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ABSTRACT

The aims of this study were (1) to identify genomic 
regions associated with a N efficiency index (NEI) and 
its composition traits and (2) to analyze the func-
tional annotation of identified genomic regions. The 
NEI included N intake (NINT1), milk true protein N 
(MTPN1), milk urea N yield (MUNY1) in primiparous 
cattle, and N intake (NINT2+), milk true protein N 
(MTPN2+), and milk urea N yield (MUNY2+) in 
multiparous cattle (2 to 5 parities). The edited data in-
cluded 1,043,171 records on 342,847 cows distributed in 
1,931 herds. The pedigree consisted of 505,125 animals 
(17,797 males). Data of 565,049 SNPs were available for 
6,998 animals included in the pedigree (5,251 females 
and 1,747 males). The SNP effects were estimated using 
a single-step genomic BLUP approach. The proportion 
of the total additive genetic variance explained by win-
dows of 50 consecutive SNPs (with an average size of 

about 240 kb) was calculated. The top 3 genomic regions 
explaining the largest rate of the total additive genetic 
variance of the NEI and its composition traits were 
selected for candidate gene identification and quantita-
tive trait loci (QTL) annotation. The selected genomic 
regions explained from 0.17% (MTPN2+) to 0.58% 
(NEI) of the total additive genetic variance. The largest 
explanatory genomic regions of NEI, NINT1, NINT2+, 
MTPN1, MTPN2+, MUNY1, and MUNY2+ were Bos 
taurus autosome 14 (1.52–2.09 Mb), 26 (9.24–9.66 Mb), 
16 (75.41–75.51 Mb), 6 (8.73–88.92 Mb), 6 (8.73–88.92 
Mb), 11 (103.26–103.41 Mb), 11 (103.26–103.41 Mb). 
Based on the literature, gene ontology, Kyoto Ency-
clopedia of Genes and Genomes, and protein-protein 
interaction, 16 key candidate genes were identified for 
NEI and its composition traits, which are mainly ex-
pressed in the milk cell, mammary, and liver tissues. 
The number of enriched QTL related to NEI, NINT1, 
NINT2+, MTPN1, and MTPN2+ were 41, 6, 4, 11, 36, 
32, and 32, respectively, and most of them were related 
to the milk, health, and production classes. In conclu-
sion, this study identified genomic regions associated 
with NEI and its composition traits, and identified key 
candidate genes describing the genetic mechanisms of 
N use efficiency-related traits. Furthermore, the NEI 
reflects not only its composition traits but also the in-
teractions among them.
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INTRODUCTION

High-efficiency dairy cattle are increasingly being 
pursued by milk producers (Brito et al., 2020). Cattle 
consume N mostly in the form of feed crude protein, 
which is then degraded into different forms of N, such 
as amino acids, ammonia, and urea, for metabolism in 
the body (Aguirre-Villegas et al., 2017). The N emis-
sions from the livestock sector account for one-third 
of current human-induced N emissions (Uwizeye et al., 
2020). Dairy cows with high N use efficiency (NUE) not 
only improve the profitability of dairy farms but also 
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reduce environmental N pollution (Calsamiglia et al., 
2010). The NUE is a complex trait involving multiple 
features, such as N intake (NINT), milk true protein 
N (MTPN), and MUN (Chen et al., 2022). Milk urea 
concentration (MU) and MUN are the most commonly 
used NUE proxies in dairy cattle management and ge-
netic breeding programs. The reason why MU (MUN) 
indirectly increases NUE is its strong correlation with 
urinary N (Kauffman and St-Pierre, 2001).

The traditional definition of NUE in dairy cows is 
milk N out divided by NINT. However, several short-
comings of this definition were shown in our latest 
study (Chen et al., 2022). Therefore, we proposed a 
new N efficiency index (NEI) that considers both NUE 
and N pollution at the same time (Chen et al., 2022). 
The NEI is a combination of NINT, MTPN, and MUN 
yield (MUNY) being predicted by milk mid-infrared 
(MIR) spectroscopy. The genetic correlations between 
NEI and production yield traits were positive, but the 
correlations with the investigated functional traits were 
negative (Chen et al., 2022). However, the biological 
background of NEI is still missing. Although some 
studies have explained the biological background of 
MUNY or MUN (Strucken et al., 2012; Ariyarathne et 
al., 2021; Honerlagen et al., 2021), to our best knowl-
edge, the biological backgrounds of NINT and MTPN 
have yet not been investigated. In addition, some stud-
ies performed genetic analyses on minor N compounds 
in milk (such as ammonia) and urinary urea (Pegolo 
et al., 2018; Honerlagen et al., 2021). However, these 
phenotypes are difficult to measure and thus far have 
been too challenging to be applied for dairy breeding 
purposes.

Multiple studies have shown that single-step genome-
wide association study (ssGWAS) is an efficient meth-
od for studying the genomic background of complex 
traits (Li et al., 2019; Atashi et al., 2020; Brunes et 
al., 2021). Indeed, the ssGWAS algorithm can directly 
obtain the SNP variance through the genomic EBV, 
allowing estimation of the proportion of each SNP in 
the total additive genetic variance (Wang et al., 2012). 
However, the variance effect of a single SNP is often 
small, so it is a good way to express the proportion of 
genomic regions (SNP windows) of several consecutive 
SNPs in the total additive genetic variance (Fragomeni 
et al., 2014). The functional analysis of genes inside the 
identified genomic regions can better explain the ge-
nomic background of the research traits. For example, 
the gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses 
of genes located in genomic regions associated with a 
trait can reveal the biological process and pathways in-
volved. Based on the genetic relationships between NEI 
and other traits at different strength levels (Chen et al., 

2022), we speculate that the genetic region identified 
for NUE-related features may also regulate other traits. 
In addition, previous studies reported that the QTL of 
MUNY were located on different chromosomes, show-
ing the polygenic profile of this trait (Bouwman et al., 
2010; Strucken et al., 2012). Identified genomic regions 
can be compared with the QTL (genomic regions) pre-
viously reported and checked for the potential effects 
of genetic selection of NUE on other traits at the QTL 
level.

The objectives of this study were to investigate the 
genomic background of the NEI and verify whether the 
NEI can reflect the combined 3 NUE-related features. 
In this regard, ssGWAS was used to identify genomic 
regions associated with NEI and its composition traits; 
then, functional annotation analyses were performed 
on the genomic regions identified for the corresponding 
traits.

MATERIALS AND METHODS

The study framework is shown in Figure 1. Because 
no human or animal subjects were used, this analysis 
did not require approval by an Institutional Animal 
Care and Use Committee or Institutional Review 
Board.

Data

Phenotypic Data. The data used in this study were 
the same as those used by Chen et al. (2022). Briefly, 
we used 1,043,171 test-day records, collected from 2001 
to 2019 on 342,847 cows distributed in 1,931 herds. 
The range of DIM for all records used was restricted 
to between 5 and 50 because of the predicament of the 
NINT model. The NINT of each cow was predicted by 
the equations based on the models developed by Grelet 
et al. (2020). The following formulas were used: MTPN 
= [(milk yield × protein percentage/6.38) − MUNY], 
and MUNY = [(milk urea concentration/2.14) × milk 
yield] (WHO and FAO, 2011), with protein percentage 
and milk urea concentration predicted by milk MIR. In 
addition, we divided the 3 NUE-related features (NINT, 
MTPN, MUNY) into NINT1, MTPN1, MUNY1, 
NINT2+, MTPN2+, and MUNY2+ traits accord-
ing to primiparous or multiparous classes (2 to 5 pari-
ties). The used pedigree consisted of 505,125 animals 
(17,797 males). Grelet et al. (2020) used support vector 
machine regression to build a NINT prediction model 
based on the milk MIR spectra, milk yield, and parity. 
A total of 143,595 NINT records were predicted with 
data from 53,660 cows in 776 herds.

Genotypic Data. Genotypic data were available for 
6,998 animals (1,747 males and 5,251 females). Individ-
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uals were genotyped using the BovineSNP50 Beadchip 
v1 to v3 (Illumina). Single nucleotide polymorphisms 
common between all 3 chips were kept. Non-mapped 
SNPs, SNPs located on sex chromosomes, and triallelic 
SNPs were excluded. A minimum GenCall Score of 0.15 
and a minimum GenTrain Score of 0.55 were used to 
keep SNPs (Wilmot et al., 2022). The genotypes were 
imputed to HD by using FImpute V2.2 software (Sar-
golzaei et al., 2014). One of the common editing steps 
for marker data (e.g., SNP) is to check for Mendelian 
conflicts (Wiggans et al., 2009). A Mendelian conflict 
occurs when the genotype and pedigree data of 2 related 
animals are in disagreement. This may result from an 
error in the recorded pedigree, from genotyping errors, 
from mixing up DNA samples, and, in very rare cases, 
from mutations (Calus et al., 2011). In this study, SNPs 
with Mendelian conflicts and those with minor allele 
frequency less than 5% were excluded. The difference 
between observed heterozygosity and that expected 
under Hardy-Weinberg equilibrium was estimated, and 
SNPs difference greater than 0.15 were excluded (Wig-
gans et al., 2009). In total, 565,049 SNPs located on 29 
BTA were used in the genomic analyses.

(Co)Variance Components Estimation. In to-
tal, 143,595 test-day records on 53,660 cows for 6 traits 
extracted from the whole data set were used to esti-
mate variance and covariance components (Chen et al., 
2022). The pedigree used for estimating (co)variance 
components consisted of 133,943 animals (7,879 males). 

Genotypic data were available for 4,563 animals (1,292 
males) included in the pedigree. A 6-trait repeatability 
model (6 traits: 3 traits and 2 parity classes) was used 
to estimate the (co)variance components. The informa-
tion of the model can be found in Chen et al. (2022). 
In brief, herd-year-season of calving, DIM, and calving 
age (nested within parities) were used as fixed effects 
in this model, whereas nongenetic cow, nongenetic cow 
× parity (only for multiparous traits), additive animal 
genetic, and residual were used as random effects. 
However, when calculating the relationship between 
animals, we used the H matrix, which combined pedi-
gree (A) and genomic (G) based relationships into one 
matrix. The inverse of H as defined by Aguilar et al. 
(2010) is as follows:

 H A− −
− −= +
−















1 1
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0 0

0 G A
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where A is the numerator relationship matrix based 
on the pedigree; A22 is the numerator relationship ma-
trix based on the pedigree for genotyped animals; G 
is the genomic relationship matrix obtained using the 
function described by VanRaden (2008). In addition, 
the inverse of all matrices considers the coefficient of 
inbreeding between individuals (Lourenco et al., 2020).

Computations were performed using the BLUPF90 
family of programs (Misztal et al., 2018). The (co)vari-
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Figure 1. Workflow for the N efficiency index (NEI), N intake in primiparous cows (NINT1), N intake in multiparous cows (NINT2+), milk 
true protein N in primiparous cows (MTPN1), milk true protein N in multiparous cows (MTPN2+), MUN yield in primiparous cows (MUNY1), 
and MUN yield in multiparous cows (MUNY2+). GO = gene ontology; KEGG = Kyoto Encyclopedia of Genes and Genomes; PPI = protein-
protein interaction; ① = first showing these results in this manuscript; ② = showing these results after ①; GEBV = genomic EBV; ssGWAS 
= single-step GWAS.
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ance components and parameters for NINT, MTPN, 
and MUNY were estimated by Gibbs sampling, which 
was described by Chen et al. (2022). The procedures 
used to calculate the heritability (h2) and repeatability 
were the same as those reported by Chen et al. (2021).

Estimated Breeding Values and Nitrogen  
Efficiency Index

Using the estimated (co)variance components and 
the same model, genomic EBV were estimated for 6 
traits of each animal, according to the precondition 
conjugate algorithm implemented in the BLUPF90 
(version 1.71) program. The whole data set was used 
for this purpose. The calculation method of NEI was 
the same as Chen et al. (2022). In short, The NEI 
was obtained by combining the GEBV of the 6 traits 
using the selection index theory. The relative weights 
of the 6 considered traits were calculated by selection 
responses, which assumed that the selection responses 
for NINT, MTPN, and MUNY were 0, 1, and −1, 
respectively.

Genome-Wide Association Analyses

The SNP effects for the NEI and 6 traits were esti-
mated using the POSTGSF90 software (version 1.73; 
Aguilar et al., 2014). The formula used for estimating 
SNP effects was as follows Wang et al. (2012):

 ˆ ˆa DZ Z DZ ug= ′ ′




−

g g
1

, 

where â is the SNP effect, D is the weight matrix of 
SNPs, which is identical to the identity matrix (I), 
which means the weight for all SNPs is 1; Zg is an inci-
dence matrix of genotyped for each SNP; and û is a 
vector of genomic EBV for each trait of genotyped ani-
mals. The variance of i SNP is ˆ ,d a p pi i i i= −( )22 1  where 
ai
2 is the square of ith SNP effect, and pi is the fre-

quency of allele B at SNP i. The results were presented 
by the proportion of variance explained by each window 
of 50 adjacent SNPs with an average size of about 240 
kb. We used 1 SNP as the moving step of the window, 
which ensured that we would not miss genomic regions 
potentially associated with the trait due to the combi-
nation of SNPs. The formula for the total additive ge-
netic variance of each window was as follows:
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where ai is the genetic variance of the ith genomic re-
gion (each window combines 50 consecutive SNPs), σa

2 
is the total genetic variance, Zj is the vector of the SNP 
content of the jth SNP for all individuals, and d̂ j is the 
variance of the jth SNP.

Linkage disequilibrium (squared correlation coef-
ficient, r2) was calculated for SNPs within a window 
that explained more than 0.5% of total additive genetic 
variance.

Functional Annotation Analyses

Following Soares et al. (2021), the top genomic re-
gions were selected to investigate candidate genes and 
their annotation. However, due to the large number of 
traits considered and the small proportion of variance 
explained by genomic regions in the current study, 
only the top 3 genomic regions were selected. Then, 
candidate genes and QTL annotations were performed 
through the GALLO R package (Fonseca et al., 2020).

Protein-encoding genes located in these selected 
genomic regions were identified using the Bos taurus 
UMD3.1.94 assembly as the reference map (http: / / 
ftp .ensembl .org/ pub/ release -94/ gtf/ bos _taurus/ ; ac-
cessed Oct. 19, 2021). The GO and KEGG analyses 
were carried out on the identified candidate gene sets 
obtained for NEI and included 6 traits through the 
clusterProfiler R package (Wu et al., 2021). Further-
more, protein-protein interaction (PPI) analysis was 
performed on the candidate genes obtained from the 
analyzed traits through STRING (Szklarczyk et al., 
2021) to reveal the relationships between the identi-
fied candidate genes. The PPI relationship was based 
on text mining, experiments, database, co-expression, 
neighborhood, gene fusion, and co-occurrence, and the 
minimum required interaction score was set to 0.40 
(Zhou et al., 2019). The Cytohubba in Cytoscape (ver-
sion 3.8.2) was used to find the hub genes. Based on the 
literature, GO, KEGG, and PPI, potential candidate 
genes were selected, hereafter referred to as key candi-
date genes. Moreover, we checked the expression levels 
of the identified candidate genes (or key genes) over 100 
tissues or cell types in cattle through the cGTEx data-
base (https: / / cgtex .roslin .ed .ac .uk/ ; Liu et al., 2022).

The top 3 genomic regions identified for the stud-
ied traits were annotated with Cattle QTLdb (https: 
/ / www .animalgenome .org/ cgi -bin/ QTLdb/ BT/ index; 
accessed Oct. 19, 2021; Hu et al., 2019). At present, 
Cattle QTLdb has 158,041 QTL, which were divided 
into 6 classes including exterior, production, health, 
reproduction, milk, meat, and carcass (https: / / www 
.animalgenome .org/ cgi -bin/ QTLdb/ BT/ ontrait ?class 
_ID = 1). To avoid deviation caused by the annota-
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tion richness of the different traits, the hypergeometric 
test approach was adopted for the enrichment analyses 
(Fonseca et al., 2020). In all enrichment analyses (GO, 
KEGG, QTL), the Benjamini-Hochberg method was 
used for multiple testing corrections.

RESULTS AND DISCUSSION

Genetic Parameters

The genetic parameters estimated for the 6 consid-
ered traits are described in Table 1, and are similar to 
our previous results obtained without using genotype 
data (Chen et al., 2022). The h2 and repeatability for 
the 6 considered traits ranged from 0.10 to 0.14, and 
0.38 to 0.64, respectively. Compared with our previ-
ous study (Chen et al., 2022), the changes in variances 
ranged from −3.00% to 0.88%; the absolute value of h2 
changed from 4.64% (MUNY1) to 8.81% (MUNY2+), 
and that of repeatability changed from 0.36% (NINT2+) 
to 3.32% (NINT1). Therefore, it can be concluded that 
including genotypic data in the variance components 
analysis caused a minor effect on the results, and the 6 
considered traits have low h2 and medium repeatability, 
although we expected that using genotype data would 
capture more variance and increase the h2, especially 
for complex traits. One possible reason is that the num-
ber of genotyped animals in this work was small (n < 
5,000; de los Campos et al., 2018); hence, substantial 
changes were not observed.

Genome-Wide Association Analyses

Manhattan plots for the NEI and its composition 
traits are shown in Figure 2. The top 3 genomic re-
gions selected for the NEI and its composition traits 
are shown in Table 2. The genomic regions identified 

for NEI, NINT, MTPN, and MUNY were in BTA 11, 
14; 8, 16, 22, 25, and 26; 6, 14, 13, 18, and 19; and 6, 
8, and 11, respectively (Table 2). The genomic regions 
identified for NEI were also associated with MTPN and 
MUNY (except the third region), which confirmed that 
NEI is associated with MTPN and MUNY. The identi-
fied genomic regions explained from 0.17% (MTPN2+) 
to 0.58% (NEI) of the total additive genetic variance. 
Only NEI has genomic regions that explain more than 
0.50% of the total additive genetic variance, probably 
because NEI responds to its component trait interac-
tions.

The top 3 genomic regions combined explained 1.18, 
0.75, 0.73, 0.58, 0.59, 0.96, and 1.03% of the total 
additive genetic variance for NEI, NINT1, NINT2+, 
MTPN1, MTPN2+, MUNY1, and MUNY2+, re-
spectively. Results showed that, in general, windows 
explained less than 0.50% of the total additive ge-
netic variance of the traits, and these low-contributing 
regions were spread across the genome for all traits 
analyzed. This indicates that NEI and its composition 
traits are moderate to highly polygenic, in which many 
regions across the genome contribute to the genetic 
variation of the traits. Similar results were reported for 
MUNY by Strucken et al. (2012). It should be noted 
that one window explaining more than 0.50% of the 
total additive genetic variance was identified only for 
NEI, which means that NEI may reflect interactive 
effects between MTPN and MUNY. The linkage dis-
equilibrium estimated for the genomic region with more 
than 0.50% of the total additive genetic variance of 
NEI is shown in Figure 3. We found that 38.89% (7/18) 
of the genes involved in the nitrogen metabolism path-
way (KEGG: 00910) were located in BTA14 (27.63 to 
79.73 Mb) and included CA1, CA2, CA3, CA8, CA13, 
LOC784254, and LOC100847874. The BTA14 position 
between 27.63 and 79.73 Mb is near the top 1 genomic 

Chen et al.: GWAS FOR N EFFICIENCY INDEX, COMPOSITION TRAITS

Table 1. Heritability, repeatability, σa
2, σc

2, σp
2 (only for second and later lactations), and σe

2 of the proxies for predicted NINT, MTPN, and 
MUNY in primiparous and multiparous Holstein cows (mean ± SE)1

Trait2 h2 Repeatability σa
2 σc

2 σp
2 σe

2

NINT1 0.13 ± 0.01 0.38 ± 0.01 0.03 ± 0.003 0.06 ± 0.00  NA4 0.14 ± 0.00
MTPN1 0.12 ± 0.00 0.59 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 NA 0.02 ± 0.00
MUNY1 0.14 ± 0.01 0.40 ± 0.01 0.10 ± 0.01 0.20 ± 0.01 NA 0.45 ± 0.01
NINT2+ 0.12 ± 0.01 0.45 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.08 ± 0.00 0.17 ± 0.00
MTPN2+ 0.10 ± 0.01 0.64 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 0.03 ± 0.00
MUNY2+ 0.10 ± 0.01 0.43 ± 0.00 0.16 ± 0.01 0.13 ± 0.01 0.40 ± 0.01 0.93 ± 0.01
1σa
2 = additive genetic variance; σc

2 = across-parity permanent environment (nongenetic cow) variance; σp
2 = within-parity permanent environ-

ment (nongenetic cow × parity) variance; σe
2 = residual variance; NINT = predicted N intake, expressed as 100 g/d; MTPN = milk true protein 

N, expressed as 100 g/d; MUNY = MUN yield, expressed as g/d; primiparous cows, n = 44,321; multiparous cows, n = 99,374.
2Traits: NINT1 = N intake in primiparous cows; MTPN1 = milk true protein N in primiparous cows; MUNY1 = MUN yield in primiparous 
cows; NINT2 = N intake in multiparous cows; MTPN2 = milk true protein N in multiparous cows; MUNY2 = MUN yield in multiparous cows.
3SE < 0.005.
4NA = not applicable.
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region (BTA14, 1.54 to 2.09 Mb) related to NEI. From 
this point, only the genomic regions that explained the 
largest additive genetic variance of the studied traits 
were discussed.

The genomic region located between 1.52 and 2.09 
Mb on BTA14 explained 0.58% of the total additive 
genetic variance of NEI. Multiple studies have reported 
that this region is associated with milk yield (Nayeri 
et al., 2016; Atashi et al., 2020; Bakhshalizadeh et al., 
2021). This region (BTA14: 1.52 to 2.09 Mb) was also 
associated with protein and fat yields in dairy cows 
(Veerkamp et al., 2016; Cai et al., 2019). This is in line 
with our prediction of improving NEI through improving 
MTPN. The genomic regions between 9.24 to 9.66 Mb 
on BTA26 and between 75.41 and 75.51 Mb on BTA16 

explained the largest part of the total additive genetic 
variance of NINT1 and NINT2+, respectively. Previous 
studies have shown that SNPs inside the region found 
on BTA26 position 9.24 to 9.66 Mb were associated with 
milk yield, milk C14 index, and milk myristoleic acid 
content (Minozzi et al., 2013; Gebreyesus et al., 2019). 
The genomic region identified at BTA16 position 75.41 
to 75.51 Mb was associated with residual feed intake 
and feed efficiency in cattle (Brunes et al., 2021). The 
genomic region between 88.73 and 88.92 Mb on BTA6 
accounted for the largest ratio of total additive genetic 
variance for MTPN1 and MTPN2+. This region has 
been reported to be associated with protein yield and 
composition (Olsen et al., 2016; Zhou et al., 2019). The 
genomic region located between 103.26 and 103.41 Mb 
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Figure 2. Total additive genetic variance is explained by windows of 50 adjacent SNP across chromosomes for the N efficiency index (NEI, 
A), the N intake in primiparous cows (NINT1, B), N intake in multiparous cows (NINT2+, C), milk true protein N in primiparous cows 
(MTPN1, D), milk true protein N in multiparous cows (MTPN2+, E), MUN yield in primiparous cows (MUNY1, F), and MUN yield in mul-
tiparous cows (MUNY2+, G).
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on BTA11 was associated with MUNY1 and MUNY2+. 
This region has been reported to be associated with MU 
in Brown Swiss cattle (Pegolo et al., 2018) and MUN 
in Australian and New Zealand dairy cattle (van den 
Berg et al., 2022a). Ariyarathne et al. (2021), using the 
50K SNP chip, found that the region located between 
100 and 101 Mb on BTA11 was associated with MU 
in mixed-breed cattle (Holstein Friesian, Jersey, and 
Holstein Friesian × Jersey crossbred). Previous studies 
have shown that the genomic region located between 87 
and 88 Mb on BTA6 was associated with MU (Pegolo 
et al., 2018; Ariyarathne et al., 2021). This region was 
among the identified top 3 genomic regions associated 
with MUNY. Previous studies have reported that the 
region between 6.12 and 7.15 Mb on BTA17 was as-
sociated with MU yield (Honerlagen et al., 2021). The 
variation observed in different studies can be explained 
by the number of animals used in their studies.

Briefly, the genomic regions identified for the studied 
traits were located on multiple BTA and explained a 

small fraction of the total additive genetic variance, 
suggesting that these are complex quantitative traits 
controlled by multiple genes. Increasing the SNP den-
sity in these genomic regions of NEI and 6 considered 
traits (especially NINT and MUNY) when making the 
SNP chip may improve the reliability of genetic selec-
tion for NUE. The NEI may better reflect NUE because 
it has a prominent peak at BTA14, which is closer to 
genes related to nitrogen metabolism pathways.

Gene Annotation Analyses

The results of gene annotation analyses are described 
in Table 2 and Figure 4. We detected no common 
candidate genes between NEI and NINT (Figure 4), 
which is consistent with our hypothesis (keeping NINT 
unchanged). Surprisingly, we found no common can-
didate gene between NEI and MTPN1, which could 
be because NEI only increases the NUE of dairy cows 
through MTPN2+ in the first 5 parities. The percent-
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Table 2. Annotated genes within the top 3 genomic regions explain the largest proportion of total genetic variance for nitrogen efficiency index 
(NEI) and its composition traits

Trait BTA Position2 (bp) Var3 (%) Gene4

NEI 14 1517553:2089613 0.58 ZNF7, COMMD5, ARHGAP39, C14H8orf82, LRRC24, LRRC14, RECQL4, 
MFSD3, GPT, PPP1R16A, FOXH1, KIFC2, CYHR1, TONSL, VPS28, 
SLC39A4, CPSF1, ADCK5, SLC52A2, FBXL6, TMEM249, SCRT1, DGAT1, 
HSF1, BOP1, SCX, MROH1, HGH1, WDR97, MAF1, SHARPIN, CYC1, 
GPAA1, EXOSC4, OPLAH, SPATC1, GRINA, PARP10, PLEC

 11 103264921:103409247 0.33 PAEP, GLT6D1, LCN9, KCNT1
 14 2673388:2978629 0.27 GML, LY6K, LY6D, LYNX1, LYPD2, SLURP1, THEM6, PSCA, ARC, 

ADGRB1
NINT1 26 9242669:9655433 0.30 PAPSS2, ATAD1, PTEN
 8 103696313:103829659 0.24 SNX30, SLC46A2
 22 55490915:55638639 0.20 SLC6A11
NINT2+ 16 75405390:75509546 0.28 IRF6, C16H1orf74, TRAF3IP3, HSD11B1
 22 55490915:55638639 0.23 SLC6A11
 26 9242669:9655433 0.21 PAPSS2, ATAD1, PTEN
MTPN1 6 88732184:88919352 0.20 GC
 13 10175391:10315354 0.19 KIF16B
 18 15797080:15884324 0.19 ITFG1
MTPN2+ 6 88732184:88919352 0.22 GC
 19 22594096:22657020 0.20 NXN, MRM3, GLOD4, DBIL5
 14 1517553:2089613 0.17 ZNF7, COMMD5, ARHGAP39, C14H8orf82, LRRC24, LRRC14, RECQL4, 

MFSD3, GPT, PPP1R16A, FOXH1, KIFC2, CYHR1, TONSL, VPS28, 
SLC39A4, CPSF1, ADCK5, SLC52A2, FBXL6, TMEM249, SCRT1, DGAT1, 
HSF1, BOP1, SCX, MROH1, HGH1, WDR97, MAF1, SHARPIN, CYC1, 
GPAA1, EXOSC4, OPLAH, SPATC1, GRINA, PARP10, PLEC

MUNY1 11 103264921:103409247 0.41 PAEP, GLT6D1, LCN9, KCNT1
 8 103694244:103828116 0.32 INIP, SNX30, SLC46A2
 6 87136725:87296185 0.22 CSN1S1, CSN2, HSTN, STATH, CSN1S2
MUNY2+ 11 103264921:103409247 0.39 PAEP, GLT6D1, LCN9, KCNT1
 6 87145250:87311202 0.32 CSN1S1, CSN2, HSTN, STATH, CSN1S2
 8 103696313:103829659 0.32 SNX30, SLC46A2
1Traits: NINT1 = N intake in primiparous cows; MTPN1 = milk true protein N in primiparous cows; MUNY1 = MUN yield in primiparous 
cows; NINT2 = N intake in multiparous cows; MTPN2 = milk true protein N in multiparous cows; MUNY2 = MUN yield in multiparous cows.
2Starting and ending coordinates of the genomic region.
3Var = percentage of genetic variance explained by the SNPs within the genomic region.
4Genes: EBSEMBL symbol of annotated genes using the Bos Taurus UMD 3.1.94 assembly (http: / / ftp .ensembl .org/ pub/ release -94/ gtf/ bos 
_taurus/ ).

http://ftp.ensembl.org/pub/release-94/gtf/bos_taurus/
http://ftp.ensembl.org/pub/release-94/gtf/bos_taurus/
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age of common candidate genes for NEI and MTPN2+, 
MUNY1, MUNY2+ ranged from 33 to 89%.

Among the annotated candidate genes, DGAT1, 
GRINA, CYHR1, FOXH1, TONSL, PPP1R16A, AR-
HGAP39, MAF1, OPLAH, MROH1, ZNF7, SLURP1, 
MAFA, KIFC2, GML, PSCA, THEM6, LYNX1, and 
ARC have been reported to be associated with 305-d 
milk yield (Nayeri et al., 2016; Atashi, et al., 2020). The 
DGAT1 gene has also been reported to be importantly 
associated with milk yield, fat, and protein percentages 
(Bakhshalizadeh et al., 2021). The CSN1S1, CSN1S2, 
CSN2, and PAEP genes have been reported to be as-
sociated with milk protein composition (Sanchez et al., 
2017; Pegolo et al., 2018; Zhou et al., 2019). The BOP1 
gene has been associated with protein yield (Cai et al., 
2019). Brunes et al. (2021) reported that MAF1 was 
associated with low animal feed intake.

The results of the GO enrichment analysis are pre-
sented in Supplemental File S1 (https: / / github .com/ 
Yansen0515/ NEI _GWAS _POST _GWAS; Chen, 2022). 
The candidate genes identified for NINT1, NINT2+, 
MTPN1, MUNY1, and MUNY2+ enriched 33, 5, 3, 23, 
and 28 GO terms, respectively; however, the candidate 
genes identified for NEI and MTPN2+ enriched no GO 

Chen et al.: GWAS FOR N EFFICIENCY INDEX, COMPOSITION TRAITS

Figure 3. Linkage disequilibrium between 50 SNPs inside the genomic region on BTA14, position 1.52 to 2.09 Mb, associated with nitrogen 
efficiency index. Chr. = chromosome.

Figure 4. Numbers (percentage) of shared genes among N efficien-
cy index (NEI), N intake in primiparous cows (NINT1), N intake in 
multiparous cows (NINT2+), milk true protein N in primiparous cows 
(MTPN1), milk true protein N in multiparous cows (MTPN2+), MUN 
yield in primiparous cows (MUNY1), and MUN yield in multiparous 
cows (MUNY2+). The upper left triangle is the number of candidate 
genes for NEI as the denominator, and the lower right triangle is the 
number of candidate genes for traits as the denominator.

https://github.com/Yansen0515/NEI_GWAS_POST_GWAS
https://github.com/Yansen0515/NEI_GWAS_POST_GWAS
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terms. The 33 GO terms enriched for NINT involve 
only ATAD1, which was also identified as a candidate 
gene for DMI (Serão et al., 2013). The MTPN1 trait 
obtained the 3 GO terms by GC, which encode the 
vitamin D binding protein. The GC gene has been 
identified as being associated with milk production, 
mastitis, and postpartum blood calcium concentration 
(Olsen et al., 2016; Cavani et al., 2022). Of the 28 GO 
terms enriched for MUNY through CSN1S1, CSN1S2, 
CSN2, HSTN, and STATH, the first 3 genes (CSN1S1, 
CSN1S2, CSN2) belong to CSN@ (casein cluster) fam-
ily genes, which have been identified as being related 
to αS1-CN, β-CN, and κ-CN (Zhou et al., 2019). HSTN 
has been identified as being related to κ-CN (Zhou et 
al., 2019), as well as affecting β-CN and αS2-CN (Bovine 
Genome Sequencing and Analysis Consortium, 2009). 
STATH affects β-CN (Rijnkels et al., 2003).

Only MUNY1 and MUNY2 enriched 2 pathways: the 
salivary secretion (bta04970) and prolactin signaling 
pathways (bta04917; Supplemental File S2; https: / / 
github .com/ Yansen0515/ NEI _GWAS _POST _GWAS; 
Chen, 2022). These pathways were enriched by CSN2, 
HSTN, and STATH, and the 3 genes were explained the 
same as in the GO analysis part. Salivary secretion af-
fects feed intake in cattle (Taussat et al., 2020). Salivary 
secretion also is associated with methane emissions in 
nonlactating dairy cows (Pinares-Patiño et al., 2007). 
The prolactin signal regulates the milk production and 
composition of dairy cows (Raven et al., 2014).

The internal gene network of the candidate gene sets 
for NEI and its composition traits are shown separately 
in Supplemental File S3 (from Supplemental Figures 
S1 to S5; https: / / github .com/ Yansen0515/ NEI _GWAS 
_POST _GWAS; Chen, 2022). The PPI for NEI, 
NINT1, NINT2+, MTPN1, MTPN2+, MUNY1, and 
MUNY 2+ were composed of 58 nodes and 188 edges, 
11 nodes and 8 edges, 13 nodes and 9 edges, 8 nodes 
and 15 edges, 49 nodes and 156 edges, 17 nodes and 
32 edges, and 16 nodes and 41 edges, respectively. The 
PPI enrichment P-values of NEI, MTPN, and MUNY 
were less than 4 × 1.0E−4. The NEI had a similar PPI 
to MTPN2+, which was also similar to the PPI of 
dairy components (Bakhshalizadeh et al., 2021). This 
is possibly caused by the candidate genes annotated 
in BTA14 positions 1.52 to 2.09 Mb. Both the PPI 
of MUNY1 and MUNY2+ showed the protein network 
in the STRING database (CL: 24892), which was com-
posed of CSN1S1, CSN1S2, CSN2, CSN3, and PAEP. 
PAEP encodes β-LG, and the first 4 genes encode ca-
sein. These 5 genes have been subjected to long-term 
selection and their SNP frequencies in cattle altered 
(Kolenda and Sitkowska, 2021). The top 1 hub genes 
for NEI, NINT2+, MTPN1, MTPN2+, MUNY1, and 

MUNY2+ were respectively MROH1, PTEN, AHSG, 
MROH1, CSN1S1, and CSN2. However, the PPI of 
NINT1 did not have hub genes. MROH1, CSN1S1, and 
CSN2 affect milk protein composition (Sanchez et al., 
2017). The activation of PTEN was not conducive to 
lactation of dairy cows and reduced the production of 
β-CN (Wang et al., 2014).

In short, NEI and MTPN were affected by genes 
associated with milk yield and components, such as 
DGAT1, PPP1R16A, CYHR1, CPSF1, MROH1, GC, 
and AHSG. The NINT trait was affected by the ATAD1 
and PTEN genes. The MUNY trait was affected by 
genes that control the production of casein (CSN1S1, 
CSN1S2, CSN2, CSN3, HSTN, STATH, and PAEP) 
and was related to salivary secretion (bta04970). The 
expressions of the 16 key candidate genes involved in 
the cattle tissues are given in Supplemental File S4 
(https: / / github .com/ Yansen0515/ NEI _GWAS _POST 
_GWAS; Chen, 2022), and these genes are mainly ex-
pressed in the milk cell, mammary, and liver tissues. 
The results of these genes and their high-expression 
tissue locations can be used for future studies on the 
genetic mechanisms of NUE.

QTL Annotation for Select Genomic Regions

The numbers of previously reported QTL located in 
the identified genomic regions for the studied traits are 
described in Supplemental File S5 (Supplemental Fig-
ure S6; https: / / github .com/ Yansen0515/ NEI _GWAS 
_POST _GWAS; Chen, 2022). The proportions of 
selected QTL in the QTL classification and the top 
10 QTL in the milk class are shown in Supplemen-
tal File S5 (Figures S7 to S13; https: / / github .com/ 
Yansen0515/ NEI _GWAS _POST _GWAS; Chen, 2022). 
However, different traits have had different numbers of 
annotation studies, which creates a bias for annotation 
results (Fonseca et al., 2020). We performed enrichment 
analyses separately on NEI and the composition traits 
based on annotated QTL. The numbers and classes of 
significantly related QTL are shown in Figures 5 and 
6, respectively. The percentages of common significant 
QTL between NEI and MTPN1, MTPN2+, MUNY1, 
and MUNY2+ were 3, 33, 11, and 12%, respectively, 
which is also similar to our results from constructing 
NEI and annotating genes. The significant QTL of NEI 
and MTPN were distributed only in the milk, health, 
and production classes, except that MTPN1 had one 
QTL in the exterior class. If the NEI was used in ge-
netic selection, it means that NEI will affect these 3 
trait classes, which is consistent with the genetic cor-
relations found between NEI and the traits (Chen et 
al., 2022). The significant QTL annotated by NINT 
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were distributed in the milk and production classes. 
The significant QTL annotated by MUNY were dis-
tributed into 4 classes of QTL, which may indicate the 
complexity of MUNY.

The top 10 QTL after QTL enrichment analysis of 
the study’s traits are shown in Supplemental File S6 
(from Supplemental Figures S14 to S20; https: / / github 
.com/ Yansen0515/ NEI _GWAS _POST _GWAS; Chen, 
2022). The most significant related QTL for NEI and 
MTPN2+ were those reported for milk yield, which 
is located on BTA14. This genomic region, located at 
BTA14 position 1.52 to 2.09 Mb, has been reported to 
be associated with milk production (Nayeri et al., 2016; 
Atashi et al., 2020; Bakhshalizadeh et al., 2021). We 
also found that the lifetime profit index was related 
to the NEI, which can be explained by the fact that 
the lifetime profit index is related to the BTA14 1.6 to 
1.8 Mb genomic region (Nayeri et al., 2017). The most 
significant QTL for MTPN1 was also associated with 
clinical mastitis and is located at BTA6 position 88.73 
to 88.92 Mb (Olsen et al., 2016; Freebern et al., 2020). 
The most significant QTL for NINT1 and NINT2+ has 
also been associated with the milk C14 index. The C14 
index has been found to be associated with the genomic 
region located between 14.9 and 24.9 Mb on BTA26 (Li 
et al., 2015), similar to the NINT trait (BTA26 posi-
tion 9.24 to 9.66 Mb). The most significant correlation 

QTL for MUNY1 and MUNY2+ was milk β-LG per-
centage, which may be because BTA11 position 103.26 
to 103.41 Mb has been reported to be related to milk 
β-LG percentage (Sanchez et al., 2017). The region 
located at BTA11 position 103.26 to 103.41 Mb has 
also been reported to be associated with MU and milk 
protein components (Pegolo et al., 2018; Ariyarathne 
et al., 2021). Other studies have reported that the QTL 
of MUNY are located on BTA3, BTA6, and BTA21 
(Bouwman et al., 2010; Strucken et al., 2012).

In summary, the related QTL of the NEI were mainly 
reported for milk yield, fat, and protein composition. 
The related QTL of NINT was reported for the milk 
C14 index. The related QTL of MTPN1 and MTPN2+ 
were related to clinical mastitis and milk yield, respec-
tively. The related QTL of MUNY were reported for 
protein composition.

The traits in this study were all related to traits pre-
dicted by milk MIR. The effects of using traits predicted 
from milk MIR have disadvantages and advantages for 
their influence on GWAS results. The disadvantage is 
that, as with other predictive traits, the accuracy of the 
prediction equation can have a large effect. If the accu-
racy of the prediction equation is very low, GWAS may 
not work on the traits we are interested in. The advan-
tage of milk MIR prediction traits is that they can be 
predicted at low costs and on a large scale. Large-scale 
data are useful to overcome the problem of inaccurate 
GWAS results from small samples. Recently, van den 
Berg et al. (2022b) showed that using the blood urea 
nitrogen predicted by milk MIR increased the power 
of GWAS results. In total, we believe that the use 
of predictive traits with high accuracy facilitates the 
results of GWAS. In addition, there was no effect of 
weighted single-step genomic BLUP on the ssGWAS 
results of this study under the condition of 50K chip 
data (detailed results not shown), which is consistent 
with other recent studies (Aguilar et al., 2019; Cesarani 
et al., 2021). One of the reasons for this result is that no 
SNP had a large effect on the traits studied.

CONCLUSIONS

This study explained the genomic background of NEI 
and its composition traits that can be used in dairy 
cattle breeding. The 16 key candidate genes influenc-
ing the genetic mechanism of NUE-related traits were 
identified; these are mainly expressed in the milk cell, 
mammary, and liver tissues. The NEI reflects not only 
the 6 studied NUE-related traits but also the interac-
tions between them, because only the NEI has a promi-
nent peak at BTA14, explaining more than 0.50% of 
the total additive genetic variance. Furthermore, the 
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Figure 5. Numbers (percent) of enrichment QTL among N efficien-
cy index (NEI), N intake in primiparous cows (NINT1), N intake in 
multiparous cows (NINT2+), milk true protein N in primiparous cows 
(MTPN1), milk true protein N in multiparous cows (MTPN2+), MUN 
yield in primiparous cows (MUNY1), and MUN yield in multiparous 
cows (MUNY2+). The upper left triangle is the number of candidate 
genes for NEI as the denominator, and the lower right triangle is the 
number of candidate genes for traits as the denominator.

https://github.com/Yansen0515/NEI_GWAS_POST_GWAS
https://github.com/Yansen0515/NEI_GWAS_POST_GWAS
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NEI may be more representative of NUE, because the 
genomic regions most associated with it are closer to 
genes in the nitrogen metabolism pathway.
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Figure 6. Numbers of enrichment QTL classes among N efficiency index (NEI), N intake in primiparous cows (NINT1), N intake in multipa-
rous cows (NINT2+), milk true protein N in primiparous cows (MTPN1), milk true protein N in multiparous cows (MTPN2+), MUN yield in 
primiparous cows (MUNY1), and MUN yield in multiparous cows (MUNY2+). Quantitative trait loci classes were defined by the cattle QTL 
database (https: / / www .animalgenome .org/ cgi -bin/ QTLdb/ BT/ ontrait ?class _ID = 1).
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