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Basic definition of chemometrics
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X-metrics

Bio-metrics → Biology

Psycho-metrics → Psychology

Chemo-metrics → Chemistry

Application of mathematical and statistical methods

to chemical measurements1.

1Kowalski, Anal. Chem. 1980, 52, 112R-122R



Historical origin of chemometrics

1971

Name proposed by 
Swedish organic

chemist Svante Wold

Creation of 
International 

Chemometrics 
Society

1974
1983

First International 
meeting in Cosenza

Journals

▪ 1986 
Chemometrics and 
Intelligent Laboratory 
Systems

▪ 1987 
Journal of Chemometrics
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▪ Routine use of 
spectrometers for 
chemical analyses

▪ Rising application of 
multivariate statistics

≳ 1950



Increase of the amount, quality 
and accessibility of instruments

 

Context of the last decades

Evolution of computers allowing 
faster acquisition and processing

Development of chemometric 
softwares and toolboxes

Explosive growth of the amount 
and quality of data

Development of new 
tools and approaches

 CHEMOMETRICS
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More complete definition

Chemical discipline that uses mathematics, statistics and formal logic to

1. design or select optimal experimental procedures

2. provide maximum relevant chemical information by analyzing chemical data

3. obtain knowledge about chemical systems.
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Massart, D.L., et al. (1997) Data Handling in Science and Technology 

20A, Handbook of Chemometrics and Qualimetrics Part A, p1. 



Rapid development in multiple domains

Process control 
and analysis

Chromatographic 
optimisation

Environmental 
monitoring

Forensic
science

Biology 
Omics

Clinical 
Science

Reaction 
monitoring

Analytical 
Chemistry

Food 
analysis
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and many others …



Chemometrics and machine learning

Chemistry

Chemometrics

Computer 
Science

Machine 
Learning

Mathematics

Linear 
Algebra

Statistics
Information 

Theory
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Preprocessing

Factor analysis

Exploration

Equation

Calibration

Validation

Feature engineering

Dimensionality reduction

Data mining

Algorithm, Model

Training, Learning

Test

Shared concepts, sometimes 

using differents words



▪ The definition of chemometrics is traditionnaly associated with 
multivariate linear statistics 

• Multiple Linear Regression (MLR)

• Principal Component Analysis (PCA)

• Partial Least Squares (PLS)

• …

▪ However, methods from the field of machine learning are now 
also considered as part of chemometrics:

• Support Vector Machines (SVM)

• Classification And Regression Trees (CART)

• Artificial Neural Networks (ANN)

• …

Evolution of the methods in chemometrics
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From univariate to multivariate analysis

Univariate analysis

Uses 
a single variable

at a time 
(or a few ones)

▪ Reflectance at single spectral wavelength

▪ Height of one peak

▪ Spectral indices

▪ Integrated signal over spectral band

Multivariate analysis

Uses 
multiple variables 

simultaneously

Full spectrum or spectral interval
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Role of linear algebra (matrix and vector operations)

Linear algebra is the language of Chemometrics. 

One cannot expect to truly understand most chemometric techniques

without a basic understanding of linear algebra

Wise and Gallagher, 1998
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Our objective of today

Grasp the fundamental principles of chemometrics without equations !



Typical structures of chemical data

1

1 1

n

p

n

p

q

n

… r
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Scalar

1 × 1

Fixed room

temperature

Vector

n × 1

Reference values for 

one property

2D Matrix

n × p

Matrix of spectra

Reference values for 

multiple properties

3D Matrix

« hypercube »

n × p × q

Hyperspectral image

Matrix of spectra at 

different timepoints

3D LC-MS plot

4D Matrix

n × p × q × r

Hyperspectral video

Type

Size

Example



The data matrix (2D case)

X

p

n

ROWS

Samples

Observations 

OBJECTS

COLUMNS

Spectral variables

Wavelengths

VARIABLES
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The spectral matrix in spectroscopy
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Data matrix and reference values
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▪ Experimental data

▪ Typically a matrix of spectra from vibrational 
spectroscopy or hyperspectral imaging

Xn

p

Data matrix

▪ Values of a given property for each object, 
considered as ground truth

▪ Generally obtained from reference methods such 
as wet chemistry or mass spectrometry

▪ May also come from visual observation or known 
metadata (country of origin, species, variety, …)

y

1

Reference values

n



Unsupervised approaches

Analysed using data exploration methods Not available or not exploited
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X yn

p

Data matrix Reference values



Supervised approaches

Used as explanatory variables… Used as response variable…
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X yn

p 1

Data matrix Reference values

n

… in a predictive model (regression or classification) 



• Experimental 
design

• Sample 
selection

• Measurements

Data 
acquisition

• Outlier removal

• Noise filtering

• Artefact correction

• Scaling and 
normalization

Data 
preprocessing

• Data vizualisation

• Dimension reduction

• Pattern analysis

• Clustering

• Outlier detection

Data 
exploration

• Method selection

• Feature selection

• Optimal complexity 
selection

• Model calibration

Model 
building • Validation on 

independent 
dataset

• Uncertainty 
estimation

Model
validation

Industrialisation
• Instrument installation and maintenance

• Model deployment

• Continuous model validation

• Model update

Supervised approaches

Unsupervised 

approaches

Chemometric pipeline of analysis
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Data acquisition: sampling

 

A 

B 

C 

Each case = a new challenge

Beware sample heterogeneity !!



Data acquisition: experimental design
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When data are collected during a controlled experiment

Objective Optimizing the coverage of all the factors of variation and their 

interactions, within constraints of experiment duration.

Factor 1

F
a
c
to

r 
2

▪Tip: if you want a robust predictive 

model, allow some variability in the 

acquisition of your training sample: 

different varieties, different storage 

conditions, different operators, …



Why is preprocessing required?
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Unstable 

light sources

Heterogeneous 

illumination,

shadows 

Unstable 

experimental 

conditions

Optical & 

electronical noise

Heterogeneous sample, 

complex light-matter 

interactions (scattering), 

differences in optical path

▪ The spectra contain relevant 
information and noise

▪ Noise is unwanted variation, 
artifacts resulting from different 
processes

▪ We need to remove as much 
noise as possible without 
altering relevant information



Example of preprocessing
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Dataset of NIR spectra of wheat kernels

▪ Spectral derivative → highligths spectral bands

▪ SNV normalization → corrects for differences in optical path lengths



▪ With PCA, we create new variables (PC’s) as linear combinations of the 
original variables

▪ The PC’s are uncorrelated and ordered so that the first few retain most of 
the variation present in all the original variables

Data exploration: Principal Component Analysis (PCA)

22



PCA: symbolic example
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Objective

Find the factors capture the maximum of variability among these objects



PCA: symbolic example
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Objective

Find the factors capture the maximum of variability among these objects

PC1: colour



PCA: symbolic example
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Objective

Find the factors capture the maximum of variability among these objects

PC1: Colour

PC2: shape

and some more PCs…



PCA: decomposition into scores and loadings
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=

𝑝

𝑛

Residuals

+

𝑘

𝑝

Loadings

𝑝
𝑛

Data matrix

X

Scores

𝑛

𝑘

▪ The scores represent the values of the new factors for the observations

▪ The PCA model is described univocally by the loadings 



PCA: contribution of principal components
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=

𝑝

𝑛

Residuals

+

𝑝

𝑛

Data matrix

X

𝑝

𝑛 X(1)

𝑝

𝑛 X(k)+ … +

The spectra are the sum of the contribution of k principal components, 
plus remaining variation considered as not relevant



Geometric perspective of PCA

x1

x2
PC1

Find the direction in which the variance is maximal

28

x1

x2



Geometric perspective of PCA

And repeat this for the remaining variance

PC1
PC2
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x1

x2



PCA: scores and loadings

Rotate the space
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PCA: scores and loadings

31

ti1

Scores - coordinates of the points in the new system

Loadings - coordinates of the new axes expressed in the old coordinate system
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The loadings with a spectroscopic example

The loadings can be interpreted as

▪ the coordinates of the PCs in the original space

▪ the contribution of each original variable to each PC 

They highlight features that explain the more the variability in the dataset
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Data exploration in spectroscopy

Scores Loadings

Objects

Spectra, samples, 

patients, batches, 

dates, …

Variables

Critical wavelengths, 

fingerprint of chemical 

compounds, bands, …
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Give an overview 

of the patterns in

Give an overview 

of the patterns in



PCA scores: clustering and outliers

Object space

Clusters

Outliers (?)
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PCA and X-outlier detection

• Distance to the model

Q residuals, maximum residuals, …

• Distance in the model

Mahalanobis, GH, Hotelling’s T², …PC1

PC2

Valid samples

     Outlier ?

x1

x2

xp
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X-outliers with PCA model
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Distance in the model
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Threshold
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Interpretation of X-outliers

Distance in the model

D
is

ta
n

c
e
 t

o
 t

h
e
 m

o
d

e
l

Samples of the 

product with 

typical values

Non conforming sample 

(« bad » outlier)

Different product? Adulteration?

Samples of the 

product with 

extreme values? 

(« good » outlier)

→ check y then keep

→ check

→ keep
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Swiss army knife of chemometrics !! 

Multiple advantages

▪ Within objects

• Identify clusters, highligh the effect of external factors

• Detect outliers

▪ Identify important or useless variables and their relations

▪ Remove noise (preprocessing)

▪ Reduce dimensionality

• Decrease storage requirements

• Accelerate further processing

But

▪ It requires some expertise to make correct exploration and interpretations

▪ It is a linear method, only fitting linear variation (often sufficient with vibr. spectroscopy)

PCA summary
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Specific vizualization methods: t-SNE, UMAP, …

Aim: visualize a high dimensional dataset into a single 2D map while 

preserving at best the relationships of similarity between objects 

t-SNE coordinate 1

t-
S

N
E

 c
o
o
rd

in
a
te

 2

X

Z

2D/3D 

mapping 

van der Maaten, Laurens & Hinton, Geoffrey. (2008). Visualizing data 

using t-SNE. Journal of Machine Learning Research. 9. 2579-2605. 39



Specific vizualization methods: t-SNE, UMAP, …

Tip: if we color the objects in the t-SNE map according to a categorical 

reference variable, then it allows checking the influence of this variable

t-SNE coordinate 1

t-
S

N
E

 c
o
o
rd

in
a
te

 2

X

Z

2D/3D 

mapping 

van der Maaten, Laurens & Hinton, Geoffrey. (2008). Visualizing data 

using t-SNE. Journal of Machine Learning Research. 9. 2579-2605. 40



t-SNE analogy
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▪ n objects (balls) float in dimension p, 
undergoing forces from other objects

▪ The more different are the objects, 
the more repulsive are the forces

▪ The dimensionality is reduced 
progressively, leading to an optimal 
reorganisation, until reaching 
dimension 2, the « mapping »



Pesticides example: choice of preprocessing

Raw spectra SNV SNV + derivative

t-SNE can help choosing the preprocessing pipeline by indicating 

which one provides the best separation between the classes in Y

→

t-
S

N
E

 c
o

o
rd

in
a

te
 2

t-SNE coordinate 1t-SNE coordinate 1t-SNE coordinate 1
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Combine t-SNE and PCA – oregano dataset

t-SNE on the 100 first PCs

Country dominates

t-SNE coord 1

t-
S

N
E

 c
o

o
rd

2

t-SNE on PCs 2-100

Effect of contaminant clearer

t-SNE coord 1

t-
S

N
E

 c
o

o
rd

2

Scores of PC1 and PC2

PC1 largely explains country

Stevens F, Carrasco B, Baeten V, Fernández Pierna JA. Use of t-distributed stochastic neighbour 

embedding in vibrational spectroscopy. Journal of Chemometrics. 2024; 38(4):e3544. doi:10.1002/cem.3544

https://doi.org/10.1002/cem.3544


Regression: many methods 
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Method Regression Discrimination

Multiple linear regression (MLR) 

With regularization: ridge, lasso, elasticnet
+ +

Principal component analysis (PCA) PCR SIMCA

Partial least squares (PLS) PLSR PLSDA

Support vector machine (SVM) SVMR SVMDA 

Local methods Local PLS, …
K-nearest 

neighbors (kNN)

Classification and regresion tree based 

methods (random forest, XGBoost, …)
+ +

Artificial neural networks (ANN) + +



The general regression framework
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The process 

The light (𝐗) is a function of the matter (𝐲)

𝐗 = F(𝐲, .)

The general framework

𝐲 = መ𝑓 𝐗 + 𝜺 

The linear framework

𝒚 = 𝑿መ𝐛 + 𝜺

𝑦𝑖 = 𝑥𝑖1
෠b1 + 𝑥𝑖2

෠b2 + ⋯ + 𝑥𝑖𝑝
෠b𝑝 + 𝜀𝑖

መ𝐛 = the model sorry…



Linear regression does not work when multicollinearity is present

→ this leads to unstable models that fails in future predictions

One solution is to compress the data into independent factors using a 
method like PCA and apply the linear regression on the scores

The problem of multicollinearity
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Regression: PCR vs. PLSR
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=

Residuals

+
Loadings

Data matrix

X

Scores

Factors name
Criterion for 

selecting factors

Principal 

components
Maximize variance

Latent variables
Maximize 

covariance with 𝑦=

Residuals

+
Loadings

Data matrix

X

Scores

PCR

PLSR



▪ With PCR the first factors are not necessarily the ones that best explain 𝒚

▪ Actually, the factors that best explain 𝒚 could have a very low variance in 𝑿
and appear late in the list of factors

▪ With PLSR, the ability to explain 𝒚 is taken into account in the selection 
and in the ranking of the factors

▪ PLSR is thus able to better fit the calibration dataset and to better predict   
future samples while using less factors than PCR

Advantages of PLSR over PCR
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• This group of methods implicitly or

explicitly tries to find the boundaries

which separate the different classes in

the multidimensional space.

• The corresponding outcome is always
the classification to one of the available
categories.

A classical discriminant model is constructed based on differences
among classes studied, and a new sample is always assigned to one of
these classes.

Ex. PLS-DA

Classification: discriminant modelling 
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• This group of methods focuses on looking for 

similarities among samples belonging to the 

same class. 

• Each category is modeled individually.

• A sample can be assigned to one class, to 

more than one class or to no class at all.

A class-model is constructed individually for each of the classes studied, based
on the similarities among samples from the same class. Ex. SIMCA

Classification: class modelling
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Predictive modelling and validation
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A dataset with X and y values 

Extra set saved to assess the 

performances of the tuned model

Tuning set to compare 

the performances of the 

different model settings

Calibration set on 

which different model 

settings are applied

The assessment set should be independent from the rest of the data !



Tuning model with k-fold cross-validation

# 1

# 2

# 3
# 4

# 5

# 99

# 100
100

samples

4 groups of 25 #

…

# 1
# 1

# 1
# 1

# 2

# 2

# 2
# 2

# 

25

# 

25
# 

25

# 

25

… … …
…
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Tuning model with k-fold cross-validation

Calibrate model 1

Calibrate model 2

Calibrate model 3

Calibrate model 4

Test model 1

Test model 2

Test model 3

Test model 4

For a given value of the complexity hyperparameter(s)

Join predictions and 

assess model performance 

by comparing predicted 

and (reference) values
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Under- and overfitting

Good model

”Relying on incorrect assumptions 

and missing relevant relations 

leads to poor prediction with systematic error”

Underfitting

Too simple model Too complex model

”Small variations in calibration data 

might result in a completely different 

model being generated”

Overfitting

X X X

y y y
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PLS model tuning

Too complex modelToo simple model Good model

Number of latent variable

P
re

d
ic

ti
o
n
 e

rr
o
r 

(R
M

S
E

)

Cross-validation

Calibration

Objective estimate of the 

performance of prediction 

on new samples
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Considering an large database of spectra and associated reference values

For each spectrum whose prediction is aimed

1. Select spectra located in a neighbourhood (typically using Euclidian or 
Mahalanobis distance)

2. Fit a predictive model on these neighbourhood spectra

3. Predict the y of the new sample with this model

Local methods



Strategy of local methods

Global fit

Local fit

Simplified 2D illustration

x

y

Local methods exploits the fact that 

non-linear trends 
may be well approximated

locally
by a linear model



Strategy of local methods

58

Local PLSGlobal  PLS



▪ Deal with non linearities

▪ Work with a multi-product library

▪ No need to develop and maintain individual calibration models

▪ Ideal for cloud predictions

▪ The library can be protected and compressed (example: PCA)

But keep in mind

▪ Requires a library at disposal

▪ Prediction may be slower than with the global method

Advantages of local methods



Transfer between instruments
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CALIBRATION TRANSFER FROM DISPERSIVE INSTRUMENTS TO HANDHELD SPECTROMETERS

‘Calibration Transfer from Dispersive Instruments to Handheld Spectrometers’, J.A. Fernández 

Pierna, P. Vermeulen, B. Lecler, V. Baeten, P. Dardenne. Applied Spectroscopy 64 (6) (2010)

Protein, fat, fiber & starch in feed 



Thank you for your attention
Do you have questions?

François Stevens

Juan Antonio Fernández Pierna

Walloon Agricultural Research Centre (CRA-W), 

Valorization of Agricultural Products Department

Gembloux, Belgium
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