanced for lactation numbers
between the dietary groups, whilst the cows in the remaining three herds were offered
diets which reflected the local management practice. Further details of the management
and lactation diets of each herd were described previously [126,127]. At 14 ± 2 DIM, blood
samples were collected after morning milking to obtain plasma (in Na heparin tubes) and
serum (plain tubes) for an analysis of circulating metabolites and IGF-1. Plasma and serum
were separated by centrifugation (1600× g at 4 ◦C for 15 min) and stored at −20 ◦C for
subsequent analysis.

4.2. Animal Grouping Based on the Lactation Number

A total of 168 dairy cows were grouped based on their lactation number: (1) PP
(primiparous cows, lactation 1, n = 41), (2) MP2–3 (multiparous cows, lactations 2–3,
n = 87), and (3) MP4–7 (multiparous cows, lactations 4–7, n = 40).

4.3. Analysis of Circulating Metabolites and IGF-1

Concentrations of glucose, urea, BHB, NEFAs, and cholesterol were measured using
the methods described previously [20,28]. Intra- and inter-assay coefficients of variation
were in all cases below 3% and 4%, respectively, for the samples from the three lactation
groups. The concentrations of IGF-1 were determined in serum by radioimmunoassay
following acid-ethanol extraction [128]. Intra-assay coefficients of variation (CV) were 12.4,
7.5, and 9.9% for low, medium, and high concentration control samples, respectively.

4.4. Cow Phenotype Data Collection

Body weights were recorded twice weekly using weigh scales. Body condition scores
were estimated according to a common protocol at 14 ± 2 DIM (mean ± SD), using a
five-point scale with quarters [129]. All cows were milked twice daily, and their daily
yields were recorded. The concentrations of protein and fat in milk were quantified with
mid-infrared analysis. ECM (kg/day) was calculated following the methods reported
previously [127]. On four of the five farms, daily DMI were recorded using electronic
feeding systems. EBAL was calculated as described previously [126].

4.5. Liver Biopsy Sampling and RNA Extraction

Liver biopsies were taken from all selected cows at 14 ± 2 DIM, using a standard oper-
ating procedure described previously [130], and for each cow both blood and liver biopsy
samples were collected at the same hour of the day. The samples were snap-frozen in liquid
nitrogen and stored at −80 ◦C until RNA extraction. Total hepatic RNA was extracted
following the method described previously [130]. Briefly, 20 mg of liver tissue was fully ho-
mogenised using a TissueLyzer II homogeniser in 600 µL Buffer RLT with a 5 mm stainless
steel bead (QIAGEN, Manchester, UK). Under a QIAcube workstation, the total RNA from
the homogenate was extracted with RNeasy Mini kits following the supplier’s protocol



Int. J. Mol. Sci. 2023, 24, 9906 25 of 32

(QIAGEN). The quality and quantity were assessed with a QIAxcel capillary electrophore-
sis device (QIAGEN) and NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). This showed average RNA concentrations of 309 ± 113 ng/µL, a
range of absorbance ratios of 1.98–2.14, and an RNA integrity score of 7.8 ± 0.7. The details
are given in Supplementary file Table S9. The RNA was stored at −80 ◦C until subsequent
RNA-sequencing.

4.6. RNA-Sequencing, Mapping, and Quantification

The RNA-sequencing was carried out on an Illumina NextSeq 500 platform as de-
scribed previously [86]. Briefly, the sequencing libraries were prepared with 750 ng of
the total RNA extracted as described above, and the Illumina TruSeq Stranded Total RNA
Library Prep Ribo-Zero Gold kit (Illumina, San Diego, CA, USA) in the epMotion liquid
handling workstation (Eppendorf, Hamburg, Germany). The pooled cDNA libraries were
sequenced on the Illumina NextSeq 500 sequencer at 75 nucleotide length single-end reads
with an average of 30 million reads per sample. The raw FASTQ files were deposited to the
European Nucleotide Archive (ERP124149, ERP125646).

The FASTQ files sequenced from different lanes for each sample were merged into
one file. A CLC Genomics Workbench V21 (QIAGEN Digital Insights, Redwood City,
CA, USA) was used for sequencing analysis, including trimming the poor reads and
quality control, and mapping the reads to a reference genome of Bos taurus assembly
(ARS-UCD1.2, supplied by RefSeq at https://www.ncbi.nlm.nih.gov/assembly, accessed
on 1 January 2021). The sequencing data were quantified as reads per genes and reads per
kilobase of transcript per million mapped reads (RPKM) in the formats of gene expression
(GE) files.

4.7. Analysis of Differential Gene Expression between the Dietary Groups

Differential gene expression was carried out using CLC Genomics Workbench V21 with
the GE files. The gene expression values were normalised with trimmed mean and Z-score
methods across all samples. Principal component analysis showed that there was a difference
in the overall gene expression pattern between the herds (Supplementary file Figure S1A). To
account for this during the analysis of differentially expressed genes (DEGs) between the
lactation groups, a two-way analysis of variance (ANOVA)-like model was used with age
group as the test variable and herds as the confounding control variable, which minimised
the herd effect (Supplementary file Figure S1B). The Benjamini–Hochberg (BH) procedure
was used to control the false discovery rates (FDR) against errors due to multiple testing,
and significance was considered at p < 0.05. Where the expression value of the higher
lactation number was greater than that of the lower lactation number (positive fold change,
upregulation), the fold changes (FC) were calculated as the gene expression ratio of the
higher lactation number group to the lower lactation number group (i.e., MP4–7 vs. PP,
MP2–3 vs. PP, or MP4–7 vs. MP2–3). Where the expression value of the lower lactation
number group was greater than that of the higher lactation number group (negative fold
change, downregulation), the ratios were calculated as PP vs. MP4–7, PP vs. MP2–3, or
MP2–3 vs. MP4–7) with a minus in front. The cut off criteria were set to an absolute
FC ≥ 1.25 and FDR (BH) p < 0.05. The genes meeting these criteria in pairwise comparisons
among the three groups were selected for subsequent analysis.

4.8. Gene Ontology Enrichment Analysis

Gene Ontology (GO) and pathway enrichment analyses (with Kyoto Encyclopedia
of Genes and Genomes (KEGG)) were performed to investigate the biological functions
and interactions between genes and pathways using Partek Genomics Suite V7 (Partek
Incorporation, Chesterfield, MO, USA), with a genome version of ARS-UCD1.2. The
DEGs were used for pathway enrichment analysis and GO enrichment analysis. The GO
enrichment analysis was performed using both the total DEGs and separately for up- and
downregulated DEGs, and it focused on biological processes, while only total DEGs were
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used for pathway enrichment analysis. Fisher’s exact test with BH adjustment for GO
enrichment and q-value FDR for pathway enrichment were used, and statistical significance
was considered at p < 0.05. The enrichment score (ES) was calculated as -ln (p) so that an
ES >3 was considered as significant.

4.9. Statistical Analysis

The statistical analysis of phenotype data was carried out using IBM SPSS V29
(IBM Corp., Armonk, NY, USA) to test the differences between BW, BCS, circulating
metabolites (glucose, urea, BHB, NEFAs, and cholesterol), and IGF-1 among the three
lactation groups. The data were expressed as mean ± standard error of mean (SE). The
homogeneity of variance for each variable was assessed with Levene’s test before ANOVA.
Logarithmic transformation was applied if the variance was not homogenous. An ANOVA
with a linear mixed-effects model was used with the age group as a fixed effect and herds
as a random effect. Significance was considered at p < 0.05. Where ANOVA showed signifi-
cance, multiple comparisons with the Tukey HSD method were carried out to identify the
sources of differences.

5. Conclusions

To the best of our knowledge, this study has shown for the first time that hepatic
global gene expression profiles in early lactation cows are related to increasing lactation
number (parity). This has revealed many changes in the livers of the older cows associated
with a variety of biological processes and pathways, although it was not possible to
separate the effects of chronological age from those of milk yield, and the cumulative
stresses imposed by successive lactations. Diet is also likely to be influential, although this
aspect was not examined in the present study. Most of these differences occurred between
the first and second lactations, as growth slows and milk production capacity increases.
This requires a greater supply of glucose, leading to a drive towards increased hepatic
gluconeogenesis even though blood glucose levels were reduced. The analysis provided
evidence that the livers of older cows had reduced immune capacity, dysregulated protein
and glycerophospholipid metabolism, and impaired RNA stability and nutrient transport,
all of which would impair functionality. Genes associated with cell cycle arrest and the
production of antimicrobial peptides were upregulated. More surprisingly, evidence of
hepatic inflammation leading to collagen deposition was present in the primiparous cows
as they started their first lactation. The results of the study suggest that the high milk
production capacity of Holstein cows has a cost in terms of liver function, which accelerates
the ageing process. Disorders of liver function contribute at least in part to the short
lifespans typical of modern dairy cows. Overcoming this problem requires a multifaceted
approach. A better understanding of the biological processes controlling milk production
should in future inform the development of both genetic selection criteria and improved
nutritional management, which together should aim to reduce the metabolic stresses of
early lactation. At the same time, a modelling approach is required to determine the
optimum lifespan for cows which maximises economic profitability while minimising the
harmful environmental impact of dairy production systems.
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