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ABSTRACT

The use of milk Fourier transform mid-infrared 
(FT-MIR) spectrometry to develop management and 
breeding tools for dairy farmers and industry is grow-
ing and supported by the availability of numerous new 
predicted phenotypes to assess the nutritional quality 
of milk and its technological properties, but also the 
animal health and welfare status and its environmental 
fingerprint. For genetic evaluations, having a long-term 
and representative spectral dairy herd improvement 
(DHI) database improves the reliabilities of estimated 
breeding values (EBV) from these phenotypes. Unfor-
tunately, most of the time, the raw spectral data used 
to generate these estimations are not stored. Moreover, 
many reference measurements of those phenotypes, 
needed during the FT-MIR calibration step, are avail-
able from past research activities but lack spectra 
records. So, it is impossible to use them to improve 
the FT-MIR models. Consequently, there is a strong 
interest in imputing those missing spectra. The innova-
tive objective of this study was to use the existing large 
spectral DHI database to estimate missing spectra by 
selecting probable spectra using, as the match criteria, 
common dairy traits recorded for a long time by DHI 
organizations. We tested 4 match criteria combinations. 
Combination 1 required to have equal fat and protein 
contents between the sample for which a spectrum was 
to be estimated and the reference samples in the DHI 
database. Combination 2 also required an equal urea 
content. Combination 3 requested equal fat, protein, 
and lactose contents. Finally, combination 4 included 
all criteria. When more than one spectrum was found 

during the search, their average was the estimated 
spectrum for the query sample. Concretely, this study 
estimated missing spectra for 1,700 samples using 
2,000,000 spectral DHI records. For assessing the effect 
of this spectral estimation on the prediction quality, 
FT-MIR equations were used to predict 11 phenotypes, 
selected as their quantification used different FT-MIR 
regions. They were related to the milk fat and mineral 
composition, lactoferrin content, quantity of eructed 
methane, body weight (BW), and dry matter intake. 
The accuracy between predictions obtained from actual 
and estimated spectra was evaluated by calculating the 
mean absolute error (MAE). The criteria in the fourth 
and second combinations were too strict to estimate a 
spectrum for most samples. Indeed, for many samples, 
no spectra with the same values for those matching 
criteria was found. The third match criteria combina-
tion had a poorer prediction performance for all studied 
traits and spectral absorptions than the first combina-
tion due to fewer matched samples available to compute 
the missing spectrum. By allowing a range for match-
ing lactose content (±0.1 g/dL milk), we showed that 
this new combination increased the number of selected 
samples to compute missing spectra and predict bet-
ter the infrared absorption at different wavenumbers, 
especially those related to the lactose quantification. 
The prediction performance was further improved by 
performing queries on the entire Walloon DHI spectral 
database (6,625,570 spectra), and it varied among the 
studied phenotypes. Without considering the traits used 
for the matching, the best predictions were obtained for 
the content of saturated fatty acids (MAE = 0.15 g/
dL milk) and BW (MAE = 12.80 kg). Yet, the predic-
tions for the unsaturated fatty acids were less accurate 
(MAE = 0.13 and 0.018 g/dL milk for monounsatu-
rated and polyunsaturated fatty acids), likely because 
of the poorer predictions of spectral regions related to 
long-chain fatty acids. Similarly, poorer predictions 
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were observed for the amount of methane eructed by 
dairy cows (MAE = 47.02 g/d), likely because it is not 
directly related to fat content or composition. Predic-
tion accuracies for the remaining traits were also low. 
In conclusion, we observed that increasing the number 
of relevant matching criteria helps improve the qual-
ity of FT-MIR predicted phenotypes and the number 
of spectra used during the search. So, it would be of 
great interest to test in the future the suitability of the 
developed methodology with large-scale international 
spectral databases to improve the reliability of EBV 
from these FT-MIR-based phenotypes and the robust-
ness of FT-MIR predictive models.
Key words: mid-infrared spectrometry, milk, 
prediction

INTRODUCTION

The use of milk Fourier transform mid-infrared 
(FT-MIR) spectroscopy to develop management and 
breeding tools for dairy farmers and the dairy industry 
is becoming increasingly popular, thanks to the many 
phenotypes currently available. Indeed, with a moder-
ate to high prediction accuracy (R2 from 0.60 to 0.99), 
equations exist to assess the nutritional quality of milk 
by estimating, for instance, the contents of milk fatty 
acids, protein fractions (Franzoi et al., 2019), miner-
als (Christophe et al., 2021), or lactoferrin (Soyeurt 
et al., 2020). The milk composition and, therefore, 
its related spectrum are also useful for assessing the 
technological properties of milk (Bonfatti et al., 2016; 
Visentin et al., 2015). Moreover, even as milk is an 
important source of nutritive elements for humans, 
its fine composition—or more specifically composition 
changes—is vital to know, as it mirrors the metabolic 
and health status of the animal. Some indicators relat-
ed to metabolism and animal health and welfare can 
be derived from the milk FT-MIR spectrum, including 
energy balance or intake (Ho et al., 2020; McParland 
et al., 2012; McParland and Berry, 2016), BW (Tedde 
et al., 2021a), DMI (Tedde et al., 2021b), acetonemia 
(Grelet et al., 2016), pregnancy status (Delhez et al., 
2020), subacute ruminal acidosis (Mensching et al., 
2021), fertility (Bastin et al., 2016; Ho et al., 2019), 
lameness (Bonfatti et al., 2020), and so on. Another 
critical topic is the environmental footprint of milk 
production. Some models have been developed to cover 
part of this topic, for example, equations allowing the 
estimation of methane eructed by dairy cows (Vanli-
erde et al., 2021) or the assessment of the nitrogen us-
age efficiency of dairy cows to improve feed efficiency 
(Grelet et al., 2020). The FT-MIR spectroscopy can 
also be used to detect abnormal milk (Hansen and 
Holroyd, 2019).

Unfortunately, even if those FT-MIR-based traits 
are of interest to be considered in genetic evaluations, 
the reliabilities of their EBV are often low due to the 
lack of long-term spectral data acquisition strategies 
(Kandel et al., 2017). Therefore, imputing milk FT-
MIR spectra from historical records could be relevant 
to improve the reliability of EBV. This spectral estima-
tion could also be useful in developing or improving 
prediction models themselves if the imputation error 
is low enough. Indeed, developing a predictive model 
requires the creation of a data set containing the 
spectral data as well as the reference trait of interest 
measured using a certified methodology. Creating such 
a database is a crucial point for the future robustness 
of the developed equation. To enhance the model’s 
robustness, the data sets need to be as diverse as pos-
sible in terms of spectral information and the reference 
traits (Grelet et al., 2021). Sometimes, the acquisition 
of reference samples is rare or costly, as is the case, for 
the amount of methane eructed by dairy cows or the 
quantity of DMI. Thus, we are forced to use as much 
as possible the number of reference measurements that 
we can gather from past experiments or through inter-
national collaborations. Unfortunately, those reference 
measurements, especially from past experiments, are 
often unrelated with milk spectral data, even if a milk 
sample was analyzed. In reality, spectral data storage 
is not automatized everywhere, precluding the use of 
an important amount of reference data due to missing 
spectra. Hence, estimating missing milk FT-MIR spec-
tra could be a cost-effective way to use these available 
past reference records without spectral data.

The working hypothesis of this research is that 
a missing spectrum can be estimated by a spectrum 
that enables the quantification of the same or com-
parable FT-MIR-based phenotypes routinely recorded 
by DHI organization. The contents of protein, fat, and 
sometimes lactose and urea predicted by milk FT-MIR 
spectrometry have been collected for a long time and 
recorded in databases managed by the DHI organiza-
tions or its associated data record processing centers. 
These traits are predicted using spectral data, often 
not stored after milk spectrometric analyses. As the 
predictions of fat, protein, lactose, and urea traits used 
different FT-MIR regions, it seems logical to reversely 
estimate the spectral data by considering various com-
binations of those 4 traits as the criteria. In this study, 
we developed and evaluated a strategy that leverages 
the vast amount of spectral data recorded by DHI orga-
nizations to identify the spectra that most closely align 
with queries of fat, protein, urea, and lactose as the 
FT-MIR predictions. This approach can be character-
ized by finding the nearest FT-MIR spectrum based on 
the predicted contents of fat, protein, urea, and lactose.
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MATERIALS AND METHODS

No human or animal subjects were used, so this 
analysis did not require approval by an Institutional 
Animal Care and Use Committee or Institutional Re-
view Board.

Data

This study used the milk FT-MIR spectral database 
managed by the Walloon Breeders Association (Elevéo, 
AWÉ group, Ciney, Belgium), which included 6,625,570 
records from 381,102 cows and 2,010 farms located in 
Southern Belgium that participated in milk recording 
between January 2007 and November 2021. All samples 
were analyzed using Foss spectrometers (Hillerod, 
Denmark). Milk analysis was performed using various 
models of Foss spectrometers (from MilkoScan FT4000 
to MilkScan FT+ and FT7). To ensure comparability, 
the spectral data recorded after 2012 were standard-
ized using the methodology proposed by Grelet et 
al. (2015). The contents of fat, protein, lactose, and 
urea were predicted by the equations developed by the 
manufacturer for each spectrometer model. To reduce 
the required computation resources for comparing the 
different searching methods, we selected randomly a 
subset of 2,000,000 records collected from December 
2016 to November 2021 from 152,793 cows on 947 
farms. We assumed that this subset had a good rep-
resentation of the spectral data in the Walloon part of 
Belgium because both data sets had closely comparable 
means and standard deviations of the 4 querying traits 
(Table 1). We chose to impute the spectrum of the first 
1,700 samples of this subset. The spectral data of those 
samples were considered missing and were estimated 
using the methodology proposed in this study. Then, 
the estimated missing spectra were compared with the 
actual spectra in the database to assess the methodol-
ogy accuracy.

Spectral Prediction

The method used to estimate the missing milk FT-
MIR spectrum involved searching for a matched record 
or records between a query sample and reference sam-
ples in the DHI database based on one of the following 
4 match criteria combinations (MCC):

• MCC1: equal contents of fat and protein with a 
precision of 2 decimals;

• MCC2: equal contents of fat, protein, and urea;
• MCC3: equal contents of fat, protein, and lactose;
• MCC4: equal contents of fat, protein, lactose, and 

urea.

If a match was found, the predicted spectrum for the 
query sample was set to be the spectrum of the matched 
reference sample. If more than one match was identi-
fied, the predicted spectrum for the query sample was 
calculated by averaging the absorbance values for all 
wavenumbers of all the matched reference samples. The 
number of the FT-MIR spectra used to calculate the 
predicted spectra was recorded to assess the amount of 
information used by each match criteria combination to 
estimate the spectrum.

To evaluate the spectral imputation quality, we em-
ployed 2 approaches. First, for assessing the effect of 
this spectral estimation on the prediction of specific 
FT-MIR phenotypes, the FT-MIR equations predicting 
the contents of fat, SFA, MUFA, PUFA, calcium (Ca), 
sodium (Na), phosphorus (P), lactoferrin (LACTOF) 
as well as the BW, the quantity of eructed methane 
(CH4) and DMI were applied to the estimated and ref-
erenced spectra. Table 2 describes the characteristics 
of the equations used. The prediction accuracy was as-
sessed by calculating the correlation and mean absolute 
error (MAE) estimated between the predicted and 
actual FT-MIR values of each predicted phenotypes. 
MAE was computed as follows:
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Table 1. Descriptive statistics of the experimental data sets used in the present study

Item  Variable N Mean SD Minimum Maximum

Full data set  Fat (g/dL milk) 6,625,570 4.10 0.76 0.10 18.46
  Protein (g/dL milk) 6,625,570 3.45 0.42 0.21 15.50
  Lactose (g/dL milk) 6,358,998 4.71 0.24 0.01 8.94
  Urea (mg/L) 6,621,432 248.50 86.92 1.00 2,000.00
Subset  Fat (g/dL milk) 2,000,000 4.14 0.76 0.13 18.46

 Protein (g/dL milk) 2,000,000 3.48 0.41 0.50 13.05
 Lactose (g/dL milk) 1,985,770 4.75 0.22 0.69 5.67
 Urea (mg/L) 1,998,759 257.98 88.07 1.00 1,870.00

Samples to predict  Fat (g/dL milk) 1,700 4.08 0.64 1.94 6.64
 Protein (g/dL milk) 1,700 3.46 0.41 2.41 7.14
 Lactose (g/dL milk) 1,700 4.72 0.22 2.90 5.25
 Urea (mg/L) 1,699 206.46 71.34 20.00 570.00
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where n is the number of observations. The second 
approach involved visualizing the correlation values 
estimated between the predicted and reference infrared 
absorbance values to assess the part of the FT-MIR 
regions that were more accurately predicted.

RESULTS AND DISCUSSION

The performance of the 4 match criteria combinations 
was evaluated and compared based on the correlation 
and MAE between the actual and predicted pheno-
types, as shown in Table 3. The number of predicted 
samples that met all desired conditions varied with the 
combination used. As the number of match conditions 
increased, the number of predicted samples decreased 

drastically. MCC1 with only 2 match conditions (i.e., 
equal fat and protein contents) yielded the highest 
percentage (99.5%) of predicted samples, followed by 
MCC2 (57.2%) and MCC3 (55.6%), each with 3 match 
conditions. MCC4, which used all 4 match conditions, 
had only 29 (1.7%) predicted samples.

The correlation and MAE obtained for each FT-MIR-
based phenotype also varied depending on the match 
criteria combination used (Table 3). The highest cor-
relations were consistently obtained with MCC1. The 
prediction error was the lowest or close to the lowest 
for MCC1, although the MAE values were not directly 
comparable due to the varying number of predicted 
samples for each match criteria combination. MCC4 
yielded the smallest corrections and mostly the largest 
MAE (except MUFA, PUFA, and Na). However, when 
we only kept the samples selected by MCC4 (n = 29), 
the MAE value obtained using the estimated spectra 
from MCC1 was still lower. Therefore, enforcing the 4 
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Table 2. Characteristics of the used FT-MIR equations1

Trait  Unit n R2 Reference

Fat content  g/dL milk 1,799 1.00 NP2

DMI  kg/d 10,711 0.46 Tedde et al., 2021b
BW  kg 1,849 0.61 Tedde et al., 2021a
Methane  g/d 1,089 0.68 Vanlierde et al., 2021
Calcium  mg/kg 1,106 0.81 Christophe et al., 2021
Sodium  mg/kg 997 0.43 Christophe et al., 2021
Phosphorus  mg/kg 1,126 0.72 Christophe et al., 2021
Lactoferrin  mg/L milk 2,442 0.53 Soyeurt et al., 2020
SFA  g/dL milk 1,790 0.99 Grelet et al., 2014
MUFA  g/dL milk 1,793 0.97 Grelet et al., 2014
PUFA  g/dL milk 1,788 0.97 Grelet et al., 2014
1n = number of reference samples used to build the equation; R2 = cross-validation coefficient of determination; 
Reference = the reference for the published equation if available. 
2NP = not published.

Table 3. Correlation and mean absolute error (MAE) between the actual and the predicted phenotypes based on the 4 match criteria 
combinations1

Item

Correlation

 

MAE

C1 C2 C3 C4 C1 C2 C3 C4

 Number of matched samples 1,692 946 972 29  
% Loss of samples 0.47 44.35 42.82 98.29
%Fat 0.95 0.89 0.93 0.73  0.097 0.081 0.109 0.135
Methane 0.66 0.31 0.45 0.20  61.98 61.83 71.45 84.12
SFA 0.89 0.77 0.81 0.76  0.20 0.19 0.21 0.20
MUFA 0.63 0.30 0.35 0.21  0.14 0.16 0.15 0.15
PUFA 0.68 0.40 0.39 0.18  0.024 0.019 0.026 0.023
BW 0.94 0.91 0.92 0.84  13.50 16.37 15.17 20.60
DMI 0.63 0.42 0.41 0.37  1.84 2.24 2.21 2.92
Calcium 0.66 0.36 0.40 0.02  68.57 81.95 79.98 86.94
Sodium 0.31 0.07 0.60 0.17  39.26 44.59 25.49 22.89
Phosphorus 0.51 0.27 0.34 0.10  75.75 84.64 82.49 88.60
Lactoferrin 0.37 0.11 0.23 0.20  80.41 99.06 81.67 110.51
1Combination 1 (C1): equal contents of fat and protein; Combination 2 (C2): equal contents of fat, protein, and urea; Combination 3 (C3): equal 
contents of fat, protein, and lactose; Combination 4: equal contents of fat, protein, urea, and lactose.
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match conditions in MCC4 did not seem appropriate 
for estimating missing milk FT-MIR spectra. MCC2 
and MCC3 had roughly the same number of predicted 
samples, yet the former had smaller correlations than 
the latter for most of the traits. Overall, MAE was also 
larger with MCC2 than MCC3. Hence, considering the 
urea content as a criterion did not seem to yield as 
accurate results as considering lactose. The 2 promising 
match criteria combinations are MCC1 and MCC3.

To ensure a fair comparison based on the same num-
ber of samples, we calculated correlation and MAE 
values for the predicted phenotypes for all the 4 match 
criteria combinations but using the samples with 
matched spectra based on MCC3 (Table 4). Still, MCC1 
performed better than MCC3 because the former had 
more spectra used to create the final estimated spec-
trum. On average, MCC1 used 108 ± 60 spectra, 
whereas MCC3 used 4 ± 3 samples. Because matched 
samples with equal querying milk contents can vary 
with their spectra, by taking the average spectra value 
of the matched samples as a predicted spectrum, 
MCC1, with far more matched samples per query, 
tended to yield more precise and accurate estimates of 
spectra than MCC3. The theory behind this hypothesis 
could be formulated as follows. Milk FT-MIR spectra 
(denoted by X) are often used to predict milk quality 
traits or composition (denoted by Y): Y = f(X), where 
f is a function that maps from an input X to the output 
Y. However, we are interested in predicting missing X, 
given Y in the data repository as the input. This task 
can be viewed as a reverse mapping. Not to lose gener-
ality, we let X = g(Y), where g(Y) is a predictive func-
tion of X, now given Y as the predictor. For the predic-
tion purpose, g(Y) can take any form, which does not 
have to be precisely an inverse function of f. In this re-
search, we used a straightforward approach to predict 
the milk FT-MIR spectrum by matching samples based 
on each match criteria combination. Statistically, ap-
plying each match criteria combination leads to a form 
of g(Y), which is a degenerate distribution with the 
point mass equaling the actual FT-MIR spectra (xi) of 
the matched sample, conditional on that the selected 
phenotypes of both samples matched precisely or ap-
proximately. When multiple matches (n > 1) exist, the 
FT-MIR estimate ˆ*x( ) is given by the corresponding 

mean of the degenerate points: ˆ ,*x
n

x
i

n
i=

=∑
1

1
 

∇ y yi
* ,− ≤ δ  where δ = 0 if precise matches are re-

quired. Note that we later relaxed this zero restraint to 
allow an acceptable range of errors (e.g., for lactose 
content). Assume that each matched point xi deviates 
from the actual value x* by a quantity εi , which repre-
sents an error term. Hence, the above becomes: 

ˆ ,* *x x
n i

n
i= +

=∑
1

1
ε  ∇ y yi

* .− ≤ δ  The standard error 

of ˆ*x  is given by se x
n j

n
iˆ .*( ) = =∑

1
1
2ε  Here, the predic-

tion accuracy depends on 2 facts, the number of 
“matched samples” and the mapping accuracy. First, if 
the deviations occur randomly by nature, the estima-
tion error will decrease or diminish as the number of 

matched records increases because 
1

0
1n i

n
i=∑ →ε  when 

n →∞. Hence, the more matched samples, the higher 
accuracy (i.e., higher correlation and smaller MAE). 
Second, we observed a link between the forward and 
reverse mapping of phenotypes. Assume that the for-
ward mapping from X to Y has an extremely high coef-
ficient of determination. Then, the coefficient of deter-
mination for the reverse mapping from Y to X is also 
high. For example, consider fat content. The determi-
nation coefficient using the existing FT-MIR for pre-
dicting fat content, as evaluated by cross-validations, 
was extremely high (R2 = 1.00). Hence, the correlation 
between the predicted and actual fat content was also 
high (r = 0.93) based on MCC1. Conversely, if the de-
termination coefficient for forward mapping is low, then 
the accuracy for the reverse mapping will also be low. 
For the simplicity of illustration, assume a linear rela-
tionship between X and Y, say yi = bxi + ei. Then, we 
show that the reverse mapping is the same coefficient of 
determination as the forward mapping because:

R b
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Although the reverse mapping from Y to X is high 
for fat and protein, including addition traits, such as 
lactose and urea, did not increase the accuracy further. 
Instead, it matched considerably fewer records, leading 
to drastically increased estimation errors (Tables 3 and 
4).

The lactose content is not always corrected by a 
laboratory because it is not included in milk pricing. 
Therefore, enforcing precisely equal lactose contents, 
as with MCC3, can be too strict to find any matched 
sample. To address this issue, we proposed a modi-
fication to MCC3 by allowing a difference of lactose 
content within a range of, say, ±0.1 g/dL milk between 
the query sample and a reference sample, in addition to 
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enforcing precisely the same fat and protein contents. 
This new match criteria combination is referred to as 
MCC3b in Table 4 and throughout this manuscript. 
With this modification, the number of matched samples 
increased to 35 ± 23. As a result, MCC3b had a signifi-
cantly higher correlation and lower MAE between the 
prediction and actual phenotypes than MCC3 (Table 
4). Moreover, MCC3b matched 1,682 samples whereas 
MCC3 matched only 972 samples. Still, these numbers 
were smaller than the 1,692 matched samples by MCC1.

MCC3b did not outperform MCC1 because MCC1 
had far more matched samples. Nevertheless, we de-
tected exceptions. MCC3b gave more accurate predic-
tions for BW, Na, and P (i.e., higher correlation and 
lower MAE) than MCC1. These results did not agree 
with the hypothetical theory presented earlier. Indeed, 
we observed an additional dimension of the problem 
to determine the prediction accuracy, which the above 
hypothetical theory did not consider: all FT-MIR re-
gions do not have the same importance for predicting 
all traits. For instance, fat or protein contents are not 
predicted using the same FT-MIR regions. Therefore, 
adding new traits using a different part of the spectrum 
for its prediction in the match criteria can be relevant. 
The accuracy variability between the predicted phe-
notypes could be explained by the precision in the 
spectral estimation with different wavelengths. Figure 1 
shows the correlation values obtained for each spectral 
point after using MCC1 and MCC3b, respectively, to 
select the spectra. For both match criteria combina-
tions, we can observe that the accuracy of predicting 
the absorbance value at a specific wavenumber varied. 
In some regions, the correlation value was close to 0. 
These regions corresponded to those located between 
1,600 to 1,689 cm−1 and 3,008 to 5,010 cm−1, which are 
related to the noisy regions related to water absorption, 

according to Grelet et al. (2015). Overall, the corre-
lations calculated based on MCC3b were higher than 
those based on MCC1, suggesting a benefit in keep-
ing the lactose content in the match criteria set. For 
instance, the region around 1,550 cm−1 had high cor-
relations between the predicted and actual absorptions 
for MCC1 and MCC3b. This region was related to C–N 
and N–N stretching, required to quantify the protein 
content (Grelet et al., 2015). This is expected as the 
match criteria considered the protein content. Grelet 
et al. (2015) mentioned that the prediction of lactose 
requires absorbances estimated around 1,045 cm−1 with 
C–O stretching vibration of alcohols functions, 1,076 
cm−1 with C–O, C–C, and C–H stretching vibration, 
and 1,157 and 1,250 cm−1 with C–O–C ether stretching. 
Those regions were well predicted using MCC3b but 
not using MCC1 because the former included the lac-
tose content as a match criterion. These results again 
confirmed the benefit of including lactose as a match 
criterion. We will discuss the case of the fat content a 
little bit later in this discussion about the phenotype 
performances. The above results pinpointed that the 
performance of match criteria can vary enormously at 
different spectrum locations or wavenumbers (Figure 
1).

To confirm our findings, we implemented new predic-
tions based on MCC3b in the entire spectral database 
generated from the routine milk recording (Table 5), 
which consisted of 6,625,570 spectral records (Table 1). 
Even though the number of matched samples based on 
MCC3b increased from 972 (Table 4) to 1,682 (Table 
5), the accuracy as measured by the correlation be-
tween the predicted and actual phenotypes of the 11 
traits increased substantially from 0.46 (P) and 0.93 
(%Fat) to between 0.67 (P) and 0.97 (%Fat). Mean-
while, MAE decreased for all 11 traits. On average, the 
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Table 4. Correlation and mean absolute error (MAE) calculated from the actual and predicted phenotypes 
using match criteria combinations 1, 3, and 3b, respectively1

Item

Correlation

 

MAE

C1 C3 C3b C1 C3 C3b

%Fat 0.94 0.93 0.94  0.093 0.109 0.095
Methane 0.63 0.45 0.57  55.23 71.45 56.79
SFA 0.88 0.81 0.87  0.18 0.21 0.19
MUFA 0.53 0.35 0.51  0.12 0.15 0.12
PUFA 0.61 0.39 0.59  0.022 0.026 0.023
BW 0.94 0.92 0.95  12.63 15.17 12.48
DMI 0.60 0.41 0.59  1.72 2.21 1.77
Calcium 0.59 0.40 0.53  63.79 79.98 66.55
Sodium 0.30 0.60 0.72  28.74 25.49 20.41
Phosphorus 0.44 0.34 0.46  75.87 82.49 74.89
Lactoferrin 0.41 0.23 0.49  59.99 81.67 60.36
1Combination 1 (C1): equal contents of fat and protein; Combination 3 (C3): equal contents of fat, protein, and 
lactose; Combination 3b (C3b): equal contents of fat and protein plus a comparable lactose content within a 
range of ±0.1 g/dL milk between the query sample and a reference sample. n = 972.



Journal of Dairy Science Vol. 106 No. 12, 2023

9101

increment rate of the correlations for the 11 traits was 
19.6%, and the decrement rate of MAE was 8.8%. In 
the entire data set, MCC3b generated a comparable 
number (1,682) of predicted samples compared with 
the previous number (1,692) of predicted samples for 
MCC1. Yet, MCC3b had higher correlations than those 
previously obtained based on MCC1, and MAE were 
also lower for most of the 11 traits except MUFA, BW, 
and Ca. The performance improvement with MCC3b 
was related to the number of selected spectra increased 
from 35 (±23) when applied to the 2 million records 
to 84 (±64) when applied to the entire Walloon milk 
recording spectral database. This is still lower than 
the number of spectra used by MCC1 on the initial 2 
million records. Therefore, these results showed that 
the number of samples mattered but was not the sole 
decisive factor. Indeed, and this is an important point, 
to have a better-predicted spectrum, one also needs to 
consider using match criteria in different milk FT-MIR 
regions.

The final performances in Table 5, and other tables, 
indicate that prediction performance differed between 
the studied traits. We start with the comparison between 
phenotypes prediction performances from the predicted 
spectrum for fat content. Despite the matching crite-
ria requiring an equal content between the fat content 
estimated by the milk laboratory for the reference and 

the selected spectra, we never obtained a correlation 
between the fat contents equal to 1. The reason is that 
this correlation was calculated with the predicted fat 
contents using the equation in Table 1 from the actual 
and estimated spectra. Therefore, the traits used were 
not identical as the fat and protein records provided 
by the milk analysis laboratory were corrected. This 
correction, based on ISO 9622:2013–IDF 141:2013, is 
for the bias and slope, which is carried out by analyz-

Soyeurt et al.: IMPUTATION OF MISSING MILK MID-INFRARED SPECTRUM

Figure 1. Correlation values between actual and predicted absorptions at different wavenumbers based on match criteria combinations 1 
(blue line) and 3b (orange line) in 972 samples. Combination 1: equal contents of fat and protein; Combination 3b: equal contents of fat and 
protein plus a comparable lactose content within a range of ± 0.1 g/dL milk between the query sample and a reference sample.

Table 5. Correlation and mean absolute error (MAE) calculated from 
the predicted and observed phenotypes (n = 1,682) after applying 
match criteria combination 3b1 on the entire Walloon milk recording 
database (n = 6,625,570)

Item Correlation MAE

%Fat 0.97 0.048
Methane 0.66 47.02
SFA 0.91 0.15
MUFA 0.69 0.13
PUFA 0.72 0.018
BW 0.92 12.80
DMI 0.70 1.71
Calcium 0.71 63.83
Sodium 0.83 20.43
Phosphorus 0.62 67.50
Lactoferrin 0.66 71.73
1Combination 3b: equal contents of fat and protein plus a comparable 
lactose content within a range of ±0.1 g/dL milk between the query 
sample and a reference sample.
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ing samples with known fat and protein content and 
then applying the slope and bias to the fat and protein 
predictions provided by the spectrometer to account for 
the variability of the spectral signal through time. This 
correction is not applied to the spectral data. Even if 
the spectral data were standardized, this standardiza-
tion is not carried out as often as the bias and slope 
corrections. Indeed, bias is checked every 40 samples, 
whereas spectral standardization is done only once 
monthly.

For a trait not used as the match criterion, the predic-
tion accuracy depends on its correlation with the traits 
used as match criteria. For example, consider MCC1. 
The prediction accuracy for a nonmatch-criterion trait 
will be high (or low) if it has a high (or low) correla-
tion with fat and protein contents. This was the reason 
for the high prediction accuracy (correlation = 0.89) 
for SAT content. Indeed, the correlation between fat 
and SAT predictions was around 0.98 from all our data 
sets. In contrast, the predictions for the unsaturated 
fatty acids (MUFA and PUFA) were less accurate (cor-
relation = 0.63–0.68) than the predictions for SAT. 
The large discrepancies in prediction accuracies among 
these traits lead us to postulate that important wave-
numbers responsible for the latter traits with poor pre-
diction accuracies were not accurately predicted by our 
method. Indeed, Grelet et al. (2015) mentioned that 
the informative signals related to the fat chains ap-
peared around 1,390 and 1,454 cm−1 with C–H bending 
of −CH3 and −CH2, and around 2,862 and 2,927 cm−1 
with C–H stretching of −CH3 and −CH2. This first 
region located around 1,400 cm−1 was not well repre-
sented by our method (Figure 1). This could lead to the 
insufficient prediction of long-chain fatty acids, which 
are mainly present in the quantification of MUFA and 
PUFA. The region around 1,743 cm−1 is also interesting 
in quantifying the fat content because of the C = O 
ester stretching (Grelet et al., 2015). This region was, 
more or less, well predicted. Still, the predictions were 
poor for the quantity of methane eructed by dairy cows 
because it was not directly linked to fat content or 
composition (Vanlierde et al., 2021). Possibly, including 
additional traits for a more balanced FT-MIR coverage 
is appealing to improve the phenotypes prediction per-
formances, yet subject to having an adequate number 
of matched samples.

The above results have motivated us to consider in-
cluding additional information as match criteria that 
could allow predicting each wavenumber better. We 
have tested the effect of adding information external 
to the milk spectrum per se, such as days in milk and 
test seasons, which could be related to the milk spectral 
variability. For example, Soyeurt et al. (2022) showed 
that it was possible to predict the intensity of grass in 

the diet of dairy cows which was indirectly affected by 
the seasons when the milk spectral data were collected 
in the Walloon Region of Belgium. However, adding 
the information for days in milk during the selection of 
spectra and test season did not improve the prediction 
performance compared with using MCC1 (data not 
shown). The example of MCC3b demonstrates that in-
creasing the number of relevant matching parameters, 
enhancing the matching of each individual wavenum-
ber, and additional matching criteria such as days in 
milk, milk yield, and parity, could be included as the 
reference data set expands. Then, it would be worth-
while to investigate in the future whether the developed 
methodology is applicable to a large-scale international 
spectral database. Indeed, by grouping spectral data-
bases, the prediction accuracy could be higher.

CONCLUSIONS

We have proposed a strategy that leverages existing 
spectral databases to estimate missing spectra using 
common dairy traits as matching criteria. This strat-
egy has the potential to improve FT-MIR prediction 
models and accuracies for FT-MIR predicted traits, 
particularly for traits driven by similar FT-MIR signals 
as those used as part of the matching criteria. The best 
imputations required more than 80 selected spectra and 
the match criteria including traits with predictions by 
FT-MIR involving different spectral regions. Therefore, 
the third match criteria combination allowing an ap-
propriate range for the lactose of ±0.1 g/dL milk, in 
addition to enforcing equal fat and protein contents, 
yielded the best predictions. On the one hand, some 
spectral regions were well predicted based on the ob-
served accuracy measures (i.e., correlation and MAE 
between actual and predicted phenotypes). In principle, 
applying an equation on those well-predicted FT-MIR 
regions could yield good predictions for relevant phe-
notypes. Thus, we hold that new equations should be 
developed on these well-predicted regions. The oldest 
equations could also be rebuilt by utilizing those well-
predicted regions. If the proposed limitation of spectral 
points does not significantly decrease the prediction 
accuracy, then this solution is relevant. Nevertheless, 
further confirmation and investigations probing into 
this situation as well as of the interest of this method 
to improve also indirectly the reliabilities of EBV may 
be needed. More specifically, it is required to quantify 
the increase of R2 for a prediction equation and the 
increase in the reliability of EBV by adding imputed 
spectra. To achieve this first objective, it will be needed 
to collect the predictions of matching criteria done by 
the spectrometers when samples used to build equa-
tions are analyzed by FT-MIR spectrometry. Unfortu-
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nately, even if we have many training sets, this job 
was not done leading to the impossibility of evaluating 
the effect of imputed spectra on the equation perfor-
mances. For the reliability improvement of EBV, a 
genetic evaluation should be performed using the pre-
dictions given by the entire spectral data set. Then, the 
obtained reliability for EBV should be compared with 
the same predictions, except that a certain percent-
age would be obtained by a prediction from imputed 
spectra. The presence of predictions obtained from 
imputed spectra could reduce the variability, especially 
for the trait using the spectral wavenumbers having the 
poorer imputed prediction performances (e.g., meth-
ane). Therefore, this must have a very bad effect on the 
genetic evaluation of a specific cow if the entire spectral 
data used to evaluate it is imputed. So, a study about 
the maximum imputed spectra that could be added to 
a training set or in a genetic evaluation must be investi-
gated. Another needed investigation could be related to 
the interest in including additional informative criteria 
to improve the overall predictive quality of the FT-MIR 
spectra, which can enhance the estimation of FT-MIR 
regions whose prediction performance is poorer based 
on the currently proposed match criteria. We tested 
external criteria such as test seasons and days in milk, 
but they did not improve the prediction performances. 
Nevertheless, the roles of other traits directly related 
to the milk FT-MIR variability need to be evaluated. 
For instance, if there are records for unsaturated fatty 
acid contents predicted by FT-MIR and calibrated by 
their respective laboratories, they may be a potential 
candidate for additional criteria in future studies. In 
conclusion, this article is the first piece of the puzzle 
about the use of imputed milk FT-MIR spectra in dairy 
farming and additional investigations are needed to 
evaluate its concrete interest in the field.
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