• Suivez-nous

Biochemical methane potential prediction of plant biomasses: comparing chemical composition versus near infrared methods and linear versus non-linear models


  • Godin, B. , Agneessens, R. , Gerin, P. , Dardenne, P. , Delfosse, P. & Delcarte, J. (2015). Biochemical methane potential prediction of plant biomasses: comparing chemical composition versus near infrared methods and linear versus non-linear models. Bioresour. Technol. 175: 382-390.
Type Journal Article
Year 2015
Title Biochemical methane potential prediction of plant biomasses: comparing chemical composition versus near infrared methods and linear versus non-linear models
Journal Bioresour. Technol.
Recnumber 20
Volume 175
Pages 382-390
Type of article Journal article
Endnote Keywords Anaerobic digestion; Biogas; Multivariate data analysis; Chemometrics; Prediction
Abstract The reliability of different models to predict the biochemical methane potential (BMP) of various plant biomasses using a multispecies dataset was compared. The most reliable prediction models of the BMP were those based on the near infrared (NIR) spectrum compared to those based on the chemical composition. The NIR predictions of local (specific regression and non-linear) models were able to estimate quantitatively, rapidly, cheaply and easily the BMP. Such a model could be further used for biomethanation plant management and optimization. The predictions of non-linear models were more reliable compared to those of linear models. The presentation form (green-dried, silage-dried and silage-wet form) of biomasses to the NIR spectrometer did not influence the performances of the NIR prediction models. The accuracy of the BMP method should be improved to enhance further the BMP prediction models.
Fichier Biochemical methane potential prediction of plant biomasses: comparing chemical composition versus near infrared methods and linear versus non-linear models
Lien http://dx.doi.org/10.1016/j.biortech.2014.10.115
Authors Godin, B. , Agneessens, R. , Gerin, P. , Dardenne, P. , Delfosse, P. & Delcarte, J.