
ABSTRACT

Milk citrate is regarded as an early biomarker of neg-
ative energy balance (NEB) in dairy cows during early 
lactation and serves as a suitable candidate phenotype 
for genomic selection due to its wide availability across 
a large number of cows through milk mid-infrared spec-
tra prediction. However, its genetic background is not 
well known. Therefore, the objectives of this study were 
to (1) analyze the genetic parameters of milk citrate; 
(2) identify genomic regions associated with milk ci-
trate; (3) analyze the functional annotation of candi-
date genes and quantitative trait loci (QTL) related to 
milk citrate in Walloon Holstein cows. In total, 134,517 
test-day milk citrate phenotypes (mmol/L) collected 
within the first 50 d in milk (DIM) on 52,198 Hol-
stein cows were used. These milk citrate phenotypes, 
predicted by milk mid-infrared spectra, were divided 
into 3 traits according to the first (citrate1), second (ci-
trate2), and third to fifth parity (citrate3+). Genomic 
information for 566,170 SNPs was available for 4,479 
animals. A multiple-trait repeatability model was used 
to estimate genetic parameters. A single-step genome-
wide association study (GWAS) was used to identify 
candidate genes for citrate and post-GWAS analysis 
was done to investigate relationship and function of 
the identified candidate genes. The heritabilities esti-
mated for citrate1, citrate2 and citrate3+ were 0.40, 
0.37 and 0.35, respectively. The genetic correlations 
between the 3 traits ranged from 0.98 to 0.99. The ge-
nomic correlations between the 3 traits were also nearly 
1.00 across the genomic regions (1 Mb) in the whole 
genome, which means that citrate can be considered 
as a single trait in the first 5 parities. In total, 603 
significant SNPs located on 3 genomic regions (chromo-
some7 68.569 – 68.575 Mb, 14 1.31 – 3.05 Mb, and 20 

54.00 – 64.28 Mb), were identified to be associated with 
milk citrate. We identified 89 candidate genes includ-
ing GPT, ANKH, PPP1R16A and 32 QTL reported in 
the literature related to the identified significant SNPs. 
These identified QTL were mainly reported associated 
with milk fatty acids and metabolic diseases in dairy 
cows. This study suggests that milk citrate in Holstein 
cows is highly heritable and has the potential to be 
used as an early proxy for the NEB of Holstein cows in 
a breeding objective.
Keywords: milk citrate, negative energy balance, 
candidate genes, QTL

INTRODUCTION

High-yield dairy cows in early lactation often experi-
ence negative energy balance (NEB) due to insufficient 
energy intake to support high milk production demands 
(Churakov et al., 2021). The NEB can lead to mul-
tiple metabolic diseases (e.g., ketosis) and reproductive 
problems (e.g., decrease in fertility rates) (Walsh et 
al., 2011; Zachut et al., 2020), reducing animal welfare 
and farmers’ economic profitability. During NEB, dairy 
cows undergo a mobilization of body fat reserves, result-
ing in the liberation of glycerol and fatty acids (FA). 
The excessive presence of nonesterified FA (NEFA) in 
dairy cows’ blood can precipitate the development of 
hepatic lipidosis, commonly known as fatty liver disease 
(Herdt, 2000). In such circumstances, the bovine liver 
significantly amplifies the synthesis of acetyl-CoA from 
FAs, subsequently leading to the conversion into ketone 
bodies, especially β-hydroxybutyric acid (BHB), due to 
diminished glucose levels and an oversupply of FA. The 
accumulation of these ketone bodies ultimately causes 
ketosis in cattle (Herdt, 2000; Ospina et al., 2010).

Direct NEB of dairy cows can be calculated by 
subtracting energy expended (here included milk, ex-
creta, and maintenance) from energy intake. However, 
monitoring the NEB of individual cows under current 
commercial conditions is challenging for dairy farmers. 
Monitoring NEB requires frequent measurement of dry 
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matter intake (DMI), milk components, excreta, and 
body weight to calculate energy requirements and en-
ergy intake from nutrients. This approach is therefore 
not suitable for large-scale commercial assessment of 
NEB for dairy cows (Coffey et al., 2001; Friggens et 
al., 2007). The blood NEFA and BHB were proven as 
indicators for detecting NEB in dairy cows (Ospina et 
al., 2010; Zachut et al., 2020; Pires et al., 2022). How-
ever, both (NEFA and BHB) respond slower to NEB 
than milk citrate (Bjerre-Harpøth et al., 2012). When 
cows enter the NEB (reduced glucose), FA synthesis 
stops because it is a highly energy-consuming process. 
Citrate plays a role in this process that inhibits de novo 
FA synthesis in dairy cows (Garnsworthy et al., 2006). 
Therefore, citrate can be considered as a potential early 
biomarker for identifying NEB in dairy cows (Bjerre-
Harpøth et al., 2012; Xu et al., 2020).

The first requirement for conducting a successful ge-
netic selection for a given trait is to establish a method 
to measure the trait on a large number of animals at a 
low cost. Furthermore, it is necessary to estimate the 
genetic variation of the trait in the considered popula-
tion to prove whether the trait is heritable. Despite the 
complexity of conventional methods for measuring milk 
citrate, novel mid-infrared (MIR) predictions can pro-
vide milk citrate concentration at the individual level 
on a large scale (Grelet et al., 2016).

Although there are some studies conducted on the 
genetic background of milk citrate in Montbéliarde 
cows (Sanchez et al., 2018, 2019, 2021), the genetic 
background of citrate in Holstein cows has not yet been 
studied. However, citric acid, a citrate conjugate, has 
been shown to be heritable [heritability (h2) ± standard 
error (SE), 0.54 ± 0.19] in small populations (n = 371) 
in Holstein cows and has been shown to be associated 
with metabolic energy (Buitenhuis et al., 2013).

Therefore, the objectives of this study were to (1) 
analyze the genetic parameters of milk citrate; (2) 
identify genomic regions associated with milk citrate 
through a single-step genome-wide association study 
(ssGWAS); (3) analyze the functional annotation 
of candidate genes and quantitative trait loci (QTL) 
related to milk citrate in Walloon Holstein cows. The 
potential relationships between milk citrate and traits 
of interest were also investigated.

MATERIALS AND METHODS

Data

Phenotypic Data. All milk samples were collected 
by Elevéo (Awé groupe, Ciney, Belgium) from 2012 to 
2019 during the official milk recording in the Walloon 
Region of Belgium. The milk samples were analyzed 

by MIR spectrometry (commercial instruments from 
FOSS) to generate MIR spectra. The milk spectra 
were harmonized into the common European format 
as described by Grelet et al. (2015) and then were used 
to predict milk citrate phenotypes (mmol/L, hereafter 
called citrate) for each MIR. The prediction equation 
developed by Grelet et al. (2016) was applied to the 
milk MIR of the present study. The coefficient of de-
termination and root mean square error of validation 
for the citrate equation were 0.86 and 0.07 mmol/L, 
respectively. A total of 506 milk citrate reference data 
from 3 countries (Germany, France, and Luxembourg) 
and 3 cattle breeds (Holstein, Abondance, and Montbé-
liarde) was used to develop (380 samples) and validate 
(126 samples) the predicted model of milk citrate (Gre-
let et al., 2016). The citrate phenotypes were divided 
into 3 traits according to parity: citrate1 for the first 
parity, citrate2 for the second parity, and citrate3+ 
for the third to fifth parity.

To remove outliers, the filtering methods proposed by 
Chen et al. (2021) were used. Briefly, 1) the predicted 
MIR spectra, for which the standardized Mahalanobis 
distance between the MIR data and the calibration 
data set is ≤ 3, were retained; 2) the predicted value of 
citrate was restricted within the range of ± 3 standard 
deviations of the mean. Then, the citrate was restricted 
to the first 50 d in milk (DIM), a period in which most 
high-yield Holstein cows are in NEB.

Genotypic data Genotypic data related to cows with 
citrate phenotypes were extracted for 4,479 animals 
from the routine genetic evaluation system of Holstein 
cattle in the Walloon Region of Belgium. The used chip 
versions were BovineSNP50 K v1 to v3 (Illumina, San 
Diego, CA, USA). The single nucleotide polymorphisms 
(SNPs) common between all 3 chips were kept. Non-
mapped SNPs, SNP located on sex chromosomes, and 
non-biallelic SNPs were excluded. A minimum GenCall 
Score of 0.15 and a minimum GenTrain Score of 0.55 
were used to keep SNP (Wilmot et al., 2022). Next, 
genotypes were imputed to HD with a reference popu-
lation of 4,352 HD individuals (1,046 bulls and 3,288 
cows) using the FImpute V2.2 software (Sargolzaei et 
al., 2014). The SNPs with Mendelian conflicts, and 
those with minor allele frequency less than 5% were ex-
cluded. The difference between observed heterozygosity 
and that expected under Hardy-Weinberg equilibrium 
was estimated, and if the difference was greater than 
0.15, the SNP was excluded (Wiggans et al., 2009). 
Finally, 566,170 out of 730,539 SNPs, distributed on 29 
chromosomes (Chr), were kept.

After filtering, 134,517 citrate phenotypes on 52,198 
Holstein cows distributed in 774 farms remained. The 
number of citrate phenotypes (animals) in each parity 
is shown in Table 1. The pedigree related to the data 
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set comprised 122,218 animals, of which 4,479 (3,215 
cows and 1,264 bulls) had SNP information.

(Co)variance component estimation A 3-trait 
repeatability model was used to estimate the (co)vari-
ance components. The model was fitted as follows:

	 y = Hh + Xb + Qq + W1c + W2p + Za + e,

where y was the vector of citrate1, citrate2 and ci-
trate3+. For each trait, h was the vector of fixed herd-
year-season of calving classes; b was the vector of fixed 
regression coefficients for DIM, after standardization, 
and its quadratic; q was the vector of fixed regression 
coefficients of the age of calving, after standardization, 
defined as a constant (parity effect), linear, and qua-
dratic regression, defined within parities (first to fifth 
parity); c was a vector of the non-genetic cow effect 
(within-parity permanent environment) random ef-
fects; p was a vector of non-genetic cow × parity effect 
(across-parity permanent environment) random effects, 
modeled only for citrate3+, as they allowed us to dis-
tinguish citrates for the same cow occurring during 
different parities (third to fifth parity); a was a vector 
of random additive genetic effects; and e was a vector 
of random residual effects. Additionally, H, X, Q, W1, 
W2, and Z were incidence matrices assigning observa-
tions to effects. More detailed information about the 
model can be found in Chen et al. (2021). To calculate 
the relationship between animals, the H relationship 
matrix was used. The H matrix combines pedigree (A) 
and genomic (G) based relationship matrices. The A 
is the numerator relationship matrix for all animals 
included in the pedigree; G is the genomic relationship 
matrix of genotyped animals obtained using the first 
formula described by VanRaden (2008):

	 G
ZZ

=
−( )

=∑
′

2 1
1i i ip p

N
,

where Z is a matrix of gene content adjusted for allele 
frequencies (0, 1 or 2 for aa, Aa and AA, respectively); 
N is the number of SNPs; pi is the minor allele fre-
quency of the ith SNP.

(Co)variance components were estimated by using 
the BLUPF90+ (version 2.42) program through the 
AI-REML method (Misztal et al., 2014). The h2, re-
peatability, and genetic and phenotypic correlations 
were calculated based on the estimated (co)variance 
components as previously described by Chen et al. 
(2021). Approximate SE of all calculated parameters 
were obtained according to the algorithm of Meyer and 
Houle (2013).

Genomic correlations among 3 classes of citrate 
across the whole genome

The de-regressed proofs (DRP) of animals were used 
in this section because not all animals had citrate phe-
notypes. Genomic breeding values (GEBV) of citrate 
and its reliability for all animals were calculated based 
on the estimated (co)variance components through 
BLUPF90+ (version 2.42). Only those genotyped ani-
mals (n = 4,435) that had a reliability of over 0.30 for 
the 3 included traits were used for the next step (Chen 
et al., 2021). The DRPs of selected animals were cal-
culated based on the GEBVs through DEPROOFSF90 
(version 1.4) from the method developed by Garrick et 
al. (2009). Each selected animal got 3 DRPs (DRP1, 
DRP2, DRP3+) for the 3 traits respectively (citrate1, 
citrate2, and citrate3+). A 3-trait marker-based 
BayesCΠ-model was used to estimate SNP effects for 
the predicted DRPs (Cheng et al., 2018a). The model 
was as follows:

	 y Di m= + +
=
∑µ β
j

p

ij j j i
1

e ,

where yi is a vector of 3 DRPs for animal i; µ is a 
vector of overall means for 3 DRPs; p is the number of 
SNP; mij is the genotype at SNP j (coded as 0, 1, 2) 
for animal i, with allele substitution effect Djβj, where 
Dj is a diagonal matrix whose kth diagonal entry is 
an indicator variable indicating whether the marker 
effect of locus j for trait DRP is zero or nonzero (23 
= 8 combinations), and βj follows a multivariate nor-
mal distribution; ei is a vector of random residuals of 
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Table 1. Range, mean, and standard deviation (SD) of milk citrate (mmol/L) of Holstein cows in the first 50 
d in milk

Trait1 Minimum Maximum Mean SD Number of citrates Number of animals

Citrate1 4.07 14.14 8.93 1.48 41,035 33,376
Citrate2 4.05 14.18 8.93 1.63 36,584 29,835
Citrate3+ 3.97 14.18 9.18 1.76 56,898 28,775
1: Citrate1 = milk citrate in the first parity; Citrate2 = milk citrate in the second parity; Citrate3+ = milk 
citrate from third to fifth parity.
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3 DRPs for animal i, which is a priori assumed to be 
an independently and identically multivariate normal 
distribution.

The genomic correlation analyses were performed 
with the JWAS software (version 1.1.2) (Cheng et al., 
2018b) using a Monte Carlo Markov Chain of length 
50,000, with the first 5,000 iterations discarded as burn-
in. Genomic correlations between the studied traits 
across the whole genome (1 Mb as one moving genomic 
region) were estimated as the posterior mean of the 
correlation across animals between the sampled breed-
ing values (1 Mb as one moving genomic region). Its 
standard deviation (SD) was calculated across the kept 
samples as the approximated SE (Cheng et al., 2022). 
The breeding values of each 1 Mb genomic region were 
calculated as the sum of its SNP genotypes multiplied 
by the sampled marker effects for each kept iteration. 
In addition, genomic covariances of each 1 Mb genomic 
region were calculated as sum of its SNP covariances 
for each kept iteration, and its SE was estimated by the 
SD across saved iterations.

Single-step genome-wide association study

The GEBV of genotyped animals were used in this 
section. The SNP effects for each trait (citrate1, 2, 
and 3+) were estimated by back-solving the animals’ 
GEBV (Wang et al., 2012). The P-values of SNP were 
calculated as follows (Aguilar et al., 2019):

	 P f
a
sd ai
i

i
-value = −
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where P-valuei and âi are the P-value and effect of SNP 
i, respectively, and f is the cumulative standard normal 
function. The 8.83E-8 (0.05/566,170) was used as the 
significance threshold which was calculated based on 
the Bonferroni correction for multiple testing. Linkage 
disequilibrium (LD) (squared correlation coefficient, 
r2) was calculated for significant SNPs. The SNP ef-
fects and P-values were calculated using POSTGSF90 
software (version 1.73) (Misztal et al., 2014).

Functional annotation analysis

The protein-encoding genes within 50 kb of the sig-
nificant SNPs were considered candidate genes for ci-
trate. Based on the results of Cánovas et al. (2022), the 
position (coordinate) of significant SNPs on reference 
genome assembly UMD3.1 (the used chip version) was 
converted to the new position (coordinate) on the new 
reference genome assembly ARS-UCD1.2 through the 
Lift Genome Annotations tool (https:​/​/​genome​.ucsc​

.edu/​cgi​-bin/​hgLiftOver). The gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis were carried out on the identified candidate 
gene sets through the g:Profiler website (Raudvere et 
al., 2019). Next, a protein-protein interaction (PPI) 
analysis was performed through STRING (Szklarczyk 
et al., 2021) to reveal the relationship between the iden-
tified candidate genes. The PPI relationship was based 
on text mining, experiments, database, co-expression, 
neighborhood, gene fusion, and co-occurrence, and the 
minimum required interaction score was set to 0.40 
(Zhou et al., 2019).

To explore potential relationships between citrate 
and other traits, the same genomic regions identified 
for citrate were annotated with Cattle QTLdb (https:​
/​/​www​.animalgenome​.org/​cgi​-bin/​QTLdb/​BT/​index​
,accessed on October 25, 2022) (Hu et al., 2019). At 
present, Cattle QTLdb has 170,536 QTL, which were 
divided into 6 classes including Exterior, Production, 
Health, Reproduction, Milk, Meat, and Carcass (https:​
/​/​www​.animalgenome​.org/​cgi​-bin/​QTLdb/​BT/​ontrait​
?class​_ID = 1). To avoid the deviation caused by the 
annotation richness of the different traits, the hypergeo-
metric test approach was adopted for the enrichment 
analysis (Fonseca et al., 2020). The candidate genes and 
QTL annotations were performed using the GALLO 
package in R (Fonseca et al., 2020). In all enrichment 
analyses (GO, KEGG, QTL), the Benjamini-Hochberg 
method was used for multiple testing corrections. It 
should be noted that the Cattle QTL data set currently 
does not include NEB.

Furthermore, the genome region with the most sig-
nificant impact on citrate was subjected to the GO, 
KEGG, and QTL analysis. The data preparation and 
processing were performed using R (version 4.1.2, https:​
/​/​www​.r​-project​.org/​).

RESULTS

Descriptive statistics and genetic parameters

Descriptive statistics of the studied traits are pre-
sented in Table 1. Citrate ranged from 3.97 to 14.18 
mmol/L milk. The mean (SD) of citrate1, citrate2, and 
citrate3+ were 8.93 (1.48), 8.93 (1.63), and 9.18 (1.76) 
mmol/L, respectively. The average daily citrate showed 
a decreasing trend with increasing (DIM in early lacta-
tion (Figure 1) and remained relatively stable during 
the period from 20 to 32 DIM.

The estimated (co)variance components, h2, and re-
peatability of 3 classes of citrate are presented in Table 
2. The h2 and repeatability of citrate ranged from 0.35 
to 0.40 and from 0.43 to 0.44, respectively. The h2 of 
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citrate decreased with advancing parity; however, its 
repeatability was stable.

Correlations among the different parities

The genetic and phenotypic correlations of 3 classes 
of citrate are reported in Table 3. The genetic and 
phenotypic correlations were around 0.98 and 0.41, 
respectively.

To demonstrate the consistency of the estimated ge-
netic correlations, genomic covariances and correlations 
of citrate1, citrate2, and citrate3+ were calculated 

across genomic regions (1Mb) for the whole genome 
(Figure 2). The highest genomic covariances and cor-
relations among the 3 classes of citrate were found in 
the same genomic region (Chr20 58.00 – 59.00 Mb, 
UMD3.1; Chr20 57.94 – 58.93 Mb, ARS-UCD1.2). The 
highest genomic covariance of the 3 classes of citrate 
was much higher than that of all other genomic regions 
(around 19 times). However, the highest genomic cor-
relations between 3 classes of citrate were similar to 
that of all other genomic regions (around 0.99).

Chen et al.: Genetic analysis of predicted milk citrate

Figure 1. Average milk citrate phenotypes of Holstein cows with days in milk (DIM)

Table 2. Heritability, repeatability and (co)variance components1 of milk citrate (mmol/L) of Holstein cows 
in the first 50 d in milk

Trait2 Heritability Repeatability σ2
a σ2

c σ2
p σ2

e

Citrate1 0.40 ± 0.01 0.43 ± 0.01 0.71 ± 0.02 0.06 ± 0.01 NA3 1.03 ± 0.01
Citrate2 0.37 ± 0.01 0.43 ± 0.01 0.82 ± 0.03 0.13 ± 0.02 NA 1.25 ± 0.02
Citrate3+ 0.35 ± 0.01 0.44 ± 0.01 0.92 ± 0.04 0.17 ± 0.03 0.05 ± 0.02 1.45 ± 0.02
1: σ2

a = additive genetic variance; σ2
c = within-parity permanent environment (non-genetic cow) variance; σ2

p 
= across-parity permanent environment (non-genetic cow x parity) variance, only for Citrate3+ traits; σ2

e = 
residual variance.
2: Citrate1 = milk citrate in the first parity; Citrate2 = milk citrate in the second parity; Citrate3+ = milk 
citrate from third to fifth parity.
3: NA = not applicable.
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Single-step genome-wide association study

The Manhattan plots for the results of ssGWAS were 
presented in Figure 3A, and they were similar between 
the 3 classes of citrate. The number of significant SNPs 
associated with citrate1, citrate2, and citrate3+ were 
589, 578, and 600, respectively, and 95% of these SNPs 
were common among the 3 classes of citrate (Figure 
3B). These significant SNPs are distributed on Chr7, 
14, and 20, respectively, and their positions are close 
when they are on the same Chr (Table 4). The –log10 P-

values and position (in the UMD3.1 and ARS-UCD1.2) 
for each significant SNP associated with 3 classes of 
citrate are shown in supplementary file 1.

The LDs were calculated for all SNPs located in the 
identified genomic regions (Figure 4). Significant SNPs 
located in the genomic region identified in Chr7 were 
highly linked, whereas those located in the regions iden-
tified in Chr14 and 20 were not.

Functional annotation analysis

A respective total of 89, 88 and 88 candidate genes 
were identified for citrate1, citrate2 and citrate3+, while 
99% of the identified genes were common among the 3 
classes of citrate (Figure 3C). The number of candidate 
genes in the 3 identified genomic regions is presented in 
Table 4. The citrate1 lacked only the BASP1 gene on 
Chr20, as compared with citrate2 and citrate3+.

Figure 5 shows the PPI networks of the identified 
candidate genes. The candidate genes ARHGAP39-
MYO10, DGAT1-ANKH, SHARPIN-OTULIN, and 
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Table 3. Genetic correlations (above the diagonal) and phenotypic 
correlations (below the diagonal) among three classes of milk citrate of 
Holstein cows in the first 50 d in milk

Trait1 Citrate1 Citrate2 Citrate3+

Citrate1   0.979 ± 0.005 0.967 ± 0.007
Citrate2 0.418 ± 0.006   0.991 ± 0.003
Citrate3+ 0.406 ± 0.006 0.419 ± 0.006  
1: Citrate1 = milk citrate in the first parity; Citrate2 = milk citrate in 
the second parity; Citrate3+ = milk citrate from third to fifth parity.

Figure 2. Genomic covariances (left) and correlations (right) among 3 classes of milk citrate in the first 5 parities. PS: Citrate1 = milk citrate 
in the first parity; Citrate2 = milk citrate in the second parity; Citrate3+ = milk citrate from third to fifth parity; the black line represents the 
standard error value of the effect in the genetic window (1 Mb)



Journal of Dairy Science Vol. TBC No. TBC, TBC

BOP1-ZNF622 represent interactions between can-
didate genes in Chr14 and Chr20. The GO analyses 
results are presented in Table 5. The results identified 
2 GO terms based on 89 candidate genes located on 
Chr7, 14 and 20 (Response to salt and LUBAC com-
plex), and one GO term based on 16 candidate genes 
located on Chr20 (Inorganic diphosphate transmem-
brane transporter activity). For KEGG analyses, none 
of the pathways were found to be associated with the 
candidate genes for citrate.

The 3 selected genomic regions of citrate1, citrate2, 
and citrate3+ were significantly associated with the 
same 32 QTL, respectively (supplementary file 2). The 
classes and top 10 of 32 enrichment QTL are shown in 
Figures 6A and 6C. Milk and fat yields have the high-

est QTL numbers. In addition, 9 QTL related to milk 
compositions and cow health traits were obtained when 
only analyzing the Chr20 53 – 64 Mb region (Figures 
6B and 6D).

DISCUSSION

Citrate potential for genetic selection

Citrate was considered as a proxy for NEB because it 
can be predicted accurately and cheaply in a large scale 
(Grelet et al., 2016), which is one of the requirements 
for the possibility of implementing genetic selection. 
The citrate was predicted by milk MIR and its predic-
tion equation was suggested to be used for quantitative 
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Figure 3. Manhattan plot (P-value of each SNP, A), number of significant SNP (B) and candidate genes (C) of milk citrate. PS: Citrate1 = 
milk citrate in the first parity; Citrate2 = milk citrate in the second parity; Citrate3+ = milk citrate from third to fifth parity; the red line in 
A is the threshold (7.05 = -log10(0.05/566,170)
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screening at the individual level (Grelet et al., 2021). 
Milk MIR is very inexpensive to obtain as it has been 
used worldwide to predict milk protein and fat percent-
ages (Gengler et al., 2016). The range for predicted 
milk citrate obtained in this study was within the range 
of the reference data (directly measured values) from 
Grelet et al. (2016). Average citrate was relatively 
stable between 20 and 32 DIM (Figure 1), which is 
possibly due to a relatively stable period between cattle 
intake and metabolic needs. Our predicted mean values 
(8.93 – 9.18 mmol/L) are higher than the predicted 
mean value (8.27 mmol/L for first parity) reported for 
Montbéliarde by Sanchez et al. (2018). The difference 
could be because we only used data from the early lac-
tation (first 50 DIM), while they used data from the 
whole lactation (from 7 to 350 DIM).

The heritabilities of citrates in Holstein cows are high 
(0.35 – 0.40), which is largely high enough for genetic 
selection. However, the heritabilities in this study were 
lower than those previously reported for Montbéliarde 
cows (0.48, Sanchez et al., 2018, 2021), which may be 
due to breed differences. The heritabilities of citrates in 
this study decreased with increasing parity, which may 
be caused by the gradual increase in non-genetic ef-
fects, especially the residual variance (Table 2). The SD 
of citrate also increased with increasing parity, which 

also helps explain the increase in phenotypic variation 
of citrate (Table 1).

Genetic correlations between citrate in different pari-
ties in early lactation were close to 1.00, which suggests 
that the 3 classes of citrates can be considered as a 
single trait. Also, the results of ssGWAS and functional 
annotation confirm that citrate in the different parities 
is similar.

Genomic background of citrate

A total of 603 significant SNPs associated with citrate 
were identified, distributed in Chr7 (68.57 – 68.58 Mb), 
14 (1.31 – 3.05 Mb), and 20 (54.00 – 64.28 Mb). The 
Chr7 region contains 5 consecutive SNPs in high LD 
(>0.80), suggesting that this region might be caused by 
one SNP (Chr7 68,574,155 bp) with the highest signifi-
cance. The Chr14 region has a relatively small effect on 
citrate compared with the Chr20 region which showed 
the most significant impact on citrate. Sanchez et al. 
(2021) found similar results in Montbéliarde cows. The 
region on Chromosome 20 (55 – 63 Mb in UMD3.1) 
was also found to be associated with subclinical ketosis 
(Nayeri et al., 2019). In contrast to our findings, San-
chez et al. (2021) identified a genomic locus on Chr11 
associated with citrate. This difference found in Chr re-
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Table 4. Significant SNPs and candidate genes of milk citrate (mmol/L) of Holstein cows in the first 50 d in milk

Trait Chr1 Position (bp) (ARS-UCD1.2)
Significant 

SNPs
Candidate 

genes Candidate gene names

Citrate1 7 68,569,696- 68,575,260 5 1 ENSBTAG00000052849
         

14 1,308,359–3,048,650 58 72 VPS28, ENSBTAG00000053637, SLC39A4, CPSF1, ADCK5, 
SLC52A2, FBXL6, TMEM249, SCRT1, DGAT1, HSF1, 
BOP1, SCX, MROH1, TSSK5, HGH1, WDR97, MAF1, 
ENSBTAG00000051469, SHARPIN, CYC1, GPAA1, EXOSC4, 
OPLAH, SMPD5, SPATC1, GRINA, PARP10, PLEC, 
EPPK1, NRBP2, PUF60, SCRIB, IQANK1, FAM83H, 
MAPK15, CCDC166, ZNF623, ENSBTAG00000052472, 
GFUS, PYCR3, TIGD5, TOP1MT, ZNF696, GLI4, GPIHBP1, 
LY6H, ENSBTAG00000054483, ENSBTAG00000037824, 
LY6K, LY6D, ADGRB1, TSNARE1, OR10AG83, ZNF250, 
ZNF16, C14H8orf33, ZNF34, RPL8, ZNF7, COMMD5, 
ARHGAP39, C14H8orf82, LRRC24, LRRC14, MFSD3, GPT, 
PPP1R16A, FOXH1, KIFC2, CYHR1, TONSL

         
20 53,998,037–64,284,738 526 16 ENSBTAG00000052828, ENSBTAG00000012971, 

ENSBTAG00000053528, BASP1, MYO10, RETREG1, 
ZNF622, MARCHF11, FBXL7, ANKH, OTULIN, 
OTULINL, TRIO, ENSBTAG00000054860, DNAH5, 
ENSBTAG00000049263

Citrate2 7 a2 a a a
14 a 46 a a
20 a 527 15 b3

Citrate3+ 7 a a a a
14 a 61 a a
20 a 534 15 b

1:Chr - chromosome ; 2:a represents the same data as in citrate1; 3: b represents the same data as in citrate1, except that BASP1 is missing.
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Figure 4. Linkage disequilibrium between 61.656 Mb and 61.658 Mb, 1.31 Mb and 3.05 Mb, 54.00 Mb and 64.28 Mb on chromosome (chr.) 
7(A), 14 (B) and 20 (C) in genome assembly UMD3.1 associated with milk citrate in the first parity. the green line in A is the threshold (7.05 
= -log10(0.05/566,170))
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gions may be explained by the different citrate content 
in breeds of cattle (Sundekilde et al., 2011).

Among the 89 candidate genes identified for citrate 
in this study, GPT, ANKH, and PPP1R16A have 
previously been reported to be related to milk citrate 
(Sanchez et al., 2019, 2021). Indeed, GPT encodes the 
glutamic pyruvic transaminase which converts cytosolic 
pyruvate and glutamate into α-ketoglutarate and ala-
nine (Abla et al., 2020). The resulting α-ketoglutarate 
can then be converted into cytosolic citrate (Yoshimi 
et al., 2016). The ANKH encodes a membrane protein 
known to export pyrophosphate, but it seems also able 
to export citrate extracellularly (Szeri et al., 2020). 
Concerning PPP1R16A, it encodes a protein that in-
teracts with the catalytic subunit of Ser/Thr protein 
phosphatase 1 (PP1) (Wang et al., 2019). Numerous 
potential substrates of PP1 were studied including the 

ATP-citrate lyase that converts citrate into oxaloac-
etate and acetyl-CoA (Ingebritsen and Cohen, 1983).

The DGAT1 was also identified as a candidate gene 
and is known to affect the blood NEFA (Oikonomou et 
al., 2009) which provides Acetyl-CoA for citrate syn-
thesis (Van et al., 2020); OTULIN and SHARPIN are 
associated with individual immunity and inflammation 
(Damgaard et al., 2016; Zinngrebe et al., 2016) and 
citrate is considered as a key immunometabolite (Zotta 
et al., 2020). The PPI network of the identified 89 can-
didate genes shows an interaction between Chr14 and 
Chr20 regions (Figure 5), which helps to understand 
the relationship between genomic regions that regulate 
citrate.

As for the GO analysis, 2 GO terms (response to salt 
and inorganic bisphosphate transmembrane transporter 
activity) were enriched by the genes associated with 
citrate, probably because citrate regulates the balance 
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Figure 5. Protein-protein interaction network of candidate genes of milk citrate. The zoom parts link candidate genes in chromosome 14 to 
candidate genes in chromosome 20.

Table 5. Gene Ontology (GO) terms enrichment analysis of candidate genes of milk citrate of Holstein cows in the first 50 d in milk

Number of 
Candidate genes   Ontology   ID   Description p. adjust Genes involved

89 from  
  chromosome7, 14,  
  20

  Biological process   GO:​1902074   Response to salt 0.0047 ANKH, HSF1, 
ENSBTAG00000054022

  Cellular component   GO:​0071797   LUBAC complex 0.0147 OTULIN, SHARPIN
16 from  
  chromosome20

  Molecular function   GO:​0030504   Inorganic diphosphate 
transmembrane transporter activity

0.0497 ANKH
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between Ca2+ and H+ ions (Sundekilde et al., 2011; 
Cánovas et al., 2013). The third enriched GO term, 
the LUBAC complex, stimulates the formation of linear 
ubiquitin chains, a signal that prevents inflammation 
and modulates immunity (Gerlach et al., 2011). This 
may be related to metabolic disease in cows that are in 
NEB for a long time.

Potential relationship between citrate and other 
traits

The top 10 of 32 significant QTL that were identified 
via QTL enrichment analysis are mainly related to milk 
and protein yield, and FA content, which may be the 
effect of genes located on Chr14 1.31 – 3.05 Mb (e.g., 
DGAT1). This region has been reported to be associ-
ated with milk and protein yield, and FA in Holstein 
cows (Bouwman et al., 2011; Atashi et al., 2020). The 

top 10 significant QTL were all directly related to the 
NEB of dairy cows (Xu et al., 2018; Gross et al., 2019; 
Pires et al., 2022), except Lifetime profit index. Howev-
er, NEB is related to the production and reproduction 
performance of dairy cows, both of which are directly 
related to the lifetime profit index (VanRaden, 2004). 
Six out of the top 10 significant QTL are related to FA; 
these results were expected because citrate participates 
in the NEB of dairy cows by regulating FA. McCabe et 
al. (2012) reported differential gene expression in the 
liver of dairy cows with severe NEB primarily associ-
ated with FA metabolism pathways.

When focusing on Chr20, 9 significant QTL were as-
sociated with milk composition and cow health (Figure 
6B and 6D). As expected, milk citrate-related QTL 
from other reports (Sanchez et al., 2019, 2021) were en-
riched. The milk C18 index and lactose content change 
due to the NEB of dairy cows (Xu et al., 2018; Chura-
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Figure 6. Number of enrichment QTL classes and top 10 or 9 QTL associated with significant SNPs in 3 chromosomes (7, 14, and 20; A and 
C) or chromosome 20 only (B and D) of milk citrate.
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kov et al., 2021). The enrichment of milk magnesium 
may be due to its significant association with Chr20 
(54.00 – 64.28 Mb) (Sanchez et al., 2021). Amino acid 
content in milk changes significantly when cows are in 
NEB (Xu et al., 2018, 2020). This may be the reason 
for the enrichment of milk α-lactalbumin percentage 
and colostrum albumin concentration. Numerous dis-
eases including ketosis, abomasum displacement, and 
subacute respiratory acidosis are associated with the 
state of NEB (Esposito et al., 2014). These can explain 
why we found 3 of 9 significant QTL linked to citrate 
and diseases.

Direction of selection for citrate levels

Through the above discussion section, we can con-
clude that citrate has a potential correlation with the 
traits related to the NEB of dairy cows. This indirectly 
helps to demonstrate that citrate can be a potential 
proxy of NEB of dairy cows. This suggests an interest 
in selecting cows with lower citrate levels to indirectly 
select cows with better energy balance at the beginning 
of lactation. However, citrate levels are also associated 
with other issues of dairy cows. It has been reported 
that a decrease of milk citrate is observed during masti-
tis (Hyvönen et al., 2010). Choosing animals with lower 
citrate levels may increase the likelihood of selecting in-
dividuals with a higher incidence of mastitis. An alter-
native is to select animals with lower citrate levels only 
during early lactation, as this period is often linked to 
NEB, and the decrease in citrate levels is more clearly 
associated with mastitis during late lactation (Hyvönen 
et al., 2010). From a different point of view, different 
milk citrate levels are observed during heat stress 
events (higher or lower depending on the study) (Tian 
et al., 2016; Yue et al., 2020). Selecting lower milk ci-
trate levels could also affect cow thermotolerance. This 
is supported by HSF1, a candidate gene in our study, 
which has been implied in the thermotolerance (Li et 
al., 2010; Lemal et al., 2023).

Future research perspectives could involve extending 
the genetic analysis to cover the entire lactation period 
of citrate, as the h2 of energy balance varied signifi-
cantly throughout the lactation period (Liinamo et al., 
2012). Furthermore, the genetic correlations of citrate 
with other traits of interest, especially milk production 
and reference energy balance or its other proxies, could 
be explored. This study shows the potential relationship 
between citrate and other traits, which requires further 
confirmation of real genetic correlations. In addition, 
citrate is a proxy of NEB, so, we need to investigate 
the genetic correlation between citrate and NEB or its 
other proxies (e.g., BHB). It is important to know how 

citrate relates to other traits of interest before includ-
ing it in a breeding program.

CONCLUSIONS

This study showed that milk citrate predicted by milk 
MIR spectra has the potential to be used as a proxy of 
NEB in dairy cows from the animal breeding perspec-
tive. If citrate is proved as a suitable proxy for NEB, 
this could be included as a selection index trait helping 
to reduce the disease incidence in Holstein cows.
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